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23 Fourier sine and cosine series; calculation tricks 

23.1 Goals 

1. Be able to use various calculation shortcuts for computing Fourier series: 
shifting and scaling 𝑓(𝑡) 
shifting and scaling 𝑡 
differentiating and integrating known series. 

2. Be able to find the sine and cosine series for a function defined on the interval [0, 𝐿] 

3. Understand the distinction between 𝑓(𝑥) defined on [0, 𝐿] and it’s even and odd pe-
riodic extensions. 

23.2 Introduction 

This topic is split into two subtopics. First, we look at a few more calculation tricks. The 
common idea in these tricks is to use the Fourier series of one function to find the Fourier 
series of another. A simple example is if we scale a function, say 𝑔(𝑡) = 5𝑓(𝑡), the Fourier 
series for 𝑔(𝑡) is 5 times the Fourier series of 𝑓(𝑡). 
Next, we’ll look at functions 𝑓(𝑥) that are only defined on the interval [0, 𝐿]. This is in 
preparation for our later study of the heat and wave equations. This function is not periodic 
–it’s not even defined for all 𝑥. By extending 𝑓(𝑥) to an even or odd periodic function we 
can write the original function 𝑓(𝑥) as a sum of sines (sine series) or a sum of cosines (cosine 
series). 

23.3 Calculation shortcuts 

One of our goals is to avoid computing integrals when finding the Fourier coefficients of 
a periodic function. In this section we’ll consider the following calculation shortcuts for 
computing Fourier series: 

1. Simplify computations for even or odd periodic functions. (Already covered in the 
previous topic.) 

2. Use known Fourier series to compute the Fourier series for scaled and shifted functions. 

3. Use known Fourier series to compute the Fourier series for the derivative or integrals 
of functions. 

Even and odd functions were covered in the previous topic, so we won’t go over them again 
here. 

1 
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23.3.1 New series from old ones: shifting and scaling 

First, if you scale and shift 𝑓(𝑡), then you scale and shift its Fourier series. To avoid 
burdening the statement with too much notation we state it for period 2𝜋 functions. You 
can extend this easily to any period. 

𝑎0
∞ ∞ 

Suppose 𝑓(𝑡) has Fourier series 𝑓(𝑡) = 2 
+ ∑ 𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑏𝑛 sin(𝑛𝑡).

𝑛=1 𝑛=1 

Theorem. (Scaling and shifting 𝑓(𝑡).) The scaled and shifted function 𝑔(𝑡) = 𝑐𝑓(𝑡) + 𝑑 
has Fourier series 

𝑐𝑎0 
∞ ∞

𝑔(𝑡) = 𝑐𝑓(𝑡) + 𝑑 = 2 
+ 𝑑 + ∑ 𝑐𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑐𝑏𝑛 sin(𝑛𝑡).

𝑛=1 𝑛=1 

Theorem. (Scaling and shifting in time.) The function 𝑔(𝑡) = 𝑓(𝑐𝑡 + 𝑑) has 

𝑎0
∞ ∞

𝑔(𝑡) = 𝑓(𝑐𝑡 + 𝑑) = 2 
+ ∑ 𝑎𝑛 cos(𝑛(𝑐𝑡 + 𝑑)) + ∑ 𝑏𝑛 sin(𝑛(𝑐𝑡 + 𝑑)). 

𝑛=1 𝑛=1 

This is not quite in standard Fourier series form, but it is in a useable form. Also, if we 
really want a standard Fourier series, it is easy to expand out the trig functions to put it 
in standard form. 
The rest of this subsection will be devoted to an extended example, illustrating these tech-
niques using our standard period 2𝜋 square wave whose graph is shown just below. 
Example 23.1. (Extended example.) The graph of 𝑓(𝑡) looks like this: 

𝑓(𝑡) = 𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

1 

−1 

Graph of 𝑓(𝑡) = square wave 

We know that the Fourier series for 𝑓(𝑡) is 

4 sin(𝑛𝑡)𝑓(𝑡) = . (1)𝜋 ∑ 𝑛 𝑛 odd 

Now we will use this to find the Fourier series for scaled and shifted versions of 𝑓(𝑡). We’ll 
define these new functions graphically, we could also write down formulas if we wanted. 

