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8 Applications: stability 

8.1 Goals 

1. Know the meaning of the term ’linear time invariance’. 

2. Be able to apply linear time invariance to solve equations with input shifted in time. 

3. Know the definitions of mathematical and physical stability 

4. Be able to determine if a given 1st, 2nd or 3rd order system is stable. 

8.2 Time invariance 

Constant coefficient differential equations have the property of time invariance. Physically 
this means that the system responds the same way to an input no matter when the input 
is started. Mathematically we write this as follows. 
Definition. Time invariance of a constant coefficient system is the property that if 𝑥𝑝(𝑡)
satisfies 𝑃(𝐷)𝑥 = 𝑓(𝑡) then 𝑥𝑝(𝑡 − 𝑡𝑜) satisfies 𝑃(𝐷)𝑥 = 𝑓(𝑡 − 𝑡0). 
Example 8.1. We know that 𝑥′ + 3𝑥 = 𝑒−𝑡 has solution 𝑥1(𝑡) = 𝑒−𝑡/2. Time invariance 
says that 𝑥′ + 3𝑥 = 𝑒−(𝑡−3) has solution 𝑥2(𝑡) = 𝑥1(𝑡 − 3) = 𝑒−(𝑡−3)/2. The figure below 
illustrates that shifting the input in time simply shifts the output in time. 

t

x

0.5

1

1 3 5

Input e−t Shifted input e−(t−3)

Output e−t/2 Shifted output e−(t−3)/2

Physically this has to be the case –an exponential decay system doesn’t care what time it 
gets started. 

8.3 Mathematical stability 

We introduce the idea of stability with an example that shows how negative exponents 
imply that initial conditions do not affect the long-term behavior of a system. 
Example 8.2. Consider the DE 𝑥″ + 2𝑥′ + 3𝑥 = cos(2𝑡) 
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(a) Solve the DE with initial conditions 𝑥(0) = 2, 𝑥′(0) = 3. Describe the long-term 
behavior of the solution. 
(b) Describe the long-term behavior of the solution with initial conditions 𝑥(0) = 1, 𝑥′(0) = 
1. 
Solution: (a) First we find the general homogeneous solution. 
Homogeneous solution. 
The characteristic equation is 𝑟2 + 2𝑟 + 3 = 0. This has roots: 𝑟 = −1 ± 

√
2 𝑖. 

So, 𝑥ℎ(𝑡) = 𝑐1𝑒−𝑡 cos(
√

2) 𝑡 + 𝑐2𝑒−𝑡 sin(
√

2 𝑡) 

Particular solution. 
Next we find a particular solution using the sinusoidal response formula. For this we need 
to compute 𝑃 (2𝑖) and put it in polar form.. 

𝑃(2𝑖) = −4 + 4𝑖 + 3 = −1 + 4𝑖 = 
√

17𝑒𝑖𝜙, where 𝜙 = Arg(𝑃 (2𝑖)) = tan−1(−4) in Q2 . 

Now the SRF gives 𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙) .√

17 
General solution. 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) = 
cos(2𝑡 − 𝜙) + 𝑐1𝑒−𝑡 cos(

√
2 𝑡) + 𝑐2𝑒−𝑡 sin(

√
2 𝑡).√

17 

Finally, we use the initial conditions to determine the values of 𝑐1, 𝑐2. 

𝑥(0) = cos(−𝜙)/
√

17 + 𝑐1 = 2 ⟶ 𝑐1 = 35/17 

𝑥′(0) = −2 sin(−𝜙)/
√

17 − 𝑐1 + 𝑐2
√

2 = 3 ⟶ 𝑐2 = 39 ∗ 
√

2/17 

So, 𝑥(𝑡) = 
cos(2𝑡 − 𝜙) + 

35√
17 17𝑒−𝑡 cos(

√
2 𝑡) + 

39
17

√
2𝑒−𝑡 sin(

√
2 𝑡). 

