
ES.1803 Topic 5 Notes
Jeremy Orloff 

5 Homogeneous, linear, constant coefficient differential equa-
tions 

5.1 Goals 

1. Be able to solve homogeneous constant coefficient linear differential equations using 
the method of the characteristic equation. This includes finding the general real-valued 
solutions when the roots are complex or repeated. 

2. Be able to give the reasoning leading to the method of the characteristic equation. 

3. Be able to state and prove the principle of superposition for homogeneous linear 
equations. 

4. For a damped harmonic oscillator be able to map the characteristic roots to the type 
of damping. 

5. Be able to create and interpret pole diagrams. 

5.2 Introduction 

In this topic we will start our study of constant coefficient differential equations. Most of 
our examples will look at second-order equations, which can be used to model a rich set of 
physical situations. Second-order equations are fairly simple computationally, yet feature 
many of the behaviors that higher order equations display. 

5.3 Second-order constant coefficient linear differential equations. 

The basic second-order constant coefficient linear differential equation can be written as: 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑓(𝑡), where 𝑚, 𝑏, 𝑘 are constants. 

The name says it all: 

1. Second-order: obvious. 

2. Constant coefficient: because the coefficients 𝑚, 𝑏, 𝑘 are constant. 

3. Linear: derivatives occur by themselves and to the first power. This is the same rule 
we had for first-order linear, and, just as in that case, we will see that second-order 
linear equations follow the superposition principle. 

4. Note: the ‘input’ 𝑓(𝑡) is not necessarily constant. 

1 
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Reasons to study second-order linear differential equations: 
1. There are a lot of second-order physical systems. For example, for moving particles you 
need the second derivative to capture acceleration. 
2. Many higher order systems are built from second-order components. 
3. The computations are easy to do by hand and will help us develop our intuition about 
second-order equations. This computational and intuitive understanding will guide us when 
we consider higher order equations. 
Remark. For second-order systems we will know how they behave and therefore what 
the solutions to the DEs should look like. For example, a mass oscillating at the end of a 
spring is a second-order system and we already have a good sense of what happens when 
we pull on the mass and let it go. So, in some sense, the math is not telling us that much. 
However, when you couple together 3 springs you have a sixth-order system and our intuition 
becomes a bit shakier. If you couple even more springs in a two or three dimensional lattice 
our intuition is shakier still. The success of our second-order models will give us confidence 
in our higher-order models. And the techniques used to solve second-order equations will 
carry over to the higher-order case. 

5.4 Second-order homogeneous constant coefficient linear differential equa-
tions. 

For this topic we will focus on the homogeneous equation (H) given just below. 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0. (H) 

We start with an example which pretty well sums up the general technique. Since this is a 
first example, we will break the solution into small pieces. In later examples we will give 
solutions that model what we’ll expect in your written work. 
Example 5.1. (Solving homogeneous constant coefficient DEs: long form solution.) Solve 
the DE 

𝑥″ + 8𝑥′ + 7𝑥 = 0. 
Solution: 1. Using the method of optimism we guess a solution of the form 𝑥(𝑡) = 𝑒𝑟𝑡. 
Note that we have left the 𝑟 unspecified. Our optimistic hope is that the value of 𝑟 will 
come out in the algebra. 
2. Substitute our guess (trial solution) into the DE: 

𝑟2𝑒𝑟𝑡 + 8𝑟𝑒𝑟𝑡 + 7𝑒𝑟𝑡 = 0. 

Divide by 𝑒𝑟𝑡 (this is okay, it is never 0) to get the characteristic equation 

𝑟2 + 8𝑟 + 7 = 0. 

3. This has roots: 𝑟 = −7, −1. Therefore, the method of optimism has found two basic 
solutions: 

𝑥1(𝑡) = 𝑒−7𝑡, 𝑥2 = 𝑒−𝑡 
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4. Just below, we will discuss the superposition principle, here we will just apply it to get 
the general solution to the DE: 

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) = 𝑐1𝑒−7𝑡 + 𝑐2𝑒−𝑡. 

We remind you that the superposition of 𝑥1 and 𝑥2 is also called a linear combination. We 
will now explain why it works in this case. 

