
ES.1803 Topic 6 Notes
Jeremy Orloff 

6 Operators, inhomogeneous DEs, ERF and SRF 

6.1 Goals 

1. Be able to define linear differential operators. 

2. Be able to define polynomial differential operators and use them to express linear 
constant coefficient differential equations. 

3. Be able to use the Exponential Response Formula to find particular solutions to poly-
nomial differential equations with exponential or sinusoidal input. 

4. Be able to derive the Sinusoidal Response Formula. 

5. Be able to use the Sinusoidal Response Formula to solve polynomial differential equa-
tions with sinusoidal input. 

6. Be able to build models of damped harmonic oscillators with input. 

6.2 Linear Differential Equations 

Linear 𝑛th-order differential equations have the form 

𝑝0(𝑡)𝑦(𝑛) + 𝑝1(𝑡)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑡)𝑦 = 0 (H) 

𝑝0(𝑡)𝑦(𝑛) + 𝑝1(𝑡)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑡)𝑦 = 𝑓(𝑡) (I) 

As usual, we call (H) homogeneous and (I) inhomogeneous. 
Also as usual, if the coefficients are all constant then we have a constant coefficient linear 
differential equation. 

𝑎0𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 0 (H) 

𝑎0𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 𝑓(𝑡) (I) 

In Topic 5 we learned about the characteristic equation 

𝑎0𝑟𝑛 + 𝑎1𝑟𝑛−1 + ⋯ + 𝑎𝑛 = 0 

It will be useful to give a name to the polynomial on the left side of this equation. 

𝑃 (𝑟) = 𝑎0𝑟𝑛 + 𝑎1𝑟𝑛−1 + ⋅ + 𝑎𝑛. 

We will call it the characteristic polynomial. That is, the characteristic equation can 
be written 𝑃(𝑟) = 0. 
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6.3 Operators 

A function is a rule that takes a number as input and returns another number as output. 
Example 6.1. (Examples of functions.) 
1. 𝑓(𝑡) = 𝑡2. If 𝑡 = 2 is the input then 𝑓(2) = 4 is the output. 
2. The identity function is 𝑓(𝑡) = 𝑡. 
3. The zero function is 𝑓(𝑡) = 0. 
An operator is similar to a function except that it takes as input a function and returns 
another function as output. We will often use upper case letters like 𝑇 or 𝐿 to denote 
operators. If 𝑥 is a function when 𝑇 acts on it we will write 

𝑇 (𝑥) or 𝑇 𝑥. 

We will read this as “𝑇 of 𝑥” or “𝑇 applied to 𝑥” or “𝑇 acting on 𝑥.” A few examples will 
make this clear. 

Example 6.2. The differentiation operator is 𝐷 = 𝑑𝑡 
𝑑 . This takes any function as input 

and returns its derivative as output. For example, 
(i) If 𝑥(𝑡) = 𝑡3 then 𝐷(𝑥) = 3𝑡2. We also write 𝐷𝑥 = 3𝑡2. 
(ii) If 𝑦(𝑡) = 𝑒4𝑡 then 𝐷𝑦 = 4𝑒4𝑡. 
(iii) 𝐷(𝑡3 + 2𝑡2 + 5𝑡 + 7) = 3𝑡2 + 4𝑡 + 5. 
(iv) In general, 𝐷𝑥 = 𝑥′ . 

Example 6.3. The second derivative operator is 𝐷2 = 𝑑𝑡 
𝑑2

2 
. For example: 

(i) 𝐷2(𝑒4𝑡) = 42𝑒4𝑡. 
In this example we used 𝐷2 to mean first apply 𝐷 to the function and then apply it again. 
Writing this out in more detail we get 

𝐷2(𝑒4𝑡) = 𝐷(𝐷(𝑒4𝑡)) = 𝐷(4𝑒4𝑡) = 42𝑒4𝑡. 

(ii) In general, 𝐷2𝑥 = 𝑥″ . Likewise, 𝐷3 = 𝑥‴ . 

For obvious reasons we call 𝐷, 𝐷2, 𝐷3, … differential operators. 

