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9 Applications: frequency response 

9.1 Goals 

1. Be able to use the engineering terminology of gain, phase lag, resonance. 

2. Understand that the gain depends on what we declare to be the input. 

3. Be able to find practical or pure resonant frequencies if they exist. 

9.2 Review of a forced damped harmonic oscillator 

Note. You can also see the text by Edwards and Penney, sections 2.4 and 2.7 for a nice 
discussion of RLC circuits and practical resonance. 
Throughout this topic we will be considering damped harmonic oscillators. There will be 
important variations, but let’s start by reviewing one such system. 
Example 9.1. Consider the system 

𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝑘𝐵 cos(𝜔𝑡), (1) 

where 𝑚, 𝑏, 𝑘, 𝐵, and 𝜔 are constants. For this system, we will consider 𝐵 cos(𝜔𝑡) to be 
the input. Below we will discuss how the input and output are not mathematical notions. 
In an engineering context we must always say what we mean by the input and the output. 
Let’s review our method of solution for this equation 

1. Find the homogeneous solution. 
−𝑏 ± 

√
𝑏2 − 4𝑚𝑘 Characteristic roots = .2𝑚 

√|𝑏2 − 4𝑚𝑘|Let 𝛽 = . (Note the absolute value inside the square root.) There are three2𝑚 cases: 

(i) 𝑏2 − 4𝑚𝑘 > 0 (overdamped): 𝑦ℎ(𝑡) = 𝑐1𝑒(−𝑏/2𝑚+𝛽)𝑡 + 𝑐2𝑒(−𝑏/2𝑚−𝛽)𝑡. 

(ii) 𝑏2 − 4𝑚𝑘 < 0 (underdamped): 𝑦ℎ(𝑡) = 𝑐1𝑒−𝑏𝑡/2𝑚 cos(𝛽𝑡) + 𝑐2𝑒−𝑏𝑡/2𝑚 sin(𝛽𝑡). 

(iii) 𝑏2 − 4𝑚𝑘 = 0 (critically damped): 𝑦ℎ(𝑡) = 𝑐1𝑒−𝑏𝑡/2𝑚 + 𝑐2 𝑡𝑒−𝑏𝑡/2𝑚. 

2. Find a particular solution. 
We can apply the sinusoidal response formula (SRF) directly: 

𝑘𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) 𝑦𝑝(𝑡) = ,|𝑃 (𝑖𝜔)| 
where 𝑃 (𝑟) is the characteristic polynomial and 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). 

1 
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Because we will want to make small variations in this formula we will also review the method 
of complexification that leads to the sinusoidal response formula. 
Step 1. Complexify the DE to get: 

𝑚𝑧″ + 𝑏𝑧′ + 𝑘𝑧 = 𝑘𝐵𝑒𝑖𝜔𝑡, where 𝑦 = Re(𝑧). 

Step 2. We will need 𝑃 (𝑖𝜔) in polar form. The characteristic polynomial is 𝑃 (𝑟) = 
𝑚𝑟2 + 𝑏𝑟 + 𝑘. So, 

𝑃 (𝑖𝜔) = (𝑘 − 𝑚𝜔2) + 𝑖𝑏𝜔 = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 𝑒𝑖𝜙(𝜔), 

𝑏𝜔 where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)) = tan−1 (𝑘 − 𝑚𝜔2 ) in the first or second quadrants. 

Think: Why is 𝜙(𝜔) in Q1 or Q2? 

Step 3. Use the exponential response formula to give a particular (complex-valued) solution: 

𝑘𝐵𝑒𝑖𝜔𝑡 𝑘𝐵𝑒𝑖(𝜔𝑡−𝜙(𝜔))
𝑧𝑝 = = (2)𝑃 (𝑖𝜔) √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 

. 

Step 4. Uncomplexify by taking the real part to find 𝑦𝑝. 

𝑘𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) 𝑦𝑝(𝑡) = Re(𝑧(𝑡)) = (3)√(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

Finally we use superposition to give the general real-valued solution: 

𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡). 

9.2.1 Terminology 

Still referring to the system in Example 9.1: 

• 𝑦ℎ(𝑡) is called the transient because it goes to 0 as 𝑡 goes to infinity. 
Think: How do we know that 𝑦ℎ(𝑡) decays to 0? 

• 𝑦𝑝(𝑡) is called the periodic or sinusoidal solution. 
Since 𝑦ℎ(𝑡) goes to 0, all solutions go asymptotically to 𝑦𝑝(𝑡). 

In thinking about this system, we are going to assume the 𝑚, 𝑏, and 𝑘 are fixed. We will 
imagine that we have a knob that can be used to set 𝜔 just before we need to solve the 
equation. Thus the response of the system will depend on the value of 𝜔. 
The following is a list of terms with short definitions. We will discuss them in much more 
detail below. 

• Input: When talking about gain and phase lag, we will always take the input to be 
sinusoidal, i.e., 𝐵 cos(𝜔𝑡). 
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• Input frequency: The angular frequency of the sinusoidal input, i.e., 𝜔. (In radi-
ans/time.) 

• Input amplitude: The amplitude of the sinusoidal input. 

• Output amplitude: The amplitude of the sinusoidal solution. 