5.5 The principle of superposition for linear homogeneous equations 

We will state this as a theorem with a proof. The proof is just a small amount of algebra. 
Theorem. The superposition principle part 1. If 𝑥1 and 𝑥2 are solutions to (H) then so 
are all linear combinations 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 where 𝑐1, 𝑐2 are constants. 
Proof. As we said, the proof is by algebra. Since we are given a supposed solution, we 
verify it by substitution, i.e., we plug 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 into (H). 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑚(𝑐1𝑥1 + 𝑐2𝑥2)″ + 𝑏(𝑐1𝑥1 + 𝑐2𝑥2)′ + 𝑘(𝑐1𝑥1 + 𝑐2𝑥2) 

= 𝑚𝑐1𝑥″
1 + 𝑚𝑐2𝑥2

″ + 𝑏𝑐1𝑥′
1 + 𝑏𝑐2𝑥2

′ + 𝑘𝑐1𝑥1 + 𝑘𝑐2𝑥2 

= 𝑐1(𝑚𝑥″
1 + 𝑏𝑥1

′ + 𝑘𝑥1) + 𝑐2(𝑚𝑥″
2 + 𝑏𝑥2

′ + 𝑘𝑥2) 

= 𝑐1 ⋅ 0 + 𝑐2 ⋅ 0 

(𝑚𝑥″
1 + 𝑏𝑥′

1 + 𝑘𝑥1 = 0 by the assumption that 𝑥1 solves (H). Likewise for 𝑥2.) 

= 0. 

We have verified that 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 is, in fact, a solution to the homogeneous DE (H). 
Superposition = linearity: At this point you should recall the example in Topic 2 where 
we showed that the nonlinear DE 𝑥′ + 𝑥2 = 0 did not satisfy the superposition principle. It 
is a general fact that only linear differential equations satisfy the superposition principle. 

Example 5.2. (Model solution.) In this example, we suggest a way to give the solutions 
in your own work. Solve 

𝑥″ + 4𝑥′ + 3𝑥 = 0. 
Solution: Characteristic equation: 𝑟2 + 4𝑟 + 3 = 0. 
Roots: 𝑟 = −1, −3. 
Basic solutions: 𝑥1(𝑡) = 𝑒−3𝑡, 𝑥2(𝑡) = 𝑒−𝑡. 
General solution by superposition: 𝑥(𝑡) = 𝑐1𝑥1 + 𝑐2𝑥2 = 𝑐1𝑒−3𝑡 + 𝑐2𝑒−𝑡. 
Note. We call the two solutions 𝑥1, 𝑥2 basic or modal solutions. 
Suggestion. For the next week or so every time you use this method remind yourself where 
each step came from (see the solution to Example 5.1. 
Every time we learn a new method we want to test it on our favorite DE. 
Example 5.3. Test case: exponential decay. Solve 𝑥′ + 𝑘𝑥 = 0 using the method of the 
characteristic equation. 
Solution: Characteristic equation (try 𝑥 = 𝑒𝑟𝑡): 𝑟 + 𝑘 = 0. 
Roots: 𝑟 = −𝑘. 



5 HOMOGENEOUS, LINEAR, CONSTANT COEFFICIENT DIFFERENTIAL EQUATIONS 4 

One solution: 𝑥1(𝑡) = 𝑒−𝑘𝑡 

General solution (by superposition): 𝑥(𝑡) = 𝑐1𝑥1 = 𝑐1𝑒−𝑘𝑡 (as expected). 
In practice, we don’t recommend solving this equation with this method. The recommended 
method is to recognize the DE as the equation of exponential decay and just give the 
solution. 

5.6 Families of solutions 

We call 𝑥(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡 a two-parameter family of functions. We will often look for 
subfamilies with special properties. 
Example 5.4. (a) Find all the members in the above family that go to 0 as 𝑡 → ∞. 
(b) Find all the members that go to ∞ as 𝑡 → ∞. 
Solution: (a) All the functions 𝑥(𝑡) = 𝑐2𝑒−𝑡 (i.e., 𝑐1 = 0). 
(b) All the functions 𝑥(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡, where 𝑐1 > 0, 𝑐2 is arbitrary. 

