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31 Applications to physics: mechanical systems 

This topic is not officially on the ES.1803 syllabus. It contains several examples 
of nonlinear physical systems. All of the examples should be accessible to 
ES.1803 students who have learned through Topic 30. 

31.1 Nonlinear pendulum 

A pendulum consists of a light rigid rod. It pivots around one end and has a mass 𝑚 at the 
other end. Let 𝜃 be the (signed) angle the pendulum makes with the vertical direction (see 
figure). The equation modeling the motion of the pendulum is 

𝜃″ + 
𝑔
𝑙 sin(𝜃) = 0 or 𝜃″ + 𝜔2 sin(𝜃) = 0, 

where 𝜔2 = 𝑔/𝑙. (Derivation given below.) 
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Note: For small 𝜃 we can approximate 𝜃 ≈ sin(𝜃). With this approximation, the DE 
becomes 𝜃″ + 𝜔2𝜃 = 0, i.e., for small angles, the nonlinear pendulum is well-approximated 
by a linear simple harmonic oscillator. 
Letting 𝑥 = 𝜃 and 𝑦 = 𝑥′ = 𝜃′ , the companion system of the nonlinear equation can be 
written as 

𝑥′ = 𝑦 

𝑦′ = −𝜔2 sin(𝑥) 

It’s easy to establish that the critical points are 

(𝑛𝜋, 0), where 𝑛 = 0, ±1, ±2, … 

0 1The Jacobian is 𝐽(𝑥, 𝑦) = [ 0].−𝜔2 cos 𝑥 

Computing Jacobians and their eigenvalues, we find: 

𝑛 even 𝐽 = [ 0 1 linearized center −𝜔2 0] 

𝑛 odd 𝐽 = [ 0 1 linearized saddle 𝜔2 0] 
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Physically, we can describe the equilibria as follows: 
𝑛 even 𝑛 odd 
(hanging down, dynamically (Pointing up, dynamically un-
stable) stable) 

31.1.1 Derivation of the pendulum equation 

There are many ways to derive this. We do it using rotational mechanics. Energy conser-
vation is another good method. 
Consider 𝜃 to be positive in the counterclockwise direction. So, in the picture, 𝜃″ < 0. We 
compute the torque about the pivot point. 
Torque = � ⃗= l ⃗ × Fgravity has magnitude 𝑙𝑚𝑔 sin 𝜃 and points straight down into the page. 
We also know that |�|⃗ = −𝑚2 𝜃″ . (The minus sign is because 𝜃″ < 0). 

This implies 𝑙𝑚𝑔 sin 𝜃 = −𝑚2 𝜃″ ⇒ 𝜃″ = −𝑔
𝑙 sin 𝜃. QED 
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The labeled trajectories represent: 
1. Round and round in a clockwise direction. 
2. Just enough energy to asymptotically to the unstable equilibrium. 
3. Back and forth (like a, well, pendulum). 
4. Like (2) in the opposite direction. 
5. Like (1) in the opposite direction. 
There are also the equilibria –solid pink dots on the plot; 
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(6) Marginally stable (centers). (unlabeled) 
(7) Unstable (saddles). (unlabeled) 

Note: 
The following useful trick allows us to solve for the trajectories exactly. 

𝑑𝑦 𝑦′ 

= −𝜔2 sin 𝑥 .𝑑𝑥 
= 𝑥′ 𝑦 

This is separable and leads to 𝑦 𝑑𝑦 = −𝜔2 sin 𝑥 𝑑𝑥. 
𝑦2 

Integrating both sides: = 𝜔2 cos 𝑥 + 𝐸 ⇒ 
𝑦
2
2 

− 𝜔2 cos 𝑥 = 𝐸.2 
We use 𝐸 as the constant of integration to stand for energy, since this is the usual conser-
vation of total energy equation. 
We see that the motion of the pendulum depends on its total energy. We give the possibilities 
in the following list. 
1. 𝐸 > 𝑤2: Trajectory is round and round (trajectories 1, 5). 
2. −𝜔2 < 𝐸 < 𝜔2: Trajectory is back and forth (trajectory 3). 
3. 𝐸 = 𝜔2: At or asymptotically approaching the unstable equilibrium (trajectories 2, 4, 
7). 
4. 𝐸 = −𝜔2: At the stable equilibrium (trajectory 6). 
5. 𝐸 < −𝜔2: No trajectory. 

31.2 Damped nonlinear pendulum 

We can add damping to the pendulum: 

𝜃″ + 𝑏𝜃′ + 𝜔2 sin 𝜃 = 0. 

The companion system with 𝑥 = 𝜃, 𝑦 = 𝑥′ = 𝜃′ is 

𝑥′ = 𝑦 

𝑦′ = −𝜔2 sin 𝑥 − 𝑏𝑦. 

As before, the critical points are at (𝑛𝜋, 0) for any integer 𝑛. 
⎧ 𝑛 even 𝐽 = [ 0 1 linearized sink0 1 { −𝜔2 −𝑏]

𝐽(𝑥, 𝑦) = [−𝜔2 cos 𝑥 −𝑏] ⇒ ⎨ 1
{ 𝑛 odd 𝐽 = [ 0 linearized saddle⎩ 𝜔2 −𝑏] 

The type of linearized sink depends on the sign of the discriminant: 
𝑏2 − 4𝜔2 < 0 ⇒ spiral sink 

𝑏2 − 4𝜔2 > 0 ⇒ nodal sink 

The pictures below show two underdamped nonlinear pendulums. 
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Damped pendulum Lightly damped pendulum 

31.3 Nonlinear Spring 

If we add a cubic term to Hooke’s law, we get a nonlinear spring: 

⎧{hard if 𝑐 < 0 (cubic term adds to linear force) 
𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 

⎨{⎩soft if 𝑐 > 0 (cubic term opposes linear force). 

