
ES.1803 Topic 4 Notes
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4 Complex numbers and exponentials 

4.1 Goals 

1. Do arithmetic with complex numbers. 

2. Define and compute: magnitude, argument and complex conjugate of a complex num-
ber. 

3. Be fluent in the use of Euler’s formula. 

4. Write sine and cosine in terms of complex exponentials (‘inverse Euler formulas’). 

5. Convert complex numbers back and forth between rectangular and polar form. 

6. Compute 𝑛th roots of complex numbers. 

4.2 Motivation 

The equation 𝑥2 = −1 has no real solutions, yet in ES.1803 we will see that this equation 
arises naturally and we will want to know its roots. As you may already know, we’ll 
introduce a new symbol for the roots and call it a complex number. 
Definition: The symbols ±𝑖 will stand for the solutions to the equation 𝑥2 = −1. We 
will call these new numbers complex numbers. We will also write 

√
−1 = ±𝑖 

Notes: 1. 𝑖 is also called an imaginary number. This is a historical term. These are 
perfectly valid numbers that don’t happen to lie on the real number line. 
2. Our motivation for using complex numbers is not the same as the historical motivation. 
Mathematicians were willing to say 𝑥2 = −1 had no solutions. The problem was in the 
formula for the roots of cubics. Where square roots of negative numbers appeared even for 
the real roots of cubics. 
3. Engineers typically use 𝑗 instead of 𝑖. We’ll follow mathematical custom and use 𝑖 in 
ES.1803. 

We’re going to look at the algebra, geometry and, most important for us, the exponentiation 
of complex numbers. 
Before starting a systematic exposition of complex numbers we’ll work a simple example. 
If the explanation is not immediately clear, it should become clear as we learn more about 
this topic. 
Example 4.1. Solve the equation 𝑟2 + 𝑟 + 1 = 0 

1 
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Solution: We can apply the quadratic formula to get 

−1 ± 
√

1 − 4 −1 ± 
√

−3 −1 ± 
√

3
√

−1 −1 ± 
√

3 𝑖 𝑟 = = = = .2 2 2 2 

Think: Do you know how to solve quadratic equations by completing the square? This is 
how the quadratic formula is derived and is well worth knowing! 

4.2.1 Fundamental theorem of algebra 

One of the reasons for using complex numbers is because, by allowing complex roots, every 
polynomial has exactly the expected number of roots. 
Fundamental theorem of algebra. A polynomial of degree 𝑛 has exactly 𝑛 complex 
roots (repeated roots are counted with multiplicity.) 

Example 4.2. We’ll illustrate what we mean by this with a few examples. 
1. The polynomial 𝑟2 + 3𝑟 + 2 factors as (𝑟 + 1)(𝑟 + 2) therefore its roots are 𝑟 = −1 and
𝑟 = −2. It is a second-order polynomial with 2 roots. 
2. The polynomial 𝑟2 + 6𝑟 + 9 factors as (𝑟 + 3)(𝑟 + 3). We say it has the roots −3 and −3. 
That is it has two roots that happen to be the same. We will also say that −3 is a root of 
this polynomial with multiplicity 2. 
3. The polynomial (𝑟 + 1)(𝑟 + 2)(𝑟 + 3)2(𝑟2 + 1)2 has degree 8. Its 8 roots are 

−1, −2, −3, −3, 𝑖, 𝑖, −𝑖, −𝑖. 

This example illustrates an important point about polynomials: we prefer to have them 
in factored form. I think you’ll agree that you wouldn’t want to find the roots of the 
polynomial 

𝑟8 + 9𝑟7 + 31𝑟6 + 57𝑟5 + 77𝑟4 + 87𝑟3 + 65𝑟2 + 39𝑟 + 18. 
Unless you happened to notice that it was the same as the factored polynomial in Example 
4.2(3)! Fortunately, computing packages like Matlab or Octave allow us to find these roots 
numerically for high order polynomials. 

4.3 Terminology and basic arithmetic 

Definitions. 

• Complex numbers are defined as the set of all numbers 

𝑧 = 𝑥 + 𝑦𝑖, 

where 𝑥 and 𝑦 are real numbers. 

• We denote the set of all complex numbers by C. (On the blackboard we will usually 
write ℂ –this font is called blackboard bold.) 
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• We call 𝑥 the real part of 𝑧. This is denoted by 𝑥 = Re(𝑧). 
• We call 𝑦 the imaginary part of 𝑧. This is denoted by 𝑦 = Im(𝑧). 