2 

⋯ sin(𝑛𝑡)⋯ ⇒ 𝑓1(𝑡) = 1 + 𝑓(𝑡) = 1 + 
4 .(a) 𝑓1(𝑡) = 𝜋 ∑ 𝑛 𝜋 2𝜋 𝑡 𝑛 odd 
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⋯ 8 sin(𝑛𝑡)⋯ ⇒ 𝑓2(𝑡) = 2𝑓(𝑡) = .(b) 𝑓2(𝑡) = 𝜋 ∑ 𝑛 𝑡 𝑛 odd 𝜋 2𝜋 

2 

−2 

⋯ 
𝜋 2𝜋 

1 1 1 sin(𝑛𝑡)⋯ ⇒ 𝑓3(𝑡) = 2(1 + 𝑓(𝑡)) = 2 
+ 

2 .(c) 𝑓3(𝑡) = 𝑡 𝜋 ∑ 𝑛 𝑛 odd 

Next will look at what happens if we scale the time 𝑡. 
4 sin(𝑛𝜋𝑡) ⋯ ⇒ 𝑓4(𝑡) = 𝑓(𝜋𝑡) = .(d) 𝑓4(𝑡) = ⋯ 

1 2 

1 

−1 

𝜋 ∑ 𝑛 𝑡 𝑛 odd 

It’s a little tricky to see that 𝑓4(𝑡) = 𝑓(𝜋𝑡). I think about it two ways. First, the picture 
shows that we want 𝑓4(1) = 𝑓(𝜋), which is given by 𝑓4(𝑡) = 𝑓(𝜋𝑡). Second, 𝑓4(𝑡) has period 
2 so its Fourier series should have terms with frequencies 𝑛𝜋. 
Our last example involves shifting the time. 

⋯ 

−𝜋/2 𝜋/2 

1 

−1 

⋯ 4 sin(𝑛(𝑡 + 𝜋/2)) 
𝑡 ⇒ 𝑓5(𝑡) = 𝑓(𝑡 + 𝜋/2) = .(e) 𝑓5(𝑡) = 𝜋 ∑ 𝑛 𝑛 odd 

That is, 
4 4𝑓5(𝑡) = 𝜋 

(sin(𝑡 + 𝜋/2) + 
sin(3𝑡 + 3𝜋/2) + …) = 𝜋 (cos 𝑡 − 

cos 3𝑡 + …) . 3 3 

The last expression is in the form we defined for Fourier series. For most applications, the 
middle expression is perfectly useable and sometimes even preferable. 

23.3.2 Differentiation and integration 

If 𝑓(𝑡) is periodic, then the Fourier series for 𝑓′(𝑡) is just the term-by-term derivative of the 
Fourier series for 𝑓(𝑡). An example should make this clear. 
Example 23.2. Let 𝑓(𝑡) be the period 2𝜋 triangle wave with 𝑓(𝑡) = |𝑡| on [−𝜋.𝜋]. It’s 
clear that 𝑓′(𝑡) is the square wave. Check that the derivative of the Fourier series of 𝑓(𝑡) is 
the Fourier series of 𝑓′(𝑡). 

𝑓(𝑡) = 𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

𝜋 

Graph of 𝑓(𝑡) = triangle wave 
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Solution: From the previous topic notes, we know the Fourier series for 𝑓(𝑡) is 

𝜋 + 
cos 5𝑡 𝑓(𝑡) = 2 − 𝜋

4 (cos 𝑡 + 
cos 3𝑡 + …) 32 52 

4 + 
sin 5𝑡 Thus, 𝑓′(𝑡) = 𝜋 

(sin 𝑡 + 
sin 3𝑡 + …). We know this is the Fourier series of our3 5 

standard square wave as claimed. 
Decay rate of Fourier series. Note that 𝑓(𝑡) has a corner and its coefficients decay like 1/𝑛2, 
while 𝑓′(𝑡) has a jump and its coefficients decay like 1/𝑛. Note also, how differentiation 
changed the power of 𝑛 in the decay rate. 
Differentiation of discontinuous functions. Term-by-term differentiation of Fourier series 
works for discontinuous functions as long as we use the generalized derivative. 
Example 23.3. Let 𝑓(𝑡) be our standard period 2𝜋 square wave. Find 𝑓′(𝑡) and the 
Fourier series of 𝑓′(𝑡). Graph 𝑓′(𝑡). 
Solution: Because 𝑓(𝑡) has jumps (alternating between 2 and −2) we must take the gen-
eralized derivative: 

𝑓′(𝑡) = … − 2𝛿(𝑡 + 𝜋) + 2𝛿(𝑡) − 2𝛿(𝑡 − 𝜋) + 2𝛿(𝑡 − 2𝜋) − … 

4 sin(𝑛𝑡) 4We know 𝑓(𝑡) = . So, taking the term-by-term derivative, 𝑓′(𝑡) = cos(𝑛𝑡).𝜋 ∑ 𝑛 𝜋 ∑ 
𝑛 odd 𝑛 odd 

You can check this by computing the Fourier coefficients of 𝑓′(𝑡) directly using the integral 
formulas. 