Example 6.4. The identity operator 𝐼 takes any function as input and returns the same 
function as output. For example: 
(i) 𝐼(𝑥) = 𝑥. 
(ii) 𝐼(𝑡2 + 3𝑡 + 2) = 𝑡2 + 3𝑡 + 2. 
Example 6.5. We can combine these operators. For example we can let 

𝑇 = 𝐷2 + 8𝐷 + 7𝐼. 

To understand what this operator does we have to apply it to a function and see what 
happens. If we apply 𝑇 to 𝑥 we get 

𝑇 𝑥 = (𝐷2 + 8𝐷 + 7𝐼)𝑥 = 𝑥″ + 8𝑥′ + 7𝑥. 
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Example 6.6. The zero operator takes any function as input and returns the zero 
function as output. There is no standard notation for this function, let’s call it 𝑍. For 
example: 
(i) 𝑍(𝑥) = 0. 
(ii) 𝑍(𝑡2 + 3𝑡 + 2) = 0. 

6.4 Polynomial differential operators 

Consider the polynomial 𝑃 (𝑟) = 𝑟2+8𝑟+7. If we replace 𝑟 by 𝐷 we have 𝑃 (𝐷) = 𝐷2+8𝐷+7. 
We will call 𝑃 (𝐷) a polynomial differential operator. We can use it to simplify writing 
down DEs and to help with algebraic manipulations. 
Example 6.7. Consider the constant coefficient differential equation 

𝑥″ + 8𝑥′ + 7𝑥 = 0. 

This has characteristic polynomial 𝑃(𝑟) = 𝑟2 +8𝑟+7. We can rewrite the DE in polynomial 
notation as 

(𝐷2 + 8𝐷 + 7𝐼)𝑥 = 0 or, even more simply, 𝑃 (𝐷)𝑥 = 0. 

One great thing about polynomial operators is how simply we can express constant coeffi-
cient differential equations using them. We can rewrite (H) and (I) above as 

𝑃(𝐷) = 0 (H) 

𝑃(𝐷) = 𝑓(𝑡), (I) 

where 𝑃 (𝐷) = 𝐷𝑛 + 𝑎1𝐷𝑛−1 + 𝑎2𝐷𝑛−2 + ⋯ + 𝑎𝑛𝐼 . 

6.5 Linearity/superposition for polynomial differential operators 

The superposition principle was awkward to state and prove because it was phrased in 
terms of equations. Linearity is equivalent to superposition, but easier to discuss because 
we phrase it in terms of operators. 
Important definition. An operator 𝑇 is called a linear operator if for any functions 
𝑥1, 𝑥2 and any constants 𝑐1, 𝑐2 we have 

𝑇 (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑇 𝑥1 + 𝑐2𝑇 𝑥2. (1) 

Claim. Show that the differential operator 𝐷 is linear. 
Proof. This is easy to check directly from the definition of linearity: 

𝐷(𝑐1𝑥1 + 𝑐2𝑥2) = (𝑐1𝑥1 + 𝑐2𝑥2)′ = 𝑐1𝑥′
1 + 𝑐2𝑥2

′ = 𝑐1𝐷𝑥1 + 𝑐2𝐷𝑥2 

Looking at the first and last terms in this string of equalities we see that Equation 1 holds 
for the operator 𝐷. 
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Similarly we can show that the operators 𝐷2, 𝐷3 are linear. Likewise, for any polynomial 
𝑃 , the operator 𝑃 (𝐷) is linear. 
Example 6.8. Show directly from the definition that 𝑃(𝐷) = 𝐷2 + 8𝐷 + 7𝐼 is linear. 
Solution: We use the same argument as in the proof of the claim just above: 

𝑃 (𝐷)(𝑐1𝑥1 + 𝑐2𝑥2) = (𝑐1𝑥1 + 𝑐2𝑥2)″ + 8(𝑐1𝑥1 + 𝑐2𝑥2)′ + 7(𝑐1𝑥1 + 𝑐2𝑥2) 

= 𝑐1(𝑥″
1 + 8𝑥1

′ + 7𝑥1) + 𝑐2(𝑥″
2 + 8𝑥2

′ + 7𝑥2) 