Note well: The imaginary part of 𝑧 is a real number. It DOES NOT include the 𝑖. 

The basic arithmetic operations follow the standard rules. All you have to remember is that
𝑖2 = −1. We will go through these quickly using some simple examples. For ES.1803 it is 
essential that you become fluent with these manipulations. 

• Addition: (3 + 4𝑖) + (7 + 11𝑖) = 10 + 15𝑖 
• Subtraction: (3 + 4𝑖) − (7 + 11𝑖) = −4 − 7𝑖 
• Multiplication: (3 + 4𝑖)(7 + 11𝑖) = 21 + 28𝑖 + 33𝑖 + 44𝑖2 = −23 + 61𝑖. Here we have 

used the fact that 44𝑖2 = −44. 

Before talking about division and absolute value we introduce a new operation called con-
jugation. It will prove useful to have a name and symbol for this, since we will use it 
frequently. 
Complex conjugation is denoted with a bar and defined by 

𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝑦. 

If 𝑧 = 𝑥 + 𝑖𝑦 then its conjugate is 𝑧 = 𝑥 − 𝑖𝑦 and we read this as “z-bar = 𝑥 − 𝑖𝑦”. 
Example 4.3. 3 + 5𝑖 = 3 − 5𝑖. 
The following is a very useful property of conjugation. We will use it in the next example 
to help with division. 
Useful property of conjugation: If 𝑧 = 𝑥 + 𝑖𝑦 then 𝑧𝑧 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2. 

3 + 4𝑖 Example 4.4. (Division.) Write 1 + 2𝑖 in the standard form 𝑥 + 𝑖𝑦. 

Solution: We use the useful property of conjugation to clear the denominator: 

3 + 4𝑖 3 + 4𝑖 1 − 2𝑖 11 − 2𝑖 11= ⋅ = 5 
− 2

5𝑖.1 + 2𝑖 1 + 2𝑖 1 − 2𝑖 = 5 

In the next section we will discuss the geometry of complex numbers, which give some 
insight into the meaning of the magnitude of a complex number. For now we just give the 
definition. 
Definition. The magnitude of the complex number 𝑥 + 𝑖𝑦 is defined as 

|𝑧| = √𝑥2 + 𝑦2. 

The magnitude is also called the absolute value or norm or modulus. 
Example 4.5. The norm of 3 + 5𝑖 = 

√9 + 25 = 
√

34. 
Note this really well: The norm is the sum of 𝑥2 and 𝑦2 it does not include the 𝑖! 
Therefore, it is always positive. 
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4.4 The complex plane and the geometry of complex numbers 

Because it takes two numbers 𝑥 and 𝑦 to describe the complex number 𝑧 = 𝑥 + 𝑖𝑦 we 
can visualize complex numbers as points in the 𝑥𝑦-plane. When we do this we call it the 
complex plane. Since 𝑥 is the real part of 𝑧 we call the 𝑥-axis the real axis. Likewise, the 
𝑦-axis is the imaginary axis. 

Imaginary axis 

𝑟 

𝑥 

𝑦 

𝜃 

Imaginary axis 

𝑧 = 𝑥 + 𝑖𝑦 = (𝑥, 𝑦) 𝑧 = 𝑥 + 𝑖𝑦 = (𝑥, 𝑦) 

𝑟 

𝜃 Real axis Real axis −𝜃 

𝑟 

𝑧 = 𝑥 − 𝑖𝑦 = (𝑥, −𝑦) 

4.5 Polar coordinates 

In the figures above we have marked the length 𝑟 and polar angle 𝜃 of the vector from the 
origin to the point 𝑧 = 𝑥 + 𝑖𝑦. These are the same polar coordinates you saw in 18.02. 
There are a number of synonyms for both 𝑟 and 𝜃 

𝑟 = |𝑧| = magnitude = length = norm = absolute value = modulus 

𝜃 = Arg(𝑧) = argument of 𝑧 = polar angle of 𝑧 

As in 18.02 you should be able to visualize polar coordinates by thinking about the distance
𝑟 from the origin and the angle 𝜃 with the 𝑥-axis. 
Example 4.6. In this example we make a table of 𝑧, 𝑟 and 𝜃 for some complex numbers. 
Notice that 𝜃 is not uniquely defined since we can always add a multiple of 2𝜋 to 𝜃 and still 
be at the same point in the plane. 
𝑧 = 𝑎 + 𝑏𝑖 𝑟 = |𝑧| 𝜃 = arg(𝑧) 