5.7 Complex roots 

Example 5.5. (Model solution: complex roots) Solve the DE 

𝑥″ + 2𝑥′ + 4𝑥 = 0. 

Solution: 1. Characteristic equation: 𝑟2 + 2𝑟 + 4 = 0. 
2. Roots: 𝑟 = (−2 ± 

√
4 − 16)/2 = −1 ± 

√
3 𝑖. 

3. Two basic solutions : 𝑥1(𝑡) = 𝑒−𝑡 cos(
√

3𝑡), 𝑥2(𝑡) = 𝑒−𝑡 sin(
√

3𝑡). Here the exponential 
𝑒−𝑡 uses the real part of the roots and the frequency in the sinusoids cos(

√
3𝑡), sin(

√
3𝑡) 

comes from the imaginary part of the roots. All of this will be justified below. 
4. General real-valued solution by superposition: 

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) = 𝑐1𝑒−𝑡 cos(
√

3𝑡) + 𝑐2𝑒−𝑡 sin(
√

3𝑡). 

Notes. 1. The damped frequency of oscillation comes from the imaginary part of the roots 
±

√
3. 

2. In polar form the solution can be written 

𝑥(𝑡) = 𝑐1𝑒−𝑡 cos(
√

3𝑡) + 𝑐2𝑒−𝑡 sin(
√

3𝑡) = 𝐴𝑒−𝑡 cos(
√

3𝑡 − 𝜙), 

where 𝐴, 𝜙, 𝑐1 and 𝑐2 are related by the usual polar triangle with 𝑐1 = 𝐴 cos(𝜙), 𝑐2 = 
𝐴 sin(𝜙). 

A

c1

c2

φ

Example 5.6. Solve 𝑥″ + 4𝑥 = 0. 
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Solution: This is the DE for the simple harmonic oscillator a.k.a. a spring-mass system. 
Using the characteristic equation method: 
Characteristic equation: 𝑟2 + 4 = 0. 
Roots: 𝑟 = ±2𝑖. 
General real-valued solution: 𝑥 = 𝑐1 cos(2𝑡) + 𝑐2 sin(2𝑡). 

Example 5.7. A fifth-order constant coefficient linear homogeneous DE has roots −2, 1 ± 
7𝑖, ±3𝑖. What is the general solution? 

Solution: 𝑥 = 𝑐1𝑒−2𝑡 + 𝑐2𝑒𝑡 cos(7𝑡) + 𝑐3𝑒𝑡 sin(7𝑡) + 𝑐4 cos(3𝑡) + 𝑐5 sin(3𝑡). 

5.7.1 Justification of the model solution 

In Example 5.5, the model solution Steps 1, 2 and 4 are the same as in previous examples 
with real roots. We need to explain the reasoning behind finding the two basic solutions in 
step 3: 
Amazingly, superposition makes this easy to do. We start with a theorem that tells us how 
to get real-valued solutions from complex-valued ones. 
Theorem. If 𝑧(𝑡) is a complex-valued solution to a homogeneous linear DE with real 
coefficients. Then both the real and imaginary parts of 𝑧 are also solutions. 
Proof. The proof is similar to the proofs of all of our other statements about superposition. 
Consider the linear homogeneous equation 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 (H) 

and suppose that 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) is a solution, where 𝑥(𝑡) and 𝑦(𝑡) are respectively the 
real and imaginary parts of 𝑧(𝑡). We have to show that 𝑥 and 𝑦 are also solutions of (H). 
By assumption 0 = 𝑧″ + 𝑏𝑧′ + 𝑘𝑧. Replacing 𝑧 by 𝑥 + 𝑖𝑦 we get 

0 + 0 𝑖 = 𝑚(𝑥 + 𝑖𝑦)″ + 𝑏(𝑥 + 𝑖𝑦)′ + 𝑘(𝑥 + 𝑖𝑦) 

= (𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥) + 𝑖(𝑚𝑦″ + 𝑏𝑦″ + 𝑘𝑦). 