= 𝑐1𝑃 (𝐷)𝑥1 + 𝑐2𝑃 (𝐷)𝑥2 

I hope the examples have convinced you that the linearity of an operator is easy to ver-
ify. You might also have noticed how similar the arguments felt to those showing the 
superposition principle. For completeness we state and show that the two are equivalent. 
Equivalence of linearity and the superposition principle. Suppose 𝑇 is an operator. 
Then 𝑇 is linear if and only if the equation 𝑇 𝑥 = 𝑞(𝑡) satisfies the superposition principle. 
Proof. This is really just a matter of unwinding the definitions. Suppose 𝑇 𝑥1 = 𝑞1 and
𝑇 𝑥2 = 𝑞2. Suppose the superposition principle holds, then 

𝑇 (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑞1 + 𝑐2𝑞2 = 𝑐1𝑇 𝑥1 + 𝑐2𝑇 𝑥2. 

This shows that 𝑇 is linear. Likewise, if 𝑇 is linear, then 

𝑇 (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑇 𝑥1 + 𝑐2𝑇 𝑥2 = 𝑐1𝑞1 + 𝑐2𝑞2, 

which shows that the superposition principle holds. 

6.6 The algebra of 𝑃 (𝐷) applied to exponentials 

For this section 𝑃 (𝐷) will be a polynomial differential operator and 𝑎 will be a constant. 
Here are two easy and useful rules concerning 𝑃 (𝐷) and 𝑒𝑎𝑥. We will use them immediately 
to show why we have factors of 𝑡 in the solutions to DEs with repeated roots. 

6.6.1 Substitution rule 

Substitution rule. 𝑃 (𝐷)𝑒𝑎𝑡 = 𝑃 (𝑎)𝑒𝑎𝑡. This is called the substitution rule because we 
just substitute 𝑎 for 𝐷. 
‘Proof’ by example. We show the rule holds for 𝑃(𝑟) = 𝑟2 + 8𝑟 + 7: 

𝑃 (𝐷)𝑒𝑎𝑡 = (𝑒𝑎𝑡)″ + 8(𝑒𝑎𝑡)′ + 7𝑒𝑎𝑡 = (𝑎2 + 8𝑎 + 7)𝑒𝑎𝑡 = 𝑃 (𝑎)𝑒𝑎𝑡. 

6.6.2 Exponential shift rule 

We will call 𝑃(𝐷 + 𝑎𝐼) a shift of 𝑃 (𝐷) by 𝑎. For example, if 𝑃(𝐷) = 𝐷2 + 6𝐷 + 9𝐼 then 

𝑃(𝐷 − 3𝐼) = (𝐷 − 3𝐼)2 + 6(𝐷 − 3𝐼) + 9𝐼 = 𝐷2 − 6𝐷 + 9𝐼 + 6𝐷 − 18𝐼 + 9𝐼 = 𝐷2. 
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Exponential shift rule for 𝐷. For any function 𝑢(𝑡), 

𝐷(𝑒𝑎𝑡𝑢(𝑡)) = 𝑒𝑎𝑡 (𝐷 + 𝑎𝐼)𝑢(𝑡). 

Proof. The derivation of this is just the product rule for differentiation: 

𝐷(𝑒𝑎𝑡𝑢(𝑡)) = 𝑎𝑒𝑎𝑡𝑢(𝑡) + 𝑒𝑎𝑡𝑢′(𝑡) = 𝑒𝑎𝑡(𝑎𝑢(𝑡) + 𝑢′(𝑡)) = 𝑒𝑎𝑡(𝐷 + 𝑎𝐼)𝑢(𝑡). 

Exponential shift rule for 𝐷2. For any function 𝑢(𝑡), 

𝐷2(𝑒𝑎𝑡𝑢(𝑡)) = 𝑒𝑎𝑡 (𝐷 + 𝑎𝐼)2𝑢(𝑡). 

A similar statememt holds for 𝐷3, 𝐷4, … 

Proof. To derive this for 𝐷2 we just use the rule for 𝐷 twice. Higher powers are similar. 
Now it is clear (by linearity!) that the rule applies to any 𝑃 (𝐷): 
Exponential shift rule for 𝑃 (𝐷). For any function 𝑢(𝑡) and polynmial operator 𝑃 (𝐷), 

𝑃(𝐷)(𝑒𝑎𝑡𝑢(𝑡)) = 𝑒𝑎𝑡 𝑃 (𝐷 + 𝑎𝐼)𝑢(𝑡). 

