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27 Qualitative behavior of linear systems 

27.1 Goals 

1. Be able to draw the vector field associated to an autonomous system. 

2. Be able to draw the phase portrait of any linear, autonomous, second-order system. 

3. Be able to use eigenvalues to classify the types of critical points and their dynamic 
stability. 

4. Be able to use the trace-determinant diagram to organize the different types of critical 
points. 

27.2 Introduction 

In this topic we are going to look at the qualitative behavior of systems of the form 

[𝑥′ 

𝑦′] = 𝐴 [𝑥
𝑦] ⇔ x ′ = 𝐴x, (1) 

where x = [𝑥
𝑦] and 𝐴 is a constant, 2 × 2 matrix. 

This is a system of two first-order DEs, so it is a second-order system. Since 𝐴 is constant, 
the system is autonomous (the rate x changes depends only on x) and time invariant. 
Our goal is to sketch portraits of the solutions to these systems that capture their important 
qualitative features. Similar to what we did with first-order autonomous equations and 
phase lines, we will use critical points to organize our work. 
While this gives us a useful perspective on linear systems, since we already know how to 
solve these systems, we don’t really need it to understand such systems. Our real goal here 
is to prepare for a qualitative analysis of nonlinear systems. Since we can’t usually solve 
nonlinear systems exactly, we will approximate them by linear systems and then leverage 
our qualitative understanding of linear systems to get information about nonlinear ones. 

27.3 The phase plane: example with definitions 

1Example 27.1. Let 𝐴 = [ 
0 

0]. Consider the autonomous system −1 

x ′ = 𝐴x ⇔ [𝑥′ 1
0] [𝑥

𝑦] . (2)𝑦′] = [−1
0 

We’ll use this example to define and explain the terms we use in our qualitative description 
of a system. 

1 
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Phase plane: The phase plane for our system is simply the 𝑥𝑦-plane. This is where we 
will do all of our graphical work. 

x

y
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2

1 2

1Trajectories, tangent vectors and direction field in phase plane for [𝑥
𝑦′

′
] = [−1

0 
0] [𝑥

𝑦] 

Critical points: A critical point of the system is a point in the 𝑥𝑦-plane where x ′ = 0. 
For the system x ′ = 𝐴x, critical points satisfy the equation 

𝐴x = 0. 

[ 0 1Every such system has one critical point at x = 0. In our example, 𝐴 = 0] is−1 
nonsingular. Therefore, x = 0 is the only solution to 𝐴x = 0, i.e., the system’s only critical 
point is at the origin. (This is the case for most systems x ′ = 𝐴x.) 

In the phase plane figure above, the critical point at the origin is marked with a solid pink 
dot. 

Trajectories: Any solution [𝑥(𝑡)
𝑦(𝑡)] to the system can be plotted as a parametrized curve 

in the phase plane (𝑥𝑦-plane). Such a curve is called a trajectory of the system. 
Using the method of eigenvalues and eigenvectors, we found the solution to Equation 2: 

[𝑥(𝑡)
𝑦(𝑡)] = [ 

𝑐1 cos(𝑡) + 𝑐2 sin(𝑡) or 𝑥(𝑡) = 𝑐1 cos(𝑡)+𝑐2 sin(𝑡), 𝑦(𝑡) = −𝑐1 sin(𝑡)+𝑐2 cos(𝑡).−𝑐1 sin(𝑡) + 𝑐2 cos(𝑡)] 

Several trajectories are plotted in the figure above. They are circles turning in the clockwise 
direction. 
Important: The constant function x(𝑡) = 0 is a solution to the system. In the figure 
above, the trajectory of this solution is given by the dot at the origin. That is, the critical 
point x = 0 is also a stationary trajectory. 

Dynamic stability of the equilibrium at the origin: If all solutions go asymptotically 
to 0 as 𝑡 gets large, we call the equilibrium at the origin a dynamically stable equilibrium. 
Clearly, the origin is dynamically stable exactly when all the eigenvalues have negative real 
parts. 
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If any eigenvalue has a positive real part, then most solutions go to infinity and we call the 
equilibrium at the origin dynamically unstable. 
If the real part of one eigenvalue is 0 and those of all the others are ≤ 0, then we say the 
equilibrium is an edge case in terms of dynamic stability. 
In the example in Equation 2, the eigenvalues are pure imaginary, so this is an edge case. 
In the figure above, we see the trajectories don’t go asymptotically to the origin, but they 
also don’t go to infinity. Whether we consider this stable or not depends on the application 
we have in mind. 
Note: Dynamic stability refers to stability over time. We include the word ‘dynamic’ to 
distinguish this type of stability from the notion of structural stability, which we will talk 
about later. 