𝑡 

2 2 2 2 

2 2 2 2 

−3𝜋 𝜋 𝜋 3𝜋 

−2𝜋 2𝜋 4𝜋 

Graph of 𝑓′(𝑡) = impulse train 

Example 23.4. Term-by-term integration. Suppose that 

+ 
cos(3𝑡) + 

cos(4𝑡)𝑓(𝑡) = 1 + cos(𝑡) + 
cos(2𝑡) + … 2 3 4 

What is ℎ(𝑡) = ∫
𝑡
𝑓(𝑢) 𝑑𝑢? 

0 

Solution: We integrate the Fourier series term-by-term to get 

𝑡 

+ 
sin(3𝑡)ℎ(𝑡) = ∫ 𝑓(𝑢) 𝑑𝑢 = 𝐶 + 𝑡 + sin(𝑡) + 

sin(2𝑡) + … 22 32
0 

Note: Just because 𝑓(𝑡) is periodic doesn’t mean the integral of 𝑓(𝑡) will be periodic. In 
this case, the “𝑡-term” shows that ℎ(𝑡) is not periodic. So we can’t officially say we have a 
Fourier series for ℎ(𝑡). Nonetheless we have a nice series for ℎ(𝑡) that can be used in many 
applications. 
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Here’s one more example of integration. It’s very cool, but we probably won’t get to it in 
class. 
Example 23.5. For your amusement. Consider the period 2𝜋 discontinuous sawtooth 
function 𝜋

2 
− 

𝑡 𝑓(𝑡) = for 0 < 𝑡 < 2𝜋. 2 

𝑓(𝑡) = 𝑡 
⋯ ⋯ 

−2𝜋 −𝜋 𝜋 2𝜋 3𝜋 4𝜋 

𝜋 

Graph of 𝑓(𝑡) = discontinuous sawtooth 

Since 𝑓(𝑡) is odd with period 2𝜋, we know that the cosine coefficients 𝑎𝑛 = 0. For the sine 
coefficients it is slightly easier to do the integral over a full period rather than double the 
integral over a half period: 

1 𝜋 − 𝑡 1𝑏𝑛 = 
2𝜋 

sin(𝑛𝑡) 𝑑𝑡 = 𝜋 ∫ 2 𝑛. 
0 

+ 
sin(3𝑡)Thus, 𝑓(𝑡) = sin(𝑡) + 

sin 
2
(2𝑡) 

3 
+ …. 

Now, let ℎ(𝑡) be the integral of 𝑓(𝑡), specifically 

𝑡 𝑡 

+ 
sin 3𝑢 Let ℎ(𝑡) = ∫ 𝑓(𝑢) 𝑑𝑢 = ∫ sin 𝑢 + 

sin 
2
2𝑢 

3 
+ … 𝑑𝑢 

0 0 

+ 
1 − cos(3𝑡)= (1 − cos(𝑡)) + 

1 − cos(2𝑡) + … 22 32 

∞ 1 ∞ cos(𝑛𝑡)= ∑ ∑ .𝑛2 
− 𝑛2

1 1 

𝑎
2
0 = ∑ 1The DC term is 𝑛2 . This is an infinite sum, but we can compute its value directly

𝑡 𝜋
2 

− 
𝑢 𝜋𝑡 

2 
− 

𝑡2 

using the integral formula for Fourier coefficients. On [0, 2𝜋], ℎ(𝑡) = ∫ 2 𝑑𝑢 = 4 
. 

0
Thus, 

2𝜋 1 𝜋𝑡 
2 

− 
𝑡2 𝜋2

𝑎0 = 4 𝑑𝑡 = 𝜋 ∫ 3 . 
0 

𝑎0 𝜋2
= ∑ 

1So, = 𝑛2 
. We’ve summed an infinite series! 2 6 

23.4 Sine and cosine series; even and odd extensions 

23.4.1 Definition of sine and cosine series 

In this section we will be concerned with functions 𝑓(𝑥) defined on an interval [0, 𝐿]. We 
start by stating the theorem on how to write functions as sine and cosine series. After that, 
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we will use what we know about Fourier series to justify the theorem. We will need sine 
and cosine series when we study the heat and wave equations. 
But first, an important semantic distinction: Fourier series are defined for periodic func-
tions. A function defined only on an interval [0, 𝐿] cannot be periodic, so it doesn’t have a 
Fourier series. The figures below show a function defined on the interval [0, 𝜋] and a period 
𝜋 function defined over the entire real line. 