1 1 0, 2𝜋, 4𝜋, … Argument = 0, means 𝑧 is along the positive 𝑥-axis
𝑖 1 𝜋/2, 𝜋/2 + 2𝜋 … Argument = 𝜋/2, means 𝑧 is along the positive 𝑦-axis 

1 + 𝑖 
√

2 𝜋/4, 𝜋/4 + 2𝜋 … Argument = 𝜋/4, means 𝑧 is along the ray at 45∘ to the 𝑥-axis 

Real axis 

Imaginary axis
𝑖 

1 

1 + 𝑖 
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4.6 Euler’s Formula 

Euler’s (pronounced ’oilers’) formula connects complex exponentials, polar coordinates and 
sines and cosines. It turns messy trig identities into tidy rules for exponentials. We will use 
it a lot. 
The formula is the following: 

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃). (1) 

There are many ways to approach Euler’s formula. Our approach is to simply take Equation 
1 as the definition of complex exponentials. This is mathematically legal, but does not show 
that it’s a good definition. To do that, we need to show that 𝑒𝑖𝜃 obeys all the rules we expect 
of an exponential. To do that, we go systematically through the properties of exponentials 
and check that they hold for complex exponentials. 

4.6.1 𝑒𝑖𝑡 behaves like a true exponential 

1. 𝑒𝑖𝑡 differentiates as expected: 𝑑𝑒
𝑑𝑡 

𝑖𝑡 = 𝑖𝑒𝑖𝑡. 
Proof. This follows directly from the definition: 

𝑑𝑒𝑖𝑡 𝑑 = 𝑑𝑡 (cos(𝑡) + 𝑖 sin(𝑡)) = − sin(𝑡) + 𝑖 cos(𝑡) = 𝑖(cos(𝑡) + 𝑖 sin(𝑡)) = 𝑖𝑒𝑖𝑡.𝑑𝑡 
2. 𝑒𝑖⋅0 = 1. 
Proof. 𝑒𝑖⋅0 = cos(0) + 𝑖 sin(0) = 1. 

3. The usual rules of exponents hold: 𝑒𝑖𝑎𝑒𝑖𝑏 = 𝑒𝑖(𝑎+𝑏). 
Proof. This relies on the cosine and sine addition formulas. 

𝑒𝑖𝑎 ⋅ 𝑒𝑖𝑏 = (cos(𝑎) + 𝑖 sin(𝑎)) ⋅ (cos(𝑏) + 𝑖 sin(𝑏)) 

= cos(𝑎) cos(𝑏) − sin(𝑎) sin(𝑏) + 𝑖 (cos(𝑎) sin(𝑏) + sin(𝑎) cos(𝑏)) 

= cos(𝑎 + 𝑏) + 𝑖 sin(𝑎 + 𝑏) = 𝑒𝑖(𝑎+𝑏). 

4. The definition of 𝑒𝑖𝜃 is consistent with the power series for 𝑒𝑥. 
Proof. To see this we have to recall the power series for 𝑒𝑥, cos(𝑥) and sin(𝑥). They are 

𝑒𝑥 = 1 + 𝑥 + 𝑥2/2! + 𝑥3/3! + 𝑥4/4! + … 

cos(𝑥) = 1 − 𝑥2/2! + 𝑥4/4! − 𝑥6/6! + … 

sin(𝑥) = 𝑥 − 𝑥3/3! + 𝑥5/5! + … 

Now we can write the power series for 𝑒𝑖𝜃 and then split it into the power series for sine 
and cosine: 

𝑒𝑖𝜃 
∞ (𝑖𝜃)𝑛 

= ∑ 𝑛!0 
∞ ∞ 𝜃2𝑘+1 

= ∑(−1)𝑘 𝜃2𝑘 

+ 𝑖 ∑(−1)𝑘 

0 
(2𝑘)! 0 

(2𝑘 + 1)! 
= cos(𝜃) + 𝑖 sin(𝜃). 
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So the Euler formula definition is consistent with the usual power series for 𝑒𝑧. 
1-4 should convince you that 𝑒𝑖𝜃 behaves like an exponential. 

4.6.2 Complex exponentials and polar form 

Now let’s turn to the relation between polar coordinates and complex exponentials. 
Suppose 𝑧 = 𝑥 + 𝑖𝑦 has polar coordinates 𝑟 and 𝜃. That is, we have 𝑥 = 𝑟 cos(𝜃) and
𝑦 = 𝑟 sin(𝜃). Thus we get the important relationship 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟 cos(𝜃) + 𝑖𝑟 sin(𝜃) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) = 𝑟𝑒𝑖𝜃. 