Since both the real and imaginary parts are 0 we have. 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 and 𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 0. 

This says exactly that 𝑥 and 𝑦 are solutions to (H). 

Now, let’s apply this to the situation in Example 5.5. 
We saw that there were two characteristic roots −1±𝑖

√
3. These roots give two exponential 

solutions. Of course, since the roots are complex they are complex exponentials: 

𝑧1 = 𝑒(−1+𝑖
√

3)𝑡 = 𝑒−𝑡𝑒𝑖
√

3𝑡 = 𝑒−𝑡(cos(
√

3𝑡) + 𝑖 sin √(3𝑡)) 

𝑧2 = 𝑒(−1−𝑖
√

3)𝑡 = 𝑒−𝑡𝑒−𝑖
√

3𝑡 = 𝑒−𝑡(cos(
√

3𝑡) − 𝑖 sin √(3𝑡)) 

Now the theorem above says that both the real and imaginary parts of 𝑧1 and 𝑧2 are also 
solutions. So we have (nominally) four solutions which we’ll label 𝑢1, 𝑢2, 𝑣1, 𝑣2 to avoid 
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overusing the letter 𝑥. 

𝑧1 = 𝑢1 + 𝑖𝑣1 ∶ 𝑢1(𝑡) = 𝑒−𝑡 cos(
√

3𝑡), 𝑣1(𝑡) = 𝑒−𝑡 sin(
√

3𝑡) 

𝑧2 = 𝑢2 + 𝑖𝑣2 ∶ 𝑢2(𝑡) = 𝑒−𝑡 cos(
√

3𝑡), 𝑣2(𝑡) = −𝑒−𝑡 sin(
√

3𝑡). 

We see that 𝑢1 and 𝑢2 are the same and, except for the minus sign, 𝑣1 and 𝑣2. So we have 
only two truly different solutions, which is exactly the number we need. These are the basic 
solutions given in step (3) of Example 5.5 (except that we used the names 𝑥1 and 𝑥2 instead 
of 𝑢1 and 𝑣1). 

5.7.2 Another way to see this 

Another way to see that 𝑥1 and 𝑥2 are solutions is to use superposition directly on the 
two complex exponential solutions. Since 𝑧1 and 𝑧2 are both solutions so are all linear 
combinations of 𝑧1 and 𝑧2. In particular, 𝑥1 and 𝑥2 are linear combinations of 𝑧1 and 𝑧2 as 
follows: 

1 
2𝑧1(𝑡) + 

1
2𝑧2(𝑡) = (𝑒−𝑡 

cos(
√

3𝑡) + 𝑖𝑒−𝑡 

sin(
√

3𝑡)) + (𝑒−𝑡 

cos(
√

3𝑡) − 𝑖 𝑒
−𝑡 

sin(
√

3𝑡))2 2 2 2 

= 𝑒−𝑡 cos(
√

3𝑡) 

= 𝑥1(𝑡). 
1 
2𝑖𝑧1(𝑡) − 2𝑖

1 𝑧2(𝑡) = (𝑒
2𝑖
−𝑡 

cos(
√

3𝑡) + 𝑖𝑒
2𝑖
−𝑡 

sin(
√

3𝑡)) − (𝑒
2𝑖
−𝑡 

cos(
√

3𝑡) − 𝑖 𝑒2𝑖
−𝑡 

sin(
√

3𝑡)) 

= 𝑒−𝑡 sin(
√

3𝑡) 

= 𝑥2(𝑡). 

This shows that 𝑥1 and 𝑥2 are both solutions to the DE. 