Vector field and direction field: In general, the mapping [𝑥
𝑦] ⟼ 𝐴 [𝑥

𝑦] gives us a 

vector field in the plane. That is, to each point (𝑥, 𝑦) in the plane we attach a vector 𝐴 [𝑥
𝑦]. 

The figure above shows these vectors at the points (1, 0), (2, 0), (0, 1), (0, 2). Note: we know 
the vector field associated with Equation 2 without having to solve the equations. 

For a curve [𝑥(𝑡)
𝑦(𝑡)], the derivative [𝑥′(𝑡) Equation 2 𝑦′(𝑡)] is the tangent or velocity vector. 

shows that the tangent vectors to trajectories are the same as those in the vector field 
just described. Notice that the vectors in the figure above at (1, 0), (2, 0), (0, 1), (0, 2) are 
tangent to the trajectories through these points. 
Finally, sometimes, rather than trying to show relative lengths of tangent vector fields, we 
can make all the vectors the same length. In this case, we call the plot a direction field. It 
tells you the direction of the trajectory through a point, but not its speed. The figure above 
shows the direction field (for our system) as a grid of small arrows. Note, at each point on 
the trajectories, the curve is tangent to the direction field. 

27.4 Phase portraits 

Definition: To draw the phase portrait of a system of a system, you need to draw enough 
trajectories to get a good sense of the system. Always include the equilibium solution. 
For the remainder of this topic we will consider the general constant coefficient linear system 
in Equation 1. 
This system always has a critical point (i.e., x ′ = 0) at the origin. A critical point also 
represents a stationary trajectory, i.e., x(𝑡) = 0 is a solution to Equation 1. Our goal is to 
use the signs of the eigenvalues to classify the different types of critical points at the origin. 
We will divide these types into ‘main cases’ and ’edge cases’. A main case is one where 
changing the eigenvalues a little will not change the case. For example, if we have one 
positive and one negative eigenvalue, then if the eigenvalues change a little, one will remain 
positive and the other negative. 
An edge case is one where the smallest change could change the case. For example, if we 
have one positive and one zero eigenvalue, then the smallest change in the zero could change 



x

y
Mode with bigger λ

Mode with smaller λ

Asymptotically parallel to
mode with bigger λ

Asymptotically tangent to
smaller mode at (0, 0)
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this to two positive eigenvalues or one positive and one negative eigenvalue. 
Before reading through the cases, you should scan all the phase plane portraits shown below. 

27.4.1 Drawing a phase portrait: examples 

We will use some examples to walk through drawing the phase portrait for several systems. 
This should be enough to see how to draw phase portraits for all our main cases. 
Example 27.2. (Nodal source) Suppose the solution to x ′ = 𝐴x is 

x(𝑡) = 𝑐1𝑒2𝑡 [1
1] + 𝑐2𝑒3𝑡 [1

2] . 

Sketch a phase portrait. 
Solution: Here is the final sketch. We outline the steps for drawing the phase portrait 
below. 

Nodal source at (0, 0) – eigenvalues are positive and different. 
All trajectories “flow out” from the origin. 

Step 1: Sketch the equilibrium solution: x(𝑡) = [0
0] = single point. 

Step 2: Sketch the modes: 

Modal solutions: x1(𝑡) = 𝑐1𝑒2𝑡 [1
1], x2(𝑡) = 𝑐2𝑒3𝑡 [1

2]. 

Mode x(𝑡) = 𝑒2𝑡 [1
1]: trajectory = ray from the origin through (1,1). 

Mode x(𝑡) = −𝑒2𝑡 [1
1]: trajectory = ray from the origin through (-1,-1). 

Likewise, the trajectories of x(𝑡) = 𝑒3𝑡 [1
2], x(𝑡) = −𝑒3𝑡 [1

2] are rays from the origin. 

Summary: modes give straight line trajectories. 