6.6.3 Repeated roots 

We are now in a positition to explain the rule for solutions with repeated roots. Recall: 
Rule for repeated roots. If the characteristic equation 𝑃 (𝑟) has a repeated root 𝑟1 then 
both 𝑥1(𝑡) = 𝑒𝑟1𝑡 and 𝑥2(𝑡) = 𝑡𝑒𝑟1𝑡 are solutions to the homogeneous DE 𝑃 (𝐷)𝑥 = 0. 
‘Proof’ by example. Use the exponential shift rule to show the the equation 𝑥″−6𝑥′+9 = 
0 has general solution 𝑥(𝑡) = 𝑐1𝑒3𝑡 + 𝑐2𝑡𝑒3𝑡. 
Solution: First we rewrite this equation in terms of 𝑃 (𝐷). The characteristic polynomial 
is 

𝑃(𝑟) = 𝑟2 − 6𝑟 + 9 = (𝑟 − 3)2. 
So, 𝑃(𝐷) = (𝐷 − 3)2 and the differential equation is 𝑃 (𝐷)𝑥 = 0. 
We know 𝑃 (𝑟) has repeated roots 𝑟 = 3, 3. So, 𝑥(𝑡) = 𝑐1𝑒3𝑡 is a solution. Let’s vary the 
parameters to look for other solutions, i.e., let’s try 𝑥(𝑡) = 𝑒3𝑡𝑢(𝑡). We substitute this into 
the equation and apply the shift rule: 

𝑃 (𝐷)𝑥 = 0 

= 𝑃(𝐷)(𝑒3𝑡𝑢) 

= 𝑒3𝑡𝑃 (𝐷 + 3𝐼)𝑢 

= 𝑒3𝑡(𝐷 + 3𝐼 − 3𝐼)2𝑢 

= 𝑒3𝑡𝐷2𝑢. 

Thus we have the equation 𝐷2𝑢 = 0, i.e., 𝑢″(𝑡) = 0. This is an 18.01 problem and the 
solution is 𝑢(𝑡) = 𝑐1 + 𝑐2𝑡. Putting this back into 𝑥(𝑡) we have found 

𝑥(𝑡) = 𝑒3𝑡𝑢(𝑡) = 𝑒3𝑡(𝑐1 + 𝑐2𝑡), 

which is exactly what the rule for repeated roots rule said we would find. 



{

{

6 OPERATORS, INHOMOGENEOUS DES, ERF AND SRF 6 

6.6.4 Complexification example 

Example 6.9. Use complexification to compute 𝐷3(𝑒𝑥 sin(𝑥)). 
Solution: We know that 𝑒𝑥 sin(𝑥) = Im(𝑒𝑥𝑒𝑖𝑥). So, 𝐷3(𝑒𝑥 sin(𝑥)) = Im (𝐷3(𝑒𝑥+𝑖𝑥)). Com-
puting this we have 

(𝐷3(𝑒𝑥+𝑖𝑥)) = (1 + 𝑖)3𝑒𝑥+𝑖𝑥 

= (
√

2𝑒𝑖𝜋/4)3𝑒𝑥𝑒𝑖𝑥 

= 23/2𝑒𝑖3𝜋/4𝑒𝑥𝑒𝑖𝑥 

= 23/2𝑒𝑥𝑒𝑖(𝑥+3𝜋/4) 

Taking the imaginary part we have 

𝐷3(𝑒𝑥 sin(𝑥)) = Im (𝐷3(𝑒𝑥+𝑖𝑥)) = 23/2𝑒𝑥 sin(𝑥 + 3𝜋/4) . 

6.7 Exponential Response Formula 

This is one of our key formulas. We will use throughout the rest of ES.1803. 
Exponential Response Formula (ERF). Let 𝑃 (𝐷) be a polynomial differential operator. 
The inhomogeneous, constant coefficient, linear DE 𝑃 (𝐷)𝑦 = 𝑒𝑎𝑡 has a particular solution 