This is so important you shouldn’t proceed without understanding it. We also record it 
without the intermediate equation. 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃. (2) 

Because 𝑟 and 𝜃 are the polar coordinates of (𝑥, 𝑦) we call 𝑧 = 𝑟𝑒𝑖𝜃 the polar form of 𝑧. 

4.6.3 Magnitude, argument, conjugate, multiplication and division are easy in 
polar form 

Magnitude. |𝑒𝑖𝜃| = 1. 

Proof. |𝑒𝑖𝜃| = | cos(𝜃) + 𝑖 sin(𝜃)| = √cos2(𝜃) + sin2(𝜃) = 1. 

In words, this says that 𝑒𝑖𝜃 is always on the unit circle –this is useful to remember! 
Likewise, if 𝑧 = 𝑟𝑒𝑖𝜃 then |𝑧| = 𝑟. You can calculate this, but it should be clear from the 
definitions: |𝑧| is the distance from 𝑧 to the origin, which is exactly the same definition as 
for 𝑟. 
Argument. If 𝑧 = 𝑟𝑒𝑖𝜃 then Arg(𝑧) = 𝜃. 
Proof. This is again the definition: the argument is the polar angle 𝜃. 
Conjugate. (𝑟𝑒𝑖𝜃) = 𝑟𝑒−𝑖𝜃. 
Proof. (𝑟𝑒𝑖𝜃) = (𝑟(cos(𝜃) + 𝑖 sin(𝜃))) = 𝑟(cos(𝜃) − 𝑖 sin(𝜃)) = 𝑟𝑒−𝑖𝜃. 
In words: complex conjugation changes the sign of the argument. 
Multiplication. If 𝑧1 = 𝑟1𝑒𝑖𝜃1 and 𝑧2 = 𝑟2𝑒𝑖𝜃2 then 𝑧1𝑧2 = 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2). 
This is what mathematicians call trivial to see, just write the multiplication down. In words, 
the formula says the for 𝑧1𝑧2 the magnitudes multiply and the arguments add. 

𝑟1𝑒𝑖𝜃1 𝑟1 𝑒𝑖(𝜃1−𝜃2)Division. Again it’s trivial that = .𝑟2𝑒𝑖𝜃2 𝑟2 

Example 4.7. Multiplication by 2𝑖. Here’s a simple but important example. By looking 
at the graph we see that the number 2𝑖 has magnitude 2 and argument 𝜋/2. So, in polar 
coordinates, it equals 2𝑒𝑖𝜋/2. This means that multiplication by 2𝑖 multiplies lengths by 2 
and adds 𝜋/2 to arguments, i.e., rotates by 90∘. The effect is shown in the figures below 
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Re

Im

2i = 2eiπ/2

π/2

|2𝑖| = 2, Arg(2𝑖) = 𝜋/2 

Re

Im

Re

Im× 2i

Multiplication by 2𝑖 rotates by 𝜋/2 and scales by 2 

Example 4.8. Raising to a power. Compute (i) (1 + 𝑖)6; (ii) (1+𝑖
√

3)
3 

2 

Solution: (i) 1 + 𝑖 has magnitude |1 + 𝑖| = 
√

2 and argument Arg(1 + 𝑖) = 𝜋/4, so
1 + 𝑖 = 

√
2𝑒𝑖𝜋/4. Raising to a power is now easy: 

= 8𝑒6𝑖𝜋/4 = 8𝑒3𝑖𝜋/2 = −8𝑖.(1 + 𝑖)6 = (
√

2𝑒𝑖𝜋/4)6 

3 

(ii) 
1 + 𝑖

√
3 = 𝑒𝑖𝜋/3, so (1 + 𝑖

√
3) = (1 ⋅ 𝑒𝑖𝜋/3)3 = 𝑒𝑖𝜋 = −12 2 

4.6.4 Complexification or complex replacement 

In the next example we will illustrate the technique of complexification or complex re-
placement by computing a trigonometric integral. Although, in ES.1803, we are not really 
concerned with trigonometric integrals, we will use complex replacement regularly in other 
contexts. 

Example 4.9. Use complex replacement to compute 𝐼 = ∫ 𝑒𝑥 cos(2𝑥) 𝑑𝑥. 