The companion system for these equations is 

𝑥̇ = 𝑦 

𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 

Example 31.1. Sketch a phase portrait of the system for both the hard and soft springs. 
You can use the fact that the linearized centers are also nonlinear centers. (This follows 
from energy considerations.) 

Solution: Case 1. Hard spring (𝑐 < 0): One critical point at (0, 0) 

0 1The Jacobian 𝐽(𝑥, 𝑦) = [−𝑘/𝑚 + 3𝑐𝑥2/𝑚 0] 

𝐽(0, 0) = [ 
0 1

0] ⇒ 𝜆 = 𝑖√𝑘/𝑚. So we have a linearized center. The problem−𝑘/𝑚
statement tells us that this is also a nonlinear center. 

Case 2. Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): 𝐽(0, 0) is the same as for the hard spring. This is a linearized center. The problem 
statement says it is also a nonlinear center. 

(±√𝑘/𝑐, 0): 𝐽(±√𝑘/𝑐, 0) = [ 
0 

0
1] (same for both). Thus we have linearized saddles 2𝑘/𝑚 

and, by structural stability, nonlinear saddles. (You should find the eigenvectors to aid in 
sketching the phase portrait.) 
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Soft spring: 𝑐 > 0 Hard spring: 𝑐 < 0 

Example 31.2. ((Challenge! For anyone who is interested. This is not part of the ES.1803 
syllabus.) Find equations for the trajectories of the system. 
Solution: We use a standard trick to get trajectories: 

𝑑𝑦 𝑦 ̇ −𝑘𝑥 + 𝑐𝑥3 

.𝑑𝑥 
= 𝑥̇ = 𝑚𝑦 

This is separable: 𝑚𝑦 𝑑𝑦 = (−𝑘𝑥 + 𝑐𝑥3) 𝑑𝑦. Integrating we get 

𝑚𝑦2 
+ 

𝑘𝑥 
2 

2 
− 

𝑐𝑥4 
= 𝐸⏟ .⏟2 4⏟⏟⏟⏟⏟ total energy = constant 

kinetic energy potential energy 

If 𝑐 < 0 (hard spring), then both energy terms on the right are positive, so 𝑥 and 𝑦 must be 
bounded. Then, for fixed 𝑥, there are at most two points on the trajectory. Thus we must 
have closed trajectories. 
If 𝑐 > 0 (soft spring), then, we can define 𝑤1 and 𝑤2 by 

𝑘𝑥 
2

2 

− 
𝑐𝑥4 

𝑤2(𝑦) = 𝐸 − 
𝑚𝑦2

𝑤1(𝑥) = 4 
, 2 

Using 𝑘 > 0, 𝑚 > 0, we have the graphs of 𝑤1, 𝑤2 given below. Using the same graphical 
ideas as in the proof in the Topic 30 notes that the Volterra predator-prey equation has 
closed trajectories, this shows the phase plane for the soft spring is as shown above. 

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/2

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/1

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/2

Plots of 𝑤1 = 𝑘𝑥
2

2 − 𝑐𝑥
4

4 , 𝑤2 = 𝐸 − 𝑦2 
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Similar to the nonlinear pendulum, for the soft spring, different energy levels correspond to 
different types of trajectories. At the unstable equilibrium we compute 𝐸 = 𝑘

4𝑐
2 . We have 

the following correspondence between energy level and trajector (using the labels on the 
soft-spring phase portrait above): 
𝐸 = 0: Stable equilibrium. 

0 < 𝐸 < 
𝑘2 

Trajectories 1. 4𝑐 
: 

𝑘2
𝐸 = Unstable equilibrium, or a trajectory going asymptotically to or from the unstable 4𝑐 

: 
equilibrium. 
𝑘
4𝑐

2 

< 𝐸: Trajectories 2. 

𝐸 < 
𝑘
4𝑐

2 

(including 𝐸 < 0): Trajectories 3 

31.4 Damped nonlinear spring 

We can add damping to the nonlinear spring: 𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 − 𝑏𝑥.̇ As usual we can 
convert it to a system: 

𝑥̇ = 𝑦 

𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 − 𝑏𝑦/𝑚 

Also as usual, we can do a critical point analysis. 
Hard spring (𝑐 < 0): One critical point at (0, 0) 

0 1 −𝑏 ± 
√

𝑏2 − 4𝑘𝑚 𝐽(0, 0) = [−𝑘/𝑚 −𝑏/𝑚] ⇒ 𝜆 = . So we have 3 possiblities: 2𝑚 

(i) underdamped = linearized spiral sink; 
(ii) overdamped = linearized nodal sink; 
(iii) critically damped = defective sink. 
In all cases we have a nonlinear sink. In case (iii), because it’s not structurally stable, we 
would need to do more work to see what type of nonlinear sink we have. 

Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): linearized sink (spiral, nodal or defective), so we have a nonlinear sink. 
(±√𝑘/𝑐, 0): linearized saddles, so we have nonlinear saddles. 
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