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26 PDEs continued 

26.1 Goals 

1. Reinforce the goals from Topic 25. 

26.2 Introduction 

The main goal in this topic is to give one more example of the wave equation. This time 
with boundary conditions that are different from all our previous examples. 
As a bonus we also discuss a different method of solving the wave equation called the 
d’Alembert solution. This is nice, but it only applies to the undamped wave equation. In 
contrast, the Fourier method applies to many other systems, including the heat equation 
and the damped wave equation. 
As a further bonus we walk through the ratio of frequencies for various musical intervals. 

26.3 An example with different BC 

Example 26.1. On a string of length 𝐿 = 𝜋 find 𝑦(𝑥, 𝑡) satisfying 

WE: 𝑦𝑡𝑡 = 9𝑦𝑥𝑥 

BC: 𝑦𝑥(0, 𝑡) = 0, 𝑦𝑥(𝜋, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. 
Solution: Note: these are not clamped end boundary conditions. Rather, it is the first 
partial in 𝑥 that is 0 at the boundary. 
Step 1. Look for separated solutions 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) to WE. 
Substitution of 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) into WE gives 𝑋𝑇 ″ = 9𝑋″𝑇 . 
Algebra: 𝑋″(𝑥)/𝑋(𝑥) = 𝑇 ″(𝑡)/(9𝑇 (𝑡)) = constant = −𝜆. 
More algebra: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 9𝜆𝑇 = 0. 
There are three cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐 cos(3

√
𝜆𝑡) + 𝑑 sin(3

√
𝜆𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. 
Case (iii) 𝜆 < 0. Always ignore since this case only gives the trivial modal solutions. 

Step 2. (Modal solutions) Find the separated solutions from Step 1 which also satisfy the 
boundary conditions. 
For separated solutions, the BC are 𝑋′(0) = 0, 𝑋′(𝜋) = 0. 
Case (i) BC: 𝑋′(0) = 

√
𝜆𝑏 = 0 and 𝑋′(𝜋) = −

√
𝜆𝑎 sin(

√
𝜆𝜋) = 0. 

1 
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This has nontrivial solutions when 𝑏 = 0 and 
√

𝜆 = 𝑛 for 𝑛 an integer. So, in this case, the 
nontrivial solutions to the PDE satisfying the BC are 

𝑦𝑛(𝑥, 𝑡) = cos(𝑛𝑥)(𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)) for 𝑛 = 1, 2, 3, … 

Case (ii) BC: 𝑋′(0) = 𝑏 = 0, 𝑋′(𝜋) = 𝑏 = 0. 
So, 𝑋(𝑥) = 𝑎, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. The factor of 𝑎 is redundant, so, in this case, the modal 
solutions is 𝑦(𝑥, 𝑡) = 𝑐 + 𝑑𝑡. As usual with the constant terms, we write this as 

𝑐
2
0 + 

𝑑0𝑡 𝑦0(𝑥, 𝑡) = 2 

Case (iii) Ignored. 

Step 3. Both WE and BC are homogeneous, so by superposition we have 

∞𝑐
2
0 + 

𝑑0𝑡 𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = 2 
+ ∑ cos(𝑛𝑥) ⋅ (𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡))

𝑛=0 𝑛=1 

is a solution to WE and BC. 

Step 4. Use the initial conditions to find the coefficients. 
∞ 

First IC: 𝑦(𝑥, 0) = ∑ 𝑐𝑛 cos(𝑛𝑥) = 𝑓(𝑥). That is, we have the Fourier cosine series 
𝑐
2
0 + 

𝑛=1 
for 𝑓(𝑥). 

𝑐0 = 
𝜋

𝑓(𝑥) 𝑑𝑥 , 𝑐𝑛 = 
𝜋 

𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥. 𝜋
2 ∫ 𝜋

2 ∫ 
0 0 

Second IC: 𝑦𝑡(0) = 
𝑑
2
0 + ∑ cos(𝑛𝑥)3𝑛𝑑𝑛 ⇒ 𝑑𝑛 = 0 for 𝑛 = 0, 1, 2, … 

So we have our solution to the system (WE, BC, IC): 

∞𝑐0𝑦(𝑥, 𝑡) = 2 
+ ∑ 𝑐𝑛 cos(𝑛𝑥) ⋅ cos(3𝑛𝑡),

𝑛=1 

where the values of 𝑐𝑛 are given above. 

26.4 Pluck vs. struck initial conditions 

A plucked string is one that is held in a starting position and then let go. It has no initial 
velocity. 
A struck string is one that is initially at equilibrium and is struck by an impulse to set it 
into motion. 
So the initial conditions for the two are: 
Plucked string: 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. 
Struck string: 𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 𝑔(𝑥). 
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Example 26.2. (Struck string.) A struck string of length 𝐿 = 𝜋 satisfies the following 
system 

WE: 𝑦𝑡𝑡 = 9𝑦𝑥𝑥 

BC: 𝑦(0, 𝑡) = 0, 𝑦(𝜋, 𝑡) = 0 (These are different from the previous example.) 

IC: 𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 𝑔(𝑥) 

Find the solution. 
Solution: WE and BC are the same as Example 25.4. So the general solution satisfying 
both WE and BC is 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝑥) ⋅ (𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)).
𝑛=1 𝑛=1 

As usual, we use the IC to find the values of the coefficents: 

First IC: 𝑦(𝑥, 0) = 0 = ∑ 𝑐𝑛 sin(𝑛𝑥) ⇒ 𝑐𝑛 = 0. So, 𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝑥) sin(3𝑛𝑡). 