Solution: First we will show the steps for complex replacement. Then, below, we will 
justify them. We have Euler’s formula 𝑒2𝑖𝑥 = cos(2𝑥) + 𝑖 sin(2𝑥), so cos(2𝑥) = Re(𝑒2𝑖𝑥). 
The trick is to replace cos(2𝑥) by 𝑒2𝑖𝑥. We get 

𝐼𝑐 = ∫ 𝑒𝑥 cos 2𝑥 + 𝑖𝑒𝑥 sin 2𝑥 𝑑𝑥, where 𝐼 = Re(𝐼𝑐). 

Computing 𝐼𝑐 is straightforward: 

𝑒𝑥(1+2𝑖)
= ∫ 𝑒𝑥𝑒𝑖2𝑥 𝑑𝑥 = ∫ 𝑒𝑥(1+2𝑖) 𝑑𝑥 =𝐼𝑐 1 + 2𝑖 . 

Now we use polar form to simplify the expression for 𝐼𝑐: 
Write 1 + 2𝑖 = 𝑟𝑒𝑖𝜙, where 𝑟 = 

√
5 and 𝜙 = Arg(1 + 2𝑖) = tan−1(2) in the first quadrant. 

Then: 
𝑒𝑥(1+2𝑖) 𝑒𝑥 𝑒𝑥 

𝐼𝑐 = √
5𝑒𝑖𝜙 

= √5𝑒𝑖(2𝑥−𝜙) = √5(cos(2𝑥 − 𝜙) + 𝑖 sin(2𝑥 − 𝜙)). 
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Thus, 𝐼 = Re(𝐼𝑐) = √𝑒
𝑥

5 
cos(2𝑥 − 𝜙). 

Justification of complex replacement. The trick comes by cleverly adding a new 

integral to 𝐼 as follows. Let 𝐽 = ∫ 𝑒𝑥 sin(2𝑥) 𝑑𝑥. Then we let 

𝐼𝑐 = 𝐼 + 𝑖𝐽 = ∫ 𝑒𝑥(cos(2𝑥) + 𝑖 sin(2𝑥)) 𝑑𝑥 = ∫ 𝑒𝑥𝑒2𝑖𝑥 𝑑𝑥. 

Clearly, Re(𝐼𝑐) = Re(𝐼 + 𝑖𝐽) = 𝐼 as claimed above. 
Rectangular coordinates –generally less preferred than polar. We show here the computation 
in rectangular coordinates –though we hasten to add that in ES.1803 we will almost always 
prefer polar form because it is easier and gives the answer in a more useable form. 

𝑒𝑥(1+2𝑖) 1 − 2𝑖 𝑒𝑥(cos(2𝑥) + 𝑖 sin(2𝑥))(1 − 2𝑖) 𝐼𝑐 = ⋅1 + 2𝑖 1 − 2𝑖 = 5 

= 5
1𝑒𝑥(cos(2𝑥) + 2 sin(2𝑥) + 𝑖(−2 cos(2𝑥) + sin(2𝑥))). 

So, 𝐼 = Re(𝐼𝑐) = 5
1𝑒𝑥(cos(2𝑥) + 2 sin(2𝑥)). 

4.6.5 Nth roots 

We are going to need to be able to find the 𝑛th roots of complex numbers. The trick is to 
recall that a complex number has more than one argument, that is we can always add a 
multiple of 2𝜋 to the argument. For example, 

2 = 2𝑒0𝑖 = 2𝑒2𝜋𝑖 = 2𝑒4𝜋𝑖 … = 2𝑒2𝑛𝜋𝑖 

Example 4.10. Find all 5 fifth roots of 2. 

Solution: In polar form: (2𝑒2𝑛𝜋𝑖)1/5 = 21/5𝑒2𝑛𝜋𝑖/5. So the fifth roots of 2 are 

21/5 = 21/5𝑒2𝑛𝜋𝑖/5, where 𝑛 = 0, 1, 2, … 

The notation is a little strange, because the 21/5 on the left side of the equation means the 
complex roots and the 21/5 on the right hand side is a magnitude, so it is the positive real 
root. 
Looking at the right hand side we see that for 𝑛 = 5 we have 21/5𝑒2𝜋𝑖 which is exactly the 
same as the root when 𝑛 = 0, i.e., 21/5𝑒0𝑖. Likewise 𝑛 = 6 gives exactly the same root as
𝑛 = 1. So we have 5 different roots corresponding to 𝑛 = 0, 1, 2, 3, 4. 

21/5 = 21/5, 21/5𝑒2𝜋𝑖/5, 21/5𝑒24𝜋𝑖/5, 21/5𝑒6𝜋𝑖/5, 21/5𝑒8𝜋𝑖/5. 