⎧𝑒𝑎𝑡/𝑃 (𝑎) provided 𝑃(𝑎) ≠ 0 
{𝑡𝑒𝑎𝑡/𝑃 ′(𝑎) if 𝑃(𝑎) = 0 and 𝑃 ′(𝑎) ≠ 0𝑦𝑝(𝑡) = ⎨𝑡2𝑒𝑎𝑡/𝑃 ″(𝑎) if 𝑃(𝑎) = 𝑃 ′(𝑎) = 0 and 𝑃 ″(𝑎) ≠ 0
{… …⎩ 

Simple proof: The substitution rule says 

𝑃 (𝐷)𝑒𝑎𝑡 = 𝑃 (𝑎)𝑒𝑎𝑡. (2) 

If 𝑃(𝑎) ≠ 0, then dividing 2 by 𝑃 (𝑎) proves the theorem in this case. 
If 𝑃(𝑎) = 0, then we differentiate 2 with respect to 𝑎. This gives 

𝑃(𝐷)(𝑡𝑒𝑎𝑡) = 𝑃 ′(𝑎)𝑒𝑎𝑡 + 𝑃(𝑎)𝑡𝑒𝑎𝑡. 

Since 𝑃(𝑎) = 0, the second term on the right is 0 and we have 𝑃 (𝐷)(𝑡𝑒𝑎𝑡) = 𝑃 ′(𝑎)𝑒𝑎𝑡. 
Dividing by 𝑃 ′(𝑎) proves the theorem in the case 𝑃(𝑎) = 0 and 𝑃 ′(𝑎) ≠ 0. 
We can continue in this manner for 𝑃(𝑎) = 𝑃 ′(𝑎) = 0 etc. 
Notes: 
1. We will call the cases where 𝑃(𝑎) = 0 the Extended Exponential Response Formula. 
2. You will need to know how to use the Extended ERF. You will not be asked to know 
the proof –although doing so is certainly good for you. 

Example 6.10. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 3𝐼 . 
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(a) Find a solution to 𝑃 (𝐷)𝑥 = 𝑒3𝑡. 
(b) Find a solution to 𝑃 (𝐷)𝑥 = 𝑒−3𝑡. 
Note: The question only asks for one solution, not all of them. 
Solution: (a) The equation has exponential input, so we use the exponential response 
formula: 

𝑒3𝑡 𝑒3𝑡 

Compute, 𝑃(3) = 24, so the ERF gives 𝑥𝑝(𝑡) = 𝑃(3) 
= 24 

. 

(b) We try the ERF: Since 𝑃(−3) = 0, we need the extended ERF. 
𝑡 𝑒−3𝑡 

𝑃 ′(−3) 
= −𝑡 𝑒−3𝑡 

𝑃(𝑟) = 𝑟2 + 4𝑟 + 3, so 𝑃 ′(𝑟) = 2𝑟 + 4 and 𝑃 ′(−3) = −2. Thus, 𝑥𝑝(𝑡) = .2 

In the next example we combine complex replacement and the ERF. 
Example 6.11. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 5𝐼 . Find a solution to 𝑃 (𝐷)𝑥 = cos(2𝑡). 
Solution: (Long form of the solution with explanatory details.) 

First we show the details of replacing cos(2𝑡) by the complex exponential 𝑒2𝑖𝑡. 
Let 𝑦(𝑡) satisfy 𝑃 (𝐷)𝑦 = sin(2𝑡). Then, by linearity, 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) satisfies the 
DE 

𝑃 (𝐷)𝑧 = 𝑃 (𝐷)𝑥 + 𝑖𝑃 (𝐷)𝑦 = cos(2𝑡) + 𝑖 sin(2𝑡) = 𝑒2𝑡𝑖 and 𝑥 = Re(𝑧). (3) 

Now, in preparation for using the ERF, we compute 𝑃(2𝑖) = 1 + 8𝑖. Next, we put this in 
polar form. 

|𝑃 (2𝑖)| = |1+8𝑖| = 
√

65 and 𝜙 = Arg(𝑃 (2𝑖)) = Arg(1 + 8𝑖) = tan−1(8) in quadrant 1. 