The question also asks what happens to the system in the long-term, i.e., as 𝑡 → ∞. 
Looking at the solution above, we see that the terms with 𝑒−𝑡 go to 0. This means that, in 
the long-term, we have 

𝑥(𝑡) ≈ 𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙), for large 𝑡.√

17 

(b) The general solution is the same as in Part (b). Since it has negative exponents, 𝑥ℎ(𝑡) 
goes to 0 as 𝑡 goes to infinity. This means that, in the long-term, the solution 𝑥(𝑡) behaves 
exactly like the solution in Part (a), i.e., goes asymptotically to 𝑥𝑝(𝑡). 
This is the key point: the values of 𝑐1 and 𝑐2 will change with the initial conditions, but in 
the long-term, the terms with 𝑐1 and 𝑐2 will go to 0, i.e., the initial conditions don’t affect 
the long-term behavior of the system. 
This leads to our definition of stability and several equivalent ways of describing it. 
Definition. Mathematical stability means the long-term behavior doesn’t depend (sig-
nificantly) on initial conditions. 



8 APPLICATIONS: STABILITY 3 

Linear Systems. The system 𝐿𝑦 = 𝑓 is stable if the general homogeneous solution
𝑦ℎ(𝑡) → 0 as 𝑡 → ∞. In this case, 𝑦ℎ is called the transient. 
Linear CC Systems. The system 𝑃 (𝐷)𝑦 = 𝑓 is stable if all the characteristic roots have 
negative real part. 
For linear systems stability is determined by the homogeneous solution. That is, 

Stability is about the system not the input. 

Example 8.3. 𝑥′ + 2𝑥 = 𝑓(𝑡) is stable because 𝑥ℎ(𝑡) = 𝑐𝑒−2𝑡 → 0. 
Example 8.4. A constant coefficient system with roots −2 ± 3𝑖, −3 is stable. 
Example 8.5. A constant coefficient system with roots −2, −3, 4 is unstable. 
Example 8.6. 𝑃(𝐷)𝑦 = 𝑦″ + 8𝑦′ + 7𝑦 = 𝑓(𝑡) has characteristic roots -7, -1. These are 
negative so the system is stable. 
Example 8.7. 𝑃 (𝐷)𝑦 = 𝑦″ − 6𝑦′ + 25𝑦 = 𝑓 has characteristic roots 3 ± 4𝑖. The real parts 
of these roots are positive, so the system is not stable. 

8.4 Stability criteria for linear CC systems 

1. Stability ⇔ for any IC 𝑦ℎ → 0 as 𝑡 → ∞. 

2. Stability ⇔ all characteristic roots have negative real part. 

3. Stability ⇔ all solutions to the homogeneous equation 𝑃 (𝐷)𝑦 = 0 go asymptotically 
to the homogeneous equilibrium solution 𝑦(𝑡) = 0. 

4. For a first-order system 𝑃(𝐷)𝑦 = 𝑦′ + 𝑘𝑦 = 𝑓(𝑡): 
Characteristic root = −𝑘. Therefore, stability ⇔ 𝑘 > 0. 

5. For a second-order system 𝑃(𝐷)𝑦 = 𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝑓(𝑡): 
Stability ⇔ 𝑚, 𝑏, 𝑘 all have the same sign (easy to prove). 

6. For a third-order system 𝑃 (𝐷)𝑦 = 𝑦‴ + 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓 : 
Stability ⇔ 𝑎, 𝑏, 𝑐 > 0 and 𝑎𝑏 > 𝑐 (harder to prove). 
This shows that third-order systems with positive coefficients aren’t necessarily stable. 
Example: An unstable system with positive coefficients

(𝑟 + 5)(𝑟 − 1 − 100𝑖)(𝑟 − 1 + 100𝑖) = 𝑟3 + 3𝑟2 + 96𝑟 + 505. 