5.7.3 Complex exponential solutions 

We have seen that when the roots of the characteristic equation are complex, we get complex 
exponentials as solutions. But, with a small amount of algebra, we can write our solutions 
as linear combinations of real-valued functions. We do this because physically meaningful 
solutions should have real values. In ES.1803 we won’t have much need for the general 
complex-valued solution, but we record it here for posterity. 
The general complex-valued solution to the equation in Example 5.5 is 

𝑧 = 𝑐1̃ 𝑧1 + 𝑐2̃ 𝑧2 = 𝑐1̃ 𝑒(−1+𝑖
√

3)𝑡 + 𝑐2̃ 𝑒(−1−𝑖
√

3)𝑡, 

where 𝑐1̃ and 𝑐2̃ are complex constants. You should be aware that many engineers work 
directly with these complex solutions and don’t bother rewriting them in terms of sines and 
cosines. 
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5.8 Repeated roots 

When the characteristic equation has repeated roots it will not do to use the same solution 
multiple times. This is because, for example, 𝑐1𝑒2𝑡 + 𝑐2𝑒2𝑡 is not really a two-parameter 
family of solutions, since it can be rephrased as 𝑐𝑒2𝑡. For now we will simply assert how to 
find the other solutions. After we have developed some more algebraic machinery we will 
be able to explain where they come from. 
Example 5.8. A constant coefficient linear homogeneous DE has roots 3, 3, 5, 5, 5, 2. 
Give the general solution to the DE. What is the order of the DE? 

Solution: General solution: 

𝑥(𝑡) = 𝑐1𝑒3𝑡 + 𝑐2𝑡𝑒3𝑡 + 𝑐3𝑒5𝑡 + 𝑐4𝑡𝑒5𝑡 + 𝑐5𝑡2𝑒5𝑡 + 𝑐6𝑒2𝑡. 

There are 6 roots so the DE has order 6. 
In words: every time a root is repeated we get another solution by adding a factor of 𝑡 to 
the previous one. 

Example 5.9. A constant coefficient linear homogeneous DE has roots 1 ± 2𝑖, 1 ± 2𝑖, −3. 
Give the general real-valued solution to the DE. What is the order of the DE? 

Solution: The general real-valued solution is 

𝑥 = 𝑐1𝑒𝑡 cos(2𝑡) + 𝑐2𝑒𝑡 sin(2𝑡) + 𝑐3𝑡𝑒𝑡 cos(2𝑡) + 𝑐4𝑡𝑒𝑡 sin(2𝑡) + 𝑐5𝑒−3𝑡. 

There are 5 roots so the DE has order 5. 

5.9 Existence and uniqueness for constant coefficient linear DEs 

So far we have rather casually claimed to have found the general solution to DEs. Our 
techniques have guaranteed that these are solutions, but we need a theorem to guarantee 
that these are all the solutions. There is such a theorem and it is called the existence and 
uniqueness theorem. 
Theorem: Existence and uniqueness. The initial value problem consisting of the DE 

𝑎𝑛𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + ⋯ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 

with initial conditions 

𝑦(𝑡0) = 𝑏0, 𝑦′(𝑡0) = 𝑏1, … , 𝑦(𝑛−1)(𝑡0) = 𝑏𝑛−1 

has a unique solution. 
The proof is beyond the scope of this course. The outline of the proof for a general existence 
and uniqueness theorem is posted with the class notes. 
Here is a short explanation for why this theorem guarantees that what we’ve called the 
general solution does indeed include every possible solution: The theorem says that there is 
exactly one solution for each set of initial conditions. Therefore, all we have to show is that 
our general solution includes a solution matching every possible set of initial conditions. 
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Matching a set of 𝑛 initial conditions means solving for the 𝑛 coefficients 𝑐1, …, 𝑐𝑛. That is, 
it means solving a linear system of 𝑛 algebraic equations in 𝑛 unknowns. Once we’ve done 
more linear algebra we’ll be able to show this without difficulty. Right now we’ll just look 
at a representative example. 
Example 5.10. Suppose a linear second-order constant coefficients homogeneous DE has 
characteristic roots 2 and 3. Show that the resulting general solution can match every 
possible set of initial conditions. 
Solution: Our general solution is the two-parameter family 

𝑥(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒3𝑡. 