Thus we have 𝑃 (2𝑖) = 
√

65𝑒𝑖𝜙. The ERF gives us complex-valued solution to 3: 

𝑒2𝑖𝑡 𝑒2𝑖𝑡 𝑒𝑖(2𝑡−𝜙)
𝑧𝑝(𝑡) = = .𝑃 (2𝑖) 

= √65𝑒𝑖𝜙 
√

65 

All that’s left is to take the real part to get a solution to the original DE: 

cos(2𝑡 − 𝜙) 𝑥𝑝(𝑡) = Re(𝑧𝑝(𝑡)) = .√
65 

𝑒2𝑖 1To summarize: 𝑧𝑝 = and 𝑥𝑝 = where 𝜙 = Arg(𝑃 (2𝑖)).𝑃 (2𝑖) |𝑃 (2𝑖)| cos(2𝑡 − 𝜙), 

(This example points to the sinusoidal response formula (SRF), which we will look at in 
the next section. 

Example 6.12. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 5𝐼 . Find a solution to 𝑃 (𝐷)𝑥 = 𝑒𝑡 cos(2𝑡). 
Solution: (Short form of solution.) Complexify the DE: 

= 𝑒(−1+2𝑖)𝑡,𝑃 (𝐷)𝑧 = 𝑒−𝑡𝑒2𝑡𝑖 where 𝑥 = Re(𝑧). 

Side work: 𝑃 (−1+2𝑖) = −2+4𝑖 = 2
√

5𝑒𝑖𝜙, where 𝜙 = Arg(−2 + 4𝑖) = tan−1(−2), in Q2 . 
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𝑒(−1+2𝑖)𝑡 𝑒(−1+2𝑖)𝑡 𝑒−𝑡𝑒2𝑖𝑡 𝑒−𝑡𝑒𝑖(2𝑡−𝜙)
ERF: 𝑧𝑝(𝑡) = = = .𝑃 (−1 + 2𝑖) 

= −2 + 4𝑖 2
√

5𝑒𝑖𝜙 2
√

5 

𝑒−𝑡 

Therefore, 𝑥𝑝 = Re(𝑧𝑝) = 2
√

5 
cos(2𝑡 − 𝜙). 

Example 6.13. With the same 𝑃 (𝐷) as in the previous example, find a solution to
𝑃 (𝐷)𝑥 = 𝑒−2𝑡 cos(𝑡) 

Solution: Complexify: 𝑃 (𝐷)𝑧 = 𝑒−2𝑡𝑒𝑡𝑖 = 𝑒(−2+𝑖)𝑡 where 𝑥 = Re(𝑧). 
Side work: 𝑃(−2 + 𝑖) = 0, so we’ll need 𝑃 ′(−2 + 𝑖): 
𝑃 ′(𝑟) = 2𝑟 + 4, So, 𝑃 ′(−2 + 𝑖) = 2𝑖 = 2𝑒𝑖𝜋/2. 

𝑡𝑒(−2+𝑖)𝑡 𝑡𝑒(−2+𝑖)𝑡 𝑡𝑒−2𝑡𝑒𝑖(𝑡−𝜋/2) 

Extended ERF: 𝑧𝑝(𝑡) = = .𝑃 ′(−2 + 𝑖) 
= 2𝑒𝑖𝜋/2 2 

𝑡𝑒−2𝑡 

Real part: 𝑥𝑝(𝑡) = Re(𝑧(𝑡)) = cos(𝑡 − 𝜋/2). 2 

You want to get good at this, we will do it a lot. 

6.8 The Sinusoidal Response Formula 

In the examples above we saw a pattern when the input was sinusoidal. We use it so often 
that we will codify the result as the Sinusoidal Response Formula. 
Sinusoidal Response Formula (SRF). Consider the polynomial differential equation 

𝑃 (𝐷)𝑥 = cos(𝜔𝑡) 

If 𝑃 (𝑖𝜔) ≠ 0 then the DE has a particular solution 

1𝑥𝑝(𝑡) = |𝑃 (𝑖𝜔)| cos(𝜔𝑡 − 𝜙(𝜔)), where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). 

If 𝑃 (𝑖𝜔) = 0 we have the Extended SRF. For example, if 𝑃 (𝑖𝜔) = 0 and 𝑃 ′(𝑖𝜔) ≠ 0 then 
the DE has a particular solution 

𝑡 cos(𝜔𝑡 − 𝜙(𝜔)) 𝑥𝑝(𝑡) = , where 𝜙(𝜔) = Arg(𝑃 ′(𝑖𝜔)). |𝑃 ′(𝑖𝜔)| 
Proof. To prove the extended SRF we just follow the steps from the examples above. 
1. Complexify: 𝑃(𝐷)𝑧 = 𝑒𝑖𝜔𝑡, where 𝑥 = Re(𝑧). 
2. Write 𝑃 ′(𝑖𝜔) in polar coordinates: 𝑃 ′(𝑖𝜔) = |𝑃 ′(𝑖𝜔)|𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = Arg(𝑃 ′(𝑖𝜔)). 