Step 3: Sketch some “mixed modal” solutions, e.g., sketch x(𝑡) = 𝑒2𝑡 [1
1] + 𝑒3𝑡 [1

2]. 

Asymptotics as 𝑡 → ∞: Because the eigenvalues (exponents) are positive, as 𝑡 → ∞, 
x(𝑡) goes to infinity. We claim the trajectory becomes asymptotically parallel to the mode 
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with the bigger eigenvalue, i.e., asymptotically parallel to [1
2]. To see this, we look at the 

tangent vector to the trajectory: 

x ′(𝑡) = 2𝑒2𝑡 [1
1] + 3𝑒3𝑡 [2

1] = 𝑒3𝑡 (2𝑒−𝑡 [1
1] + 3 [2

1]) . 

This shows that x ′(𝑡) is parallel to 2𝑒−𝑡 [1
1] + 3 [1

2]. As 𝑡 gets large, the first term vanishes 

and the curve becomes asymptotically parallel to [1
2], as claimed. 

Asymptotics as 𝑡 → −∞: As 𝑡 → −∞, x(𝑡) goes to zero. We claim the trajectory becomes 
asympotically tangent to the mode with the smaller eigenvalue, i.e., asymptotically tangent 

to the line along [1
1]. To see this, we look at the tangent vector to the trajectory: 

x ′(𝑡) = 2𝑒2𝑡 [1
1] + 3𝑒3𝑡 [2

1] = 𝑒2𝑡 (2 [1
1] + 3𝑒𝑡 [2

1]) . 

This shows that x ′(𝑡) is parallel to 2 [1
1]+3𝑒𝑡 [1

2]. So, as 𝑡 gets large and negative, the second 

term vanishes and the tangent vector asymptotically points parallel to [1
1], as claimed. 

Drawing other mixed modal trajectories is similar. 
We call the equilibrium at the origin a nodal source. If you think of the trajectories as 
representing flowing water, the origin appears as a source, pushing out the water. The 
equilibrium is dynamically unstable. 

Key points 

• Trajectories don’t cross. 
• They fill up the plane. 
• Different solutions with the same trajectory have different initial values, e.g., 

x1 = 𝑒2𝑡 [1
1] and x2(𝑡) = 3𝑒2𝑡 [1

1] have the same trajectory, but 

x1(0) = [1
1] and x2(0) = [3

3] are different initial values. 

• For nodal sources: 
– Trajectories become parallel to the mode with the bigger 𝜆 as 𝑡 goes to ∞. 
– Trajectories become tangent to the mode with the smaller 𝜆 as 𝑡 goes to −∞. 
– As 𝑡 → −∞, trajectories go asymptotically to (0, 0). 
– Systems with positive, different eigenvalues have the same qualitative picture, i.e., 
they all look like nodal sources. 

5Example 27.3. (Spiral source) Let x ′ = [ 3 
3] x. Draw the phase portrait. −5 

We find the eigenvalues are 𝜆 = 3 ± 5𝑖. After some algebra we find: 
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x(𝑡) = 𝑐1𝑒3𝑡 [ 
cos(5𝑡)

− sin(5𝑡)] + 𝑐2𝑒3𝑡 [sin(5𝑡) 
cos(5𝑡)] 

grows × circle = spiral out 

To determine the sense of turning, i.e., if it turns clockwise (CW) or counterclockwise 
(CCW), we look at the tangent vector at the point (1,0) in the plane. 

5At (1, 0) ∶ x ′(0) = 𝐴 [1
0] = [−5

3 
3] [1

0] = [−5
3 ] 

= tangent vector to the trajectory through (1, 0) 

x

y

Tangent vector

[
3
−5

]
points down

Phase portrait: spiral source 

The tangent vector points down, so the spiral must be turning clockwise. 
The critical point at (0, 0) is called a spiral source. It is a dynamically unstable equilibrium. 

Example 27.4. (Saddle) Suppose the matrix 𝐴 has the following eigenvalues and eigen-
vectors. 

𝜆 = −3 2 

[3
1] [−1 v = 1 ] 

Sketch a phase portrait of the system x ′ = 𝐴x. Name the type of critical point at the origin 
and give its stability. 