Our initial conditions have the form 𝑥(𝑡0) = 𝑏0 and 𝑥′(𝑡0) = 𝑏1. To match these conditions 
we have to solve for 𝑐1 and 𝑐2. That is, we have to solve 

𝑥(𝑡0) = 𝑐1𝑒2𝑡0 + 𝑐2𝑒3𝑡 = 𝑏0 

𝑥(𝑡0) = 2𝑐1𝑒2𝑡0 + 3𝑐2𝑒3𝑡 = 𝑏1 

Writing these equations in matrix form we have 

[ 
𝑒2𝑡0 𝑒3𝑡0 

] = [𝑏0] [𝑐1 ] . 2𝑒2𝑡0 3𝑒3𝑡0 𝑐2 𝑏1 

The coefficient matrix has determinant 

𝑒2𝑡0 𝑒3𝑡0
∣ ∣ = 𝑒5𝑡0 ≠ 0. 2𝑒2𝑡0 3𝑒3𝑡0 

Since the determinant is not 0 we know there is a solution giving 𝑐1 and 𝑐2. In fact, we 
know the solution must be unique. 

5.10 Damped harmonic oscillators: the spring-mass-damper 

We will use these repeatedly. Please master them. 
In ES.1803 one of our main physical examples will be the spring-mass-damper. This is one 
type of damped harmonic oscillator. (We will encounter others, e.g., an LRC circuit.) In 
this system we have a mass 𝑚 attached to a spring with spring constant 𝑘. The mass is 
also attached to a damper that is being dragged through a viscous fluid. The fluid exerts a 
force on the damper that is proportional to the speed and resists the motion. Let’s call the 
constant in this case the damping coefficient 𝑏. 

m

x(t)

k

damping coefficient b

Spring-mass-damper with no outside force 
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For this topic we will assume there is no outside force on the system. So, if 𝑥(𝑡) is the 
displacement of the mass from equilibrium, then Newton’s laws tell us 

𝑚𝑥″ = −𝑘𝑥 − 𝑏𝑥′. 

Writing this in our usual fashion, with all the 𝑥 on the left, we see our standard homogeneous 
second-order linear constant coefficient DE: 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0. 

A standard notation will be to write 𝜔0 = √𝑘/𝑚. We’ll call 𝜔0 the natural frequency of 
the system. This term will be explained below. 

Simple harmonic oscillator (the undamped spring-mass-dashpot system). 
We start with the case of no damping, i.e., 𝑏 = 0. Our equation is then 

𝑚𝑥″ + 𝑘𝑥 = 0 or 𝑥″ + 𝜔0
2𝑥 = 0, 

where 𝜔0 = √𝑘/𝑚 = the natural frequency of the oscillator. 
Using the characteristic equation method we find: 
Characteristic equation: 𝑟2 + 𝜔0

2 = 0. 
Roots: 𝑟 = ±√−𝜔0

2 = ±𝑖 𝜔0. 
Two solutions: 𝑥1(𝑡) = cos(𝜔0𝑡), 𝑥2(𝑡) = sin(𝜔0𝑡). 
General real-valued solution: 

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡). 

We now see why 𝜔0 is called the natural frequency: it is the angular frequency of the 
oscillation when the system is undamped and unforced. We will see that damping changes 
the frequency of oscillation. 

Solving the spring-mass-dashpot system: the damped case 

Characteristic equation: 𝑚𝑟2 + 𝑏𝑟 + 𝑘 = 0. (Comes from the trial solution 𝑥 = 𝑒𝑟𝑡.) 

−𝑏 ± 
√

𝑏2 − 4𝑚𝑘 Roots: 𝑟 = .2𝑚 
Looking at the formula for the roots we see that there are three cases based on what is 
under the square root sign. We add a fourth case for when 𝑏 = 0 

(i) 𝑏 = 0 (undamped) 

(ii) 𝑏2 − 4𝑚𝑘 > 0 (overdamped; 𝑏 large) 

(iii) 𝑏2 − 4𝑚𝑘 < 0 (underdamped; 𝑏 small) 

(iv) 𝑏2 − 4𝑚𝑘 = 0 (critically damped; 𝑏 just right) 
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We will go through these cases one at a time. 
Case (i) (Undamped) 

We did this case earlier, The characteristic roots are ±𝜔0 𝑖. The general real-valued solution 
is 

𝑥(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡). 
The longterm behavior is periodic (sinusoidal) motion. 