Similarly we can say that, in general, 𝑧 = 𝑟𝑒𝑖𝜃 has 𝑁 different 𝑁 th roots: 

𝑧1/𝑁 = 𝑟1/𝑁𝑒𝑖𝜃/𝑁+𝑖 2𝜋(𝑛/𝑁) for 0, 1, 2, … 𝑁 − 1. 
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Example 4.11. Find the 4 fourth roots of 1. 
Solution: 1 = 𝑒𝑖 2𝜋𝑛, so 11/4 = 𝑒𝑖 2𝜋(𝑛/4). So the 4 different fourth roots are 1, 𝑒𝑖 𝜋/2, 𝑒𝑖 𝜋, 𝑒𝑖 3𝜋/2, 𝑒𝑖 2𝜋. 
When the angles are ones we know about, e.g., 30, 60, 90, 45, etc., we should simplify the 
complex exponentials. In this case, the roots are 1, 𝑖, −1, −𝑖. 
Example 4.12. Find the 3 cube roots of -1. 
Solution: −1 = 𝑒𝑖 𝜋+𝑖 2𝜋𝑛. So, (−1)1/3 = 𝑒𝑖 𝜋/3+𝑖 2𝜋(𝑛/3) and the 3 cube roots are 𝑒𝑖𝜋/3, 𝑒𝑖𝜋, 𝑒𝑖5𝜋/3. 
Since 𝜋/3 radians is 60∘ we can simplify: 

1 
√

3 
√

3𝑒𝑖𝜋/3 = cos(𝜋/3) + 𝑖 sin(𝜋/3) = 2 + 𝑖 ⟶ (−1)1/3 = −1, 1
2 ± 2 

.2 

Example 4.13. Find the 5 fifth roots of 1 + 𝑖. 
Solution: 1 + 𝑖 = 

√
2𝑒𝑖(𝜋/4+2𝑛𝜋), for 𝑛 = 0, 1, 2, …. So the 5 fifth roots are 

(1 + 𝑖)1/5 = 21/10𝑒𝑖𝜋/20, 21/10𝑒𝑖9𝜋/20, 21/10𝑒𝑖17𝜋/20, 21/10𝑒𝑖25𝜋/20, 21/10𝑒𝑖33𝜋/20. 

Using a calculator we could write these numerically as 𝑎 + 𝑏𝑖, but there is no easy simplifi-
cation. 
Example 4.14. We should check that our technique works as expected for a simple prob-
lem. Find the 2 square roots of 4. 
Solution: 4 = 4𝑒𝑖 2𝜋𝑛. So, 41/2 = 2𝑒𝑖 𝜋𝑛. So the 2 square roots are 2𝑒0, 2𝑒𝑖𝜋 = ±2 as 
expected! 

4.6.6 The geometry of 𝑛th roots 

Looking at the examples above we see that roots are always spaced evenly around a circle 
centered at the origin. For example, the fifth roots of 1 + 𝑖 are spaced at increments of 2𝜋/5 
radians around the circle of radius 21/5. 
Note also that the roots of real numbers always come in conjugate pairs. 

𝑦 𝑦 

𝑥 

1
2 + 𝑖

√
3

2 

1
2 − 𝑖

√
3

2 

−1 
𝑥 

1 + 𝑖 

Cube roots of -1 Fifth roots of 1 + 𝑖 

4.7 Inverse Euler Formula 

Euler’s formula gives a complex exponential in terms of sines and cosines. We can turn this 
around to get the inverse Euler formulas. 



4 COMPLEX NUMBERS AND EXPONENTIALS 10 

Euler’s formula says: 

𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡) and 𝑒−𝑖𝑡 = cos(𝑡) − 𝑖 sin(𝑡). 

By adding and subtracting we get: 

𝑒𝑖𝑡 + 𝑒−𝑖𝑡 𝑒𝑖𝑡 − 𝑒−𝑖𝑡 

cos(𝑡) = and sin(𝑡) = .2 2𝑖 

Warning. We also have the formula cos(𝑡) = Re(𝑒𝑖𝑡) which we used in complex replace-
ment. You want to pay attention to whether this or the inverse Euler formula is appropriate. 
In general, if you complexified to use complex replacement then at some point you’ll need 
to decomplexify by using the formula cos(𝑡) = Re(𝑒𝑖𝑡). If you never complexified then you 
probably need to use the inverse Euler formula. 
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