x

y

π
x

y

−π π 2π 3π

· · · · · ·

Left: function defined [0, 𝜋], can’t be periodic. Right: periodic function 

Sine and cosine series. Without further ado, we state how to write a function as a cosine 
or sine series and how to compute the coefficients for the series. Note, the statements look 
very much like the ones for Fourier series. 
Consider a function 𝑓(𝑥) defined on the interval [0, 𝐿]. 𝑓(𝑥) can be written as a cosine 
series: 

∞ 𝐿 𝑎0 𝑎𝑛 cos (𝑛𝜋𝑥 2 𝑓(𝑥) cos (𝑛𝜋𝑥 𝑓(𝑥) = 2 
+ ∑ 𝐿 

) , where 𝑎𝑛 = 𝐿 
) 𝑑𝑥. 𝐿 

∫ 
𝑛=1 0 

𝑓(𝑥) also has a sine series: 

∞ 𝐿 

𝑏𝑛 sin (𝑛𝜋𝑥 2 𝑓(𝑥) sin (𝑛𝜋𝑥 𝑓(𝑥) = ∑ 𝐿 
) , where 𝑏𝑛 = 𝐿 

) 𝑑𝑥. 𝐿 
∫ 

𝑛=1 0 

Important. 

1. Sine and cosine series are about functions defined on an interval. 

2. The sine and cosine series have values for all 𝑥. At points in (0, 𝐿) where 𝑓(𝑥) is 
continuous, the sine and cosine series equal 𝑓(𝑥). Since 𝑓(𝑥) is only defined on [0, 𝐿], 
this is usually what we want. 

3. Computing 𝑎𝑛 and 𝑏𝑛 only depends on the values of 𝑓(𝑥) in the interval [0, 𝐿]. 

4. We will make use of sine and cosine series when we study the heat and wave equations. 

23.4.2 Examples of sine and cosine series 

Now, we’ll give some example computations. We can do this by mechanically applying the 
formulas. We’ll gain more insight into these series after we have seen the proof justifying 
the formulas for the coefficients. 
Example 23.6. Find the Fourier cosine and sine series for the function 𝑓(𝑥) = sin(𝑥)
defined on [0, 𝜋]. 
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Solution: Cosine series. 𝐿 = 𝜋, Using the formula for 𝑎𝑛: 
𝜋 𝜋 

𝑎0 = sin(𝑥) 𝑑𝑥 = [−𝜋
2 cos(𝑥)∣ = 𝜋

2 ∫ 𝜋
4 . 

0 0 

sin(𝑎 + 𝑏) + sin(𝑎 − 𝑏) By applying the formula sin(𝑎) cos(𝑏) = we get:2 

𝜋 𝜋 2 
𝜋
1 [−cos((1 + 𝑛)𝑥) − 

cos((1 − 𝑛)𝑥) for odd 𝑛 > 0 𝑎𝑛 = sin(𝑥) cos(𝑛𝑥) 𝑑𝑥 = ∣ = {0 
−4𝜋 ∫

0 1 + 𝑛 1 − 𝑛 0 𝜋(𝑛2−1) for even 𝑛 > 0. 

(You have to be careful with 𝑛 = 1, but the formula is correct.) 

Thus, 

2 
𝜋 (cos(2𝑥) + 

cos(4𝑥) + 
cos(6𝑥) 2 cos(𝑛𝑥)𝑓(𝑥) = + …) = ∑𝜋 − 4 

3 15 35 𝜋 − 𝜋
4 

𝑛2 − 1 
. 

𝑛>0, even 

Important. This is only valid where 𝑓(𝑥) is defined, i.e., on [0, 𝜋]. 
Sine series. 𝑓(𝑥) = sin(𝑥) on [0, 𝜋]. This can be seen by comparing the abstract sine series 
∑∞ 

𝑛=1 𝑏𝑛 sin(𝑛𝑥) with the given function 𝑓(𝑥) = sin(𝑥). Or we could compute the integrals 
for 𝑏𝑛 similar to the way we computed 𝑎𝑛 above. 