Second IC: 𝑦𝑡(𝑥, 0) = 𝑔(𝑥) = ∑ 3𝑛𝑑𝑛 sin(𝑛𝑥). Therefore, 3𝑛𝑑𝑛 are the Fourier sine coeffi-
cients of 𝑔(𝑥). So, 

23𝑛𝑑𝑛 = 
𝜋 

𝑔(𝑥) sin(𝑛𝑥) 𝑑𝑥 or 𝑑𝑛 = 
𝜋 

𝑔(𝑥) sin(𝑛𝑥) 𝑑𝑥. 𝜋
2 ∫ 3𝑛𝜋 

∫ 
0 0 

The two boxed formulas give a complete solution to the example. 

26.5 The d’Alembert solution to the wave equation 

This secion is for enrichment. We will not cover it in ES.1803 

For the undamped, unforced wave equation there is another standard method of solution 
called the d’Alembert solution. We’ll state it and then show how it equals the solution 
found by the Fourier method. 
Consider the system for a plucked string of length 𝐿: 
WE: 𝑦𝑡𝑡 = 𝑎2𝑦𝑥𝑥 

BC: 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. 

Claim. Let 𝑓𝑜̃ (𝑥) be the period 2𝐿 odd extension of 𝑓(𝑥). Then 

𝑓𝑜̃ (𝑥 + 𝑎𝑡) + 𝑓𝑜̃ (𝑥 − 𝑎𝑡) 𝑦(𝑥, 𝑡) = 2 
is a solution to this system. We call this solution the d’Alembert solution. 
Proof. This is trivial to check directly! You should do it, and make sure you see why the 
BC are satisfied. 
Note. Physically, we can think of 𝑓𝑜̃ (𝑥 + 𝑎𝑡) as a wave traveling to the left at speed 𝑎 
and 𝑓𝑜̃ (𝑥 − 𝑎𝑡) as the same wave traveling to the right. Since the solution 𝑦(𝑥, 𝑡) models a 
standing wave, we see that a standing wave on [0, 𝐿] is the superposition of two traveling 
waves! 
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26.5.1 The d’Alembert and Fourier solutions are the same 

This has to be the case, but we will show it using a standard trig identity. 
We know the system has Fourier solution: 

𝑦(𝑥, 𝑡) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥) cos (𝐿

𝜋 𝑎𝑛𝑡) , where 𝑓(𝑥) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥) on 0 < 𝑥 < 𝐿 

Of course the sine series for 𝑓(𝑥) is just the Fourier series for 𝑓𝑜̃ (𝑥), i.e., 𝑓𝑜̃ (𝑥) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥)

for all 𝑥. 
We need the following trig identity (which we’ve used multiple times before). 

sin(𝛼) cos(𝛽) = 2
1(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)). 

Now use this identity to rewrite the Fourier solution. 

𝑦(𝑥, 𝑡) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥) cos (𝐿

𝜋 𝑎𝑛𝑡) 

1= 2 
∑ 𝑏𝑛 sin (𝐿

𝜋 𝑛(𝑥 + 𝑎𝑡)) + sin (𝐿
𝜋 𝑛(𝑥 − 𝑎𝑡)) 

= 
1
2(𝑓𝑜̃(𝑥 + 𝑎𝑡) + 𝑓𝑜̃(𝑥 − 𝑎𝑡)). QED 

26.6 Musical notes 

Assume the fundamental note is a C, then we get the following chart. The ‘𝑛’ column is the 
harmonic, i.e., 𝑛 = 1 is the first harmonic (or fundamental), 𝑛 = 2 is the second harmonic, 
etc. The ‘ratio’ column is the ratio of the frequencies of the harmonic and the previous 
harmonic, i.e., 𝑛/(𝑛 − 1) 
𝑛 ratio note interval 
1 𝐶 fundamental 
2 2/1 𝐶 octave 
3 3/2 𝐺 fifth
4 4/3 𝐶 fourth
5 5/4 𝐸 third
6 6/5 𝐺 augmented second 
7 7/6 ugly harmonic 
8 8/7 𝐶 ignore interval because previous one ugly
9 9/8 𝐷 second
10 10/9 𝐸 second 

The point of this chart is to show that the frequencies in musical intervals have small 
whole number ratios. This is the standard way of tuning a musical instrument. It is called 
‘just-temperament’. 
Another method of tuning is called ’equal temperament. Here the 12 half-steps in an octave 
are all equal. That is, for each step the ratio of the frequencies is 21/12 ≈ 1.05946309. After 
12 steps the frequency has doubled which is an octave. We get the following table. For 
comparison we include a ’just-tempered’ scale. 
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𝑛 1/2 steps 2𝑛/12 interval from base just tuning interval percent difference 
0 1.0 unison 1 0.00%
1 1.059 minor second 16/15 −0.68%
2 1.122 major second 9/8 −0.23%
3 1.189 minor third 6/5 −0.91%
4 1.260 major third 5/4 +0.79% 
5 1.335 perfect fourth 4/3 +0.11%
6 1.414 diminished fifth 7/5 +1.02%
7 1.498 perfect fifth 3/2 −0.11%
8 1.587 minor sixth 8/5 −0.79% 
9 1.682 major sixth 5/3 +0.90%
10 1.782 minor seventh 16/9 +0.23%
11 1.888 major seventh 15/8 +0.68%
12 2.0 octave 2/1 0.00% 

Note. It is impossible to tune a piano so that all major keys are just-tempered. A piano 
is called ’well-tempered’ when the major keys are close enough to just-tempered that they 
don’t sound out of tune. 
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