Case (ii) (Overdamped: real characteristic roots) 

To simplify writing we’ll name the expression with the square root. Let 𝐵 = √|𝑏2 − 4𝑚𝑘|, 
so the roots are −𝑏 + 𝐵 −𝑏 − 𝐵 𝑟1 = 𝑟2 = .2𝑚 2𝑚 
First we show that the roots are real and negative. This follows because 𝐵 is the 
square root of something less than 𝑏2. So, in both −𝑏 + 𝐵 and −𝑏 − 𝐵, the 𝐵 term is not 
big enough to change the sign of the −𝑏 term. Therefore, 𝑟1 and 𝑟2 must both be negative. 
The general real-valued solution to the overdamped system is 

𝑥(𝑡) = 𝑐1𝑒(−𝑏+𝐵)𝑡/(2𝑚) + 𝑐2𝑒(−𝑏−𝐵)𝑡/(2𝑚) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡. 

The negative exponents imply that in the longterm as 𝑡 gets large 𝑥(𝑡) goes to 0. 
The following claim gives an important feature of overdamped systems. 
Claim. If an overdamped system starts from rest at a position away from the equilibrium, 
then it never crosses the equilibrium position. 
Since 𝑥 = 0 is the equilibrium position, the claim says that if 𝑥(0) ≠ 0 and 𝑥′(0) = 0 then 
the graph of 𝑥(𝑡) does not cross the 𝑡-axis for 𝑡 > 0. 
Proof. The proof involves some picky algebra: We know that the roots 𝑟1 and 𝑟2 are both 
negative. We also have 𝑥(𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡 with initial conditions 

𝑥(0) = 𝑐1 + 𝑐2 ≠ 0, 𝑥′(0) = 𝑟1𝑐1 + 𝑟2𝑐2 = 0 

Now we need to show that 𝑥(𝑡) = 0 never happens for 𝑡 > 0. Let’s just do the case 𝑟1 = −5 
and 𝑟2 = −2. The presentation will be simpler and anyone who cares to can redo it for any 
𝑟1 and 𝑟2. Using these values of the roots, we have 

𝑥(𝑡) = 𝑐1𝑒−5𝑡 + 𝑐2𝑒−2𝑡, 𝑥(0) = 𝑐1 + 𝑐2 ≠ 0 𝑥′(0) = −5𝑐1 − 2𝑐2 = 0. 

The condition 𝑐1 + 𝑐2 ≠ 0 guarantees that 𝑐1 and 𝑐2 are not both 0. So the other initial 
condition gives −𝑐2/𝑐1 = 5/2. Next we’ll solve for the times 𝑡 when 𝑥(𝑡) = 0. 

𝑥(𝑡) = 0 = 𝑐1𝑒−5𝑡 + 𝑐2𝑒−2𝑡 therefore − 𝑐2/𝑐1 = 𝑒−3𝑡 

Combining −𝑐2/𝑐1 = 5/2 and −𝑐2/𝑐1 = 𝑒−3𝑡, we have 𝑒−3𝑡 = 5/2. Taking the log of both 
sides we have 

−3𝑡 = ln(5/2) > 0, so, 𝑡 < 0. 
We see that 𝑥(𝑡) = 0 for exactly one value of 𝑡 and that value is before 𝑡 = 0. This is exactly 
what we needed to show! 
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The proof also showed us that an unforced overdamped harmonic oscillator crosses the 
equilibrium position at most once. 

t

x

Starting from rest

Large negative initial velocity

An overdamped oscillator crosses equilibrium at most once. 

t

x

An underdamped oscillator crosses equilibrium infinitely many times. 

Case (iii) (Underdamping: complex characteristic roots) 

Again to simplify the writing we’ll name the expression with the square root. Let 𝐵 = 
−𝑏 ± 𝑖𝐵 √|𝑏2 − 4𝑚𝑘|. So the characteristic roots are . Just as in Example 5.5, the general 2𝑚 

real-valued solution is 

𝑥(𝑡) = 𝑒−𝑏𝑡/(2𝑚) (𝑐1 cos ( 𝐵𝑡 
2𝑚)) . 2𝑚) + 𝑐2 sin ( 
𝐵𝑡 

Longterm behavior: The negative exponent causes 𝑥(𝑡) to go to 0 as 𝑡 goes to ∞. The sine 
and cosine causes it to oscillate back and forth across the equilibrium. 