23.4.3 Even and odd periodic extensions 

The proof of the formulas for the sine and cosine series coefficients turns out to be a 
straightforward application of Fourier series for periodic functions. The trick is to view the 
fact that 𝑓(𝑥) is only defined on [0, 𝐿] as an opportunity instead of a limitation. To do this 
we need to define even and odd periodic extensions of 𝑓(𝑥). 
Definition. If 𝑓(𝑥) is a function defined on the interval [0, 𝐿] then the even period 2𝐿 
extension of 𝑓(𝑥) is the period 2𝐿 function 

𝑓𝑒̃(𝑥) = {𝑓(−𝑥) for −𝐿 < 𝑥 < 0 

𝑓(𝑥) for 0 < 𝑥 < 𝐿 

To visualize this, we first reflect 𝑓(𝑥) in the 𝑦-axis to get a function defined over one period 
[−𝐿, 𝐿]. We then extend this to be periodic over the entire real line. 

x

y

L

Original function f(x)

x

y

L−L

Reflected function on [−L,L]

x

y

L 2L 3L 4L 5L−L−2L−3L

. . . . . .

Even period 2L extension f̃e(x)

Making an even period 2𝐿 extension. 



8 23 FOURIER SINE AND COSINE SERIES; CALCULATION TRICKS 

The odd period 2𝐿 extension of 𝑓(𝑥) is defined similarly, with 

𝑓𝑜̃(𝑥) = {−𝑓(−𝑥) for −𝐿 < 𝑥 < 0 

𝑓(𝑥) for 0 < 𝑥 < 𝐿 

To visualize this, we first reflect 𝑓(𝑥) through the origin to get a function defined over one 
period [−𝐿, 𝐿]. We then extend this to be periodic over the entire real line. 

x

y

L 2L 3L 4L 5L−L−2L−3L

. . . . . .

Odd period 2L extension f̃o(x)

The odd period 2𝐿 extension. 

23.4.4 Proof of the formulas for the sine and cosine series 

As we said, using the even and odd period 2𝐿 extensions this is a straightforward application 
of Fourier series for periodic functions. We will give the argument for the cosine series. The 
sine series is similar. 
We have 𝑓(𝑥) defined on [0, 𝐿] and the even period 2𝐿 extension 𝑓𝑒̃ (𝑥). Since 𝑓𝑒̃ (𝑥) is 
periodic, it has a Fourier series and since it is even this series has only cosine terms. That 
is, 

∞𝑎0 𝑎𝑛 cos (𝑛𝜋𝑥 𝑓𝑒̃(𝑥) = ∑ 𝐿 
) . 2 

+ 
𝑛=1 

𝐿 2 𝑓𝑒(𝑥) cos (𝑛𝜋𝑥 Using the symmetry of even functions we know 𝑎𝑛 = ̃ 
𝐿 

) 𝑑𝑥. But, on𝐿 
∫ 

0 

the interval of integration, we know 𝑓𝑒̃(𝑥) = 𝑓(𝑥). Therefore, 

𝐿 2 𝑓(𝑥) cos (𝑛𝜋𝑥 𝑎𝑛 = 𝐿 
) 𝑑𝑥. 𝐿 

∫ 
0 

This is the formula we wanted to prove. 
Sine series. You should try proving the formula for the sine series coefficients. 
Once more to emphasize the grammar: 
𝑓(𝑥) is defined for 𝑥 in [0, 𝐿], while 𝑓𝑒̃ (𝑥) and 𝑓𝑜̃ (𝑥) are defined for all 𝑥. 

The three functions agree on [0, 𝐿], i.e., 𝑓(𝑥) = 𝑓𝑒̃(𝑥) = 𝑓𝑜̃(𝑥) for 𝑥 in [0, 𝐿]. The cosine 
series for 𝑓(𝑥) is just the Fourier series for 𝑓𝑒̃ (𝑥). The sine series for 𝑓(𝑥) is just the Fourier 
series for 𝑓𝑜̃ (𝑥). 
This is illustrated in the following figure: 
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x

y

L 2L 3L−L−2L−3L

. . . . . .

𝑓(𝑥) in orange, 𝑓𝑒̃ (𝑥) in cyan, 𝑓𝑜̃ (𝑥) in purple. All three are the same for 0 < 𝑥 < 𝐿. 

We finish with an example that shows how to use known Fourier series to avoid computing 
integrals for sine and cosine series. 
Example 23.7. Find the sine and cosine series for the function 𝑓(𝑥) = 1 defined on the 
interval [0, 𝜋]. 
Solution: Since the odd period 2𝜋 extension of 𝑓(𝑥) is our standard square wave, we have 
the sine series is the Fourier series of sq(𝑥): 

4 sin(𝑛𝑥)𝑓(𝑥) = .𝜋 ∑ 𝑛 𝑛 odd 

Since the even period 2𝜋 extension is the constant function 𝑓(𝑥) = 1, we have the cosine 
series: 

𝑓(𝑥) = 1. 
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