𝑡𝑒𝑖𝜔𝑡 𝑡𝑒𝑖(𝜔𝑡−𝜙(𝜔))
3. Use the extended ERF: 𝑧𝑝 = .𝑃 ′(𝑖𝜔) 

= |𝑃 ′(𝑖𝜔)| 
4. Find the real part of 𝑧𝑝: 

𝑥𝑝(𝑡) = Re(𝑧𝑝(𝑡) = Re (𝑡𝑒𝑖(𝜔𝑡−𝜙(𝜔)) 𝑡 cos(𝜔𝑡 − 𝜙(𝜔)) .|𝑃 (𝑖𝜔)| ) = |𝑃 (𝑖𝜔)| 
Remember: If in doubt when using the extended SRF, you can always derive it using 
complexification and the extended ERF. 
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6.9 Physical models 

In this section we will look at three versions of the driven spring-mass-dashpot. These have 
analogies, which we won’t show here, in RLC circuits. 
In all three examples, we assume linear damping with damping constant 𝑏. That is, if the 
damper is moving with velocity 𝑣 through the dashpot, then the force of the dashpot on 
the damper is −𝑏𝑣. This is a reasonable model if the dashpot is filled with a viscous oil. 
Example 6.14. Driving through the mass. In this version, there is a spring-mass-dashpot 
which is driven by a variable force applied to the mass as shown. The position of the mass 
is 𝑥(𝑡), with 𝑥 = 0 being the equilibrium position, i.e., the position where the spring is 
relaxed. 

m

F (t)

x(t)

k

damping coefficient b

To model this, we consider all the forces on the mass and then use Newton’s second law. 
The spring is stretched by 𝑥, so it exerts a restoring force: −𝑘𝑥. The velocity of the damper 
through the dashpot is 𝑥,̇ so it exerts a resisting force: −𝑏𝑥.̇ Thus Newton’s law gives 

𝑚𝑥̈ = −𝑘𝑥 − 𝑏𝑥 + 𝐹 (𝑡) ⇔̇ 𝑚 ̈ ̇𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝐹(𝑡) . 

Example 6.15. Driving through the spring. In this version, the spring-mass-dashpot is 
driven by a mechanism that positions the end of the spring at 𝑦(𝑡) as shown. As before, 
𝑥(𝑡) is position of the mass. We calibrate 𝑥 and 𝑦 so that 𝑥 = 0, 𝑦 = 0 is an equilibrium 
position of the system. 

m

y(t)
x(t)

k

damping coefficient b

To model this, we must consider all the forces on the mass. At time 𝑡, the spring is stretched 
an amount 𝑥(𝑡)−𝑦(𝑡), so the spring force is −𝑘(𝑥 − 𝑦). Likewise, the velocity of the damper 
through the dashpot is 𝑥,̇ so the damping force is −𝑏𝑥.̇ Thus, 

𝑚𝑥̈ = −𝑘(𝑥 − 𝑦) − 𝑏𝑥 ⇔̇ 𝑚 ̈ ̇𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑘𝑦 . 

Example 6.16. Driving through the dashpot. In this version, the spring-mass-dashpot is 
driven by a mechanism that positions the end of the dashpot at 𝑦(𝑡) as shown. Again, 𝑥(𝑡)
is position of the mass and 𝑥 = 0, 𝑦 = 0 is an equilibrium position of the system. 
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m

y(t)
x(t)

k

damping coefficient b

More briefly than the previous examples: 
spring force: −𝑘𝑥 
damping force: −𝑏( ̇ ̇𝑥 − 𝑦). 
Model: 𝑚𝑥̈ = −𝑘𝑥 − 𝑏(𝑥 − ̇̇ 𝑦) ⇔ 𝑚 ̈ ̇ 𝑦 ̇ .𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑏 
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