Solution: The general solution is x(𝑡) = 𝑐1𝑒−3𝑡 [1
3] + 𝑐2𝑒2𝑡 [−1

1]. 

Modes have straight line trajectories: 

x1 = 𝑒−3𝑡 [3
1] goes to 0 as 𝑡 increases. 

x2 = 𝑒2𝑡 [−1
1] goes away from 0 as 𝑡 increases. 

Mixed modal solutions: For example, 𝑒−3𝑡 [3
1]+𝑒2𝑡 [−1

1], goes asympotically to 𝑒2𝑡 [−1
1 

] 

as 𝑡 → ∞ and goes asympotically to 𝑒−3𝑡 [3
1] as 𝑡 → −∞. 
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x

y

mode with negative λ

mode with positive λ

Saddle (dynamically unstable equilibrium at (0,0)) 

27.4.2 Key points about phase portraits 

• Trajectories don’t cross. 
• They fill up the plane. 
• Different solutions can have the same trajectory. They just have different initial values. 
• Qualitatively, the phase portrait is determined by the eigenvalues. 

27.5 Types of critical points: main cases based on eigenvalues 

Here we will summarize the main cases for the possible types of critical points (equilibria) 
at the origin. We’ll start with some notational conventions for this section. 
If the eigenvalues are real, we label them 𝜆1 and 𝜆2. We label the corresponding eigenvectors 
v1 and v2. In this case, the general solution to Equation 1 is 

x(𝑡) = 𝑐1𝑒𝜆1𝑡v1 + 𝑐2𝑒𝜆2𝑡v2. (3) 

If the eigenvalues are complex (with nonzero imaginary part), we label one of them 𝜆 = 
𝛼 + 𝛽 𝑖 and the corresponding eigenvector v + 𝑖 w. In this case, the general solution to 
Equation 1 is 

x(𝑡) = 𝑐1𝑒𝛼𝑡(cos(𝛽𝑡) v − sin(𝛽𝑡) w) + 𝑐2𝑒𝛼𝑡(sin(𝛽𝑡) v + cos(𝛽𝑡) w). (4) 

Case (i) Real eigenvalues, distinct, both postitive: 𝜆1 > 𝜆2 > 0. 
Type of critical point at origin: Nodal source. 
Dynamic stability of the equilibrium: dynamically unstable. 
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x

y

Critical point at the origin is a nodal source 

As 𝑡 → ∞, x(𝑡) goes to ∞ and the trajectory becomes asymptotically parallel to v1, i.e., 
to the eigenvector for the bigger eigenvalue. 
As 𝑡 → −∞, x(𝑡) goes asymptotically to 0 and becomes asymptotically tangent to (the 
line along) v2, i.e., to the eigenvector for the smaller eigenvalue. 

Case (ii) Real eigenvalues, distinct, both negative, 𝜆1 < 𝜆2 < 0. 
Type of critical point at origin: Nodal sink. 
Dynamic stability of the equilibrium: dynamically (asymptotically) stable. 
(Simply reverse the arrows on Case (i).) 

x

y

Critical point at the origin is a nodal sink 

As 𝑡 → ∞, x(𝑡) goes asymptotically to 0 and the trajectory becomes asymptotically 
tangent to (the line along) v2, i.e., to the eigenvector for the less negative eigenvalue (smaller 
absolute value). 
As 𝑡 → −∞, x(𝑡) goes to ∞ and becomes asymptotically parallel to v1, i.e., to the 
eigenvector for the more negative eigenvalue (bigger absolute value). 

Case (iii) Real eigenvalues, one positive, one negative, 𝜆1 > 0 > 𝜆2. 
Type of critical point at origin: Saddle 

Dynamic stability of the equilibrium: dynamically unstable. 

x

y
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Critical point at the origin is a saddle 

As 𝑡 → ∞, x(𝑡) goes to ∞ and becomes asympotically tangent to the mode 𝑐1𝑒𝜆1𝑡v1, i.e., 
to the mode with positive eigenvalue. 
As 𝑡 → −∞, x(𝑡) goes to ∞ and becomes asympotically tangent to the mode 𝑐2𝑒𝜆2𝑡v2, 
i.e., to the mode with negative eigenvalue. 