Case (iv) (Critical damping: repeated real characteristic roots) 

In this case the expression under the square root is 0, so we have repeated negative charac-
teristic roots 𝑟 = −𝑏/(2𝑚), −𝑏/(2𝑚). Thus the general solution to the DE is 

𝑥(𝑡) = 𝑐1𝑒−𝑏𝑡/(2𝑚) + 𝑐2𝑡𝑒−𝑏𝑡/(2𝑚). 

Qualitatively the picture looks like the overdamped case. Just as in the overdamped case a 
critically damped oscillator crosses equilibrium at most once. 

5.11 Decay rates 

Whether its overdamped, underdamped or critically damped a damped harmonic oscillator 
goes to 0 as 𝑡 goes to infinity. We say that 𝑥(𝑡) decays to 0. How fast it goes to 0 is its 
decay rate. 
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Example 5.11. The rate controlling term. The decay rate of 𝑥(𝑡) = 𝑐1𝑒−3𝑡 + 𝑐2𝑒−5𝑡 

is the same as that of 𝑒−3𝑡. At first glance this might seem surprising because 𝑒−5𝑡 decays 
faster than 𝑒−3𝑡. But that is exactly the point: the rate of decay is the same as that of the 
slowest term. We might call it the rate controlling term. In this case that is 𝑒−3𝑡. 
It turns out that critical damping is precisely the level of damping that gives the greatest 
decay rate. The precise statement is as follows. 
Critical damping is optimal. For a fixed mass and spring, i.e., 𝑚 and 𝑘, critical damping 
is the choice of damping that causes the oscillator to have the greatest decay rate without 
oscillating. 
We will not go through the arithmetic to show this. Anyone interested can ask me about 
it. 

t

x

overdamped

underdamped

critically damped

undamped

For a fixed 𝑚 and 𝑘 critical damping decays the fastest to equilibrium. 

5.12 Pole diagrams 

Pole diagrams are a nice way to visualize the characteristic roots of a constant coefficient 
system 𝑃 (𝐷)𝑥 = 0. For these systems the term pole is a synonym for characteristic root. 
(In general, pole is a mathematical term with a broader meaning.) 

The pole diagram is drawn in the complex plane. You construct it by drawing an × at 
each pole (characteristic root). It is easy to read off information about the system from the 
diagram. 

• By counting the poles you can determine the order of the system. 

• If all the poles are in the left half-plane then the exponents in the homogeneous 
solutions all have negative real part. That is, the general homogeneous solution decays 
to 0, i.e., the system always returns to equilibrium. (We call such a system stable.) 

• If there are complex poles then the system is oscillatory. 

• For a stable system the exponential rate that the unforced (homogeneous) system 
returns to equilibrium is determined by the real part of the right-most pole. 

Example 5.12. The pole diagram on the left shows 4 poles, all in the left-half plane. 
Therefore, the system is fourth-order and stable. Since there are complex roots the system 
is oscillatory. The right-most pole has real part −1/2, so the general homogeneous solution 
decays to 0 like 𝑒−𝑡/2. 



5 HOMOGENEOUS, LINEAR, CONSTANT COEFFICIENT DIFFERENTIAL EQUATIONS 13 

The pole diagram on the right has a pole in the right-half plane at 𝑠 = 1. So the general 
homogeneous solution grows exponentially, i.e., the system is unstable. 

Real axis

Imaginary axis

x

x

xx
−2 −1 1 2

−2

−1

1

Real axis

Imaginary axis

x

x

xx x
−2 −1 1 2

−2

−1

1

Fourth-order, stable, oscillatory Fifth-order, unstable, oscillatory 

A nice applet showing pole diagrams for second-order systems is the Damped Vibrations 
applet at https://mathlets.org/mathlets/damped-vibrations/. Set 𝑘 = .7, 𝑚 = 1 and 
let 𝑏 vary. 

https://mathlets.org/mathlets/damped-vibrations/
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