7. The stability criteria for third-order systems is an example of the Routh-Hurwitz 
stability criteria, which is described below in the last section of this topic. 
Key point: This criteria is somewhat complicated, but it allows us to determine 
stability from the coefficients of a system. That is, it does not require finding the 
roots! 

8.5 Physical stability 

Definition. Physical stability. An unforced physical system with a single equilibrium is 
called stable if, for any initial conditions, it always returns to the equilibrium. 
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Later in the course we will expand on the notion of stability for systems with multiple 
equilibria. The next example shows how physical and mathematical stability are related. 
Example 8.8. Damped-spring-mass system: Physical stability matches mathematical 
stability. The equilibrium solution is 𝑥(𝑡) = 0. The unforced system is modeled by 
𝑚𝑥′ + 𝑏𝑥′ + 𝑘𝑥 = 0. Since the roots have negative real part, 𝑥(𝑡) → 0, no matter what the 
initial conditions. 
Note: The previous section on stability criteria show that second-order physical systems, 
like springs and LRC circuits are always stable. This is not true of 3rd (and higher) order 
physical systems. An example is given in the in-class notes for this topic which discuss 
Maxwell’s model of steam engines. 

8.6 Routh-Hurwitz stability criteria 

This section is copied from Section S of the 18.03 Supplementary Notes by Arthur Mattuck. 
We include it for anyone who is interested. You are not responsible for knowing this in 
18.03. 
Assume 𝑎0 > 0, the constant coefficient, linear system 

(𝑎0𝐷𝑛 + 𝑎1𝐷𝑛−1 + … + 𝑎𝑛−1𝐷 + 𝑎𝑛𝐼)𝑥 = 𝑓(𝑡) 

is stable if and only if 
in the matrix below, all of the 𝑛 principal minors (i.e., the subdeterminants in the upper 
left corner having sizes respectively 1, 2, … , 𝑛) are greater than 0. 

𝑎1 𝑎0 0 0 0 0 … 0
⎡ ⎤𝑎3 𝑎2 𝑎1 𝑎0 0 0 … 0⎢ ⎥
⎢ 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 … 0 ⎥
⎢ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⎥ 

⎣𝑎2𝑛−1 𝑎2𝑛−2 𝑎2𝑛−3 𝑎2𝑛−4 … … … 𝑎𝑛⎦ 

In the matrix, we define 𝑎𝑘 = 0 if 𝑘 > 𝑛. Thus, for example, the last row always has just 
one non-zero entry, 𝑎𝑛. 
The proof of this is some fairly elaborate algebra, which we won’t reproduce here. 

Example 8.9. Apply the Routh-Hurwitz criteria to the system 

𝑥‴ + 𝑎𝑥″ + 𝑏𝑥′ + 𝑐𝑥 = 𝑓(𝑡). 

Solution: The matrix for this system is 

𝑎 1 0
⎡ ⎤⎢𝑐 𝑏 𝑎⎥
⎣0 0 𝑐⎦ 

The three principle minors are 

𝑎 1 0𝑎 1∣𝑎∣ = 𝑎, ∣ ∣ = 𝑎𝑏 − 𝑐, ∣𝑐 𝑏 𝑎∣ = 𝑐(𝑎𝑏 − 𝑐) 𝑐 𝑏 0 0 𝑐 
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The Routh-Hurwitz criteria are that all three minors must be positive. That is, 

𝑎 > 0, 𝑎𝑏 − 𝑐 > 0, 𝑐(𝑎𝑏 − 𝑐) > 0 

Since 𝑎𝑏 −𝑐 > 0, the condition 𝑐(𝑎𝑏 − 𝑐) > 0 implies 𝑐 > 0. Then, since 𝑎 and 𝑐 are positive, 
the condition 𝑎𝑏 − 𝑐 > 0 implies 𝑏 > 0. Thus we have the criteria stated above: 
The system is stable is equivalent to 𝑎, 𝑏, 𝑐 are positive and 𝑎𝑏 > 𝑐. 
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