Case (iv) Complex eigenvalues, positive real part, i.e., 𝛼 > 0. 
Type of critical point at origin: Spiral source 

Dynamic stability: dynamically unstable. 

x

y

x

y

Critical point at the origin is a spiral source. Left: clockwise; right: counterclockwise 

Trajectories can spiral clockwise or counterclockwise. You can find the direction of rotation 
by checking the tangent vector at one point. 
As 𝑡 → ∞, x(𝑡) goes to ∞. 
As 𝑡 → −∞, x(𝑡) goes to 0. 

Case (v) Complex eigenvalues, negative real part, i.e., 𝛼 < 0. 
Type of critical point at origin: Spiral sink 

Dynamic stability: dynamically stable. 
(Reverse arrows from Case (iv).) 

x

y

x

y

Critical point at the origin is a spiral sink. Left: clockwise; right: counterclockwise 

Trajectories can spiral clockwise or counterclockwise. You can find the direction of rotation 
by checking the tangent vector at one point. 
As 𝑡 → ∞, x(𝑡) goes to 0. 
As 𝑡 → −∞, x(𝑡) goes to ∞. 
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27.6 Types of critical points: edge cases based on eigenvalues 

For the edge cases we will just list the properties and show a phase portrait. These are 
drawn in the same way as the main case examples. In class, we’ll look at as many of these 
as we have time for. 
Case (vi) Pure imaginary eigenvalues: 𝜆 = 𝑖𝛽. 
Type of critical point at origin: Center 

Dynamic stability: This is an edge case, in some applications this can be considered stable, 
in others it might not. 
Trajectories can turn clockwise or counterclockwise. As usual, you can find the direction of 
rotation by checking the tangent vector at one point. 
As 𝑡 → ±∞, x(𝑡) goes round and round an ellipse. 

x

y

x

y

Critical point at the origin is a center 

Case (vii) Real, repeated, positive eigenvalues: 𝜆1 = 𝜆2 > 0. 
Type of critical point at origin: Defective nodal source or star nodal source. 
Dynamic stability: dynamically unstable . 

x

y

Tangent vector shows
direction of turning

x

y

Tangent vector
shows direction
of turning

x

y

Defective nodal source Star nodal source 

If the coefficient matrix is defective (repeated eigenvalue, only one independent eigenvec-
tor), then we have a defective nodal source at the origin. 
Let 𝜆 be the eigenvalue and v1 the corresponding eigenvector. Let v2 be a generalized 
eigenvector associated with v1. 
In this case, the general solution to Equation 1 is x(𝑡) = 𝑒𝜆𝑡(𝑐1v1 + 𝑐2(𝑡v1 + v2)). The 
critical point at the origin is called a defective nodal source. 
As 𝑡 → ∞, x(𝑡) goes to ∞ and the trajectory becomes asymptotically parallel to the (only) 
mode, i.e., parallel to v1. 
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As 𝑡 → −∞, x(𝑡) goes to 0 and the trajectory becomes asymptotically tangent to the line 
along v1. 
Trajectories asymptotically make a 180 degree turn. As with spirals, you can find the sense 
of the turn by checking one tangent vector. 
If the coefficient matrix is complete, there are two independent eigenvectors, which implies 

𝐴 is a scalar matrix: 𝐴 = [𝜆 0
0 𝜆]. 

This implies the general solution is x(𝑡) = 𝑒𝜆𝑡c.⃗ 
That is, all trajectories are straight rays. This is called a star nodal source. 
As 𝑡 → ∞, x(𝑡) → ∞ along a line from 0. 
As 𝑡 → −∞, x(𝑡) → 0 

Case (viii) Real, repeated, negative eigenvalues: 𝜆1 = 𝜆2 < 0. 
Type of critical point at origin: Defective nodal sink or star nodal sink. 
Dynamic stability: dynamically stable. 
Just reverse the arrows from Case (vii). 

x

y

Tangent vector shows
direction of turning

x

y

Tangent vector
shows direction
of turning

x

y

Defective nodal sink Star nodal sink 

If the coefficient matrix is defective: 
As 𝑡 → −∞, x(𝑡) goes to ∞ and the trajectory becomes asymptotically parallel to the 
(only) mode, i.e., parallel to v1. 
As 𝑡 → ∞, x(𝑡) goes to 0 and the trajectory becomes asymptotically tangent to the line 
along v1. 
Trajectories asymptotically make a 180 degree turn. As with the defective nodal source, 
you can find the sense of the turn by checking one tangent vector. 