• Gain or amplitude response: the amount by which the system scales the input 
amplitude to get the output amplitude, i.e., the ratio of the output to input ampli-
tudes. 

• Complex gain: the ‘gain’ for the complexified equation, i.e., the ratio of output to 
input. 

• Phase lag: the angle by which the output maximum trails the input maximum. 

• Time lag: the time by which the output maximum trails the input maximum. 

• Frequency response: both amplitude response and phase lag taken together. 

By looking at the solutions in Equations 2 and 3, we can give these quantities for the system 
discussed above. Pay attention to the abstract statements involving 𝑃 (𝑖𝜔), they are more 
useful to know than the formulas with square roots etc. 

• Input: 𝐵 cos(𝜔𝑡). 
• Input frequency: 𝜔. 

• Input amplitude: Since we declared the input to be 𝐵 cos(𝜔𝑡), the input amplitude 
is 𝐵. 

𝑘𝐵 𝑘𝐵 • Output amplitude: 𝐴(𝜔) = =|𝑃 (𝑖𝜔)| √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

• Gain: The gain is the ratio of the output amplitude to the input amplitude. So the 
gain 𝑔(𝜔) is 

𝑘𝐵/|𝑃 (𝑖𝜔)| 𝑘 𝑘 𝑔(𝜔) = = =𝐵 |𝑃 (𝑖𝜔)| √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

• Complex gain: In the complexified DE, we replace 𝑖𝜔 by 𝑠 to get the equation with 
exponential input: 

𝑃(𝐷)𝑧 = 𝐵𝑒𝑠𝑡, 
where 𝑠 can be any complex number, e.g., 𝑖𝜔 or 2 + 3𝑖. 

𝑘𝐵𝑒𝑠𝑡 

The input is 𝐵𝑒𝑠𝑡 and the output is The complex gain is the ratio of output 𝑃 (𝑠) 
. 

𝑘𝐵𝑒𝑠𝑡/𝑃(𝑠) 𝑘 𝑘 to input: = =𝐵𝑒𝑠𝑡 𝑃 (𝑠) 𝑚𝑠2 + 𝑏𝑠 + 𝑘 
. 

𝑏𝜔 • Phase lag: 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)) = tan−1 (𝑘 − 𝑚𝜔2 ) in Q1 or Q2. 

• Time lag: 𝜙(𝜔)/𝜔. 
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9.2.2 Input and gain 

Important note: The gain depends on what we designate as the input. Do not try to 
memorize the exact formulas for gain in the example above. In other systems the formulas 
will be slightly different. You will need to think about each system! Pay attention to this 
in all the examples below. 
Example 9.2. Consider the damped harmonic oscillator driven by pushing on the end of 
the spring. If 𝑓(𝑡) is the displacement of the end from its equilibrium position, then the 
system is modeled by 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑘𝑓(𝑡). 
In this case, it is reasonable to consider 𝑓(𝑡) to be the input. 
Taking 𝑓(𝑡) = 𝐵 cos(𝜔𝑡), this is exactly the DE from Example 9.1 above. We saw that this 

𝑘 has gain 𝑔(𝜔) = .|𝑃 (𝑖𝜔)| 
Example 9.3. Consider the system 

2𝑦″ + 1.5𝑦′ + 3𝑦 = 3𝐵 cos(𝜔𝑡) 

where we consider 𝐵 cos(𝜔𝑡) to be the input. (Note the input does not include the factor 
of 3). Plot the graph of the gain as a function of 𝜔. 
Solution: The sinusoidal solution to this equation is 

3𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) 3𝐵 𝑦𝑝 = = √(3 − 2𝜔2)2 + (1.5𝜔)2 
cos(𝜔𝑡−𝜙(𝜔)) (where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). |𝑃 (𝑖𝜔)| 

So the gain (output amplitude/input amplitude) is 

3𝑔(𝜔) = √(3 − 2𝜔2)2 + (1.5𝜔2)
. 

Here is the plot of 𝑔(𝜔): 

ω
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Graph of the gain function for Example 9.3 

9.2.3 Phase Lag 

Example 9.4. In the figure below the blue curve is the input and the orange curve is the 
response. The damping causes a lag between the time the input reaches its maximum and 
the time the output reaches its maximum. 
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• The figure shows that the output lags 𝜋 seconds behind the input. This is the time 
lag 

• The period of both input and response is 4𝜋 seconds. So the output is 𝜋/4𝜋 = 1/4
cycle = 𝜋/2 radians behind the input. The angle 𝜙 = 𝜋/2 radians is the phase lag. 

t (secs)
π 2π 3π 4π 5π 6π 7π

0.5

1.0

1.5

0.5

1.0

1.5

Input

Response

time lag = φ/ω

The response lags behind the input by 𝜋 seconds or 𝜋/2 radians. 

The phase lag is important in many applications, but in this class we will be more interested 
in the gain. 

9.3 Amplitude response and practical resonance 

The gain is a function of 𝜔. It tells us the size of the system’s response at the given input 
frequency. If the gain has a relative maximum at 𝜔𝑟 > 0, then we call 𝜔𝑟 a practical 
resonant frequency. 
Example 9.5. (Finding practical resonance.) Consider the system from Example 9.3: 

2𝑦″ + 1.5