If the coefficient matrix is complete, there are two independent eigenvectors, which implies 

𝐴 is a scalar matrix: 𝐴 = [𝜆 0
0 𝜆]. 

This implies the general solution is x(𝑡) = 𝑒𝜆𝑡c.⃗ 
(Simply reverse the arrows on the star nodal source.) 

Case (ix) Real eigenvalues, one negative, one zero: 𝜆1 = 0 > 𝜆2. 
Type of critical point at the origin: Degenerate (line of critical points) 

Dynamic stability: edge case 
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The critical points are not isolated –they lie on the line through 0 with direction v1. 

x(𝑡) = 𝑐1v1 + 𝑐2𝑒𝜆2𝑡v2. 

As 𝑡 → ∞, x(𝑡) → 𝑐1v1 along a line parallel to v2. 

x

y

Degenerate case: line of critical points 

Case (x) Real eigenvalues, one positive, one zero: 𝜆1 = 0 < 𝜆2. 
Type of critical point at origin: Degenerate (line of critical points) 

Dynamic stability: dynamically unstable . 
(Simply reverse the arrows in Case (ix).) 

The critical points are not isolated –they lie on the line through 0 with direction v1. 

x(𝑡) = 𝑐1v1 + 𝑐2𝑒𝜆2𝑡v2. 

As 𝑡 → ∞, x(𝑡) → ∞ along a line parallel to v2. 

x

y

Degenerate case: line of critical points 

Case (xi) Real eigenvalues, both 0: 𝜆1 = 𝜆2 = 0. 
Since the eigenvalues are repeated, this breaks into two cases: 
Complete case: Every point is a critical point, every trajectory is a point. 
Defective case: Line of critical points. 

x(𝑡) = 𝑐1v1 + 𝑐2(𝑡v1 + v2). 

Trajectories are parallel to v1. 
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x

y

Degenerate and defective: (both 𝜆 = 0) 

27.7 Example 

[ 2 3Example 27.5. The matrix 𝐴 = 2] has eigenvalues 2 ± 3𝑖. So, for the system−3 
x ′ = 𝐴x, the critical point at the origin is a spiral source. 

The tangent vector at the point x0 = [0
1] is 𝐴 x0 = [−3

2 ]. This tells us the curve spirals 

clockwise. 

27.8 Trace-determinant plane 

For 𝐴 = [𝑎 𝑏 the characteristic equation is 𝑐 𝑑], 

𝑎 − 𝜆 𝑏 det(𝐴 − 𝜆𝐼) = ∣ ∣ = 𝜆2 − (𝑎 + 𝑑)𝜆 + (𝑎𝑑 − 𝑏𝑐) = 0.𝑐 𝑑 − 𝜆 

We recognize 𝑎𝑑 − 𝑏𝑐 = det(𝐴). The term (𝑎 + 𝑑) is called the trace of 𝐴, denoted tr(𝐴). 
(Trace is the sum of the entries along the main diagonal.) With this notation, the charac-
teristic equation is 

tr(𝐴) ± √tr(𝐴)2 − 4 det(𝐴)𝜆2 − tr(𝐴) 𝜆 + det(𝐴) = 0 ⟶ 𝜆 = .2 

Since the eigenvalues are determined by trace and determinant we have the following nice 
picture in the trace-determinant plane. (Structural stability will be discussed in Topics 28 
and 29. To read the diagram, it is enough to know that the main cases are structurally 
stable and the edge cases are not.) 
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tr(A)

det(A)

Spiral source
λ = α± iβ, α > 0
dynam. unstable
structurally stable

Spiral sink
λ = α± iβ, α < 0
dynamically stable
structurally stable

Nodal source
λ real: +, +
dyanmically unstable
structurally stable

Nodal sink
λ real: −, −
dynamically stable
structurally stable

Saddle
λ real: +, −
dynamically unstable
structurally stable

Degenerate
λ real: +, 0
stability: edge case
structurally unstable

Degenerate
λ real: −, 0
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: +
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: −
dynamically stable
structurally unstable

Center
λ pure imaginary
stability: edge case
structurally unstable

See the mathlet 
https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/. 

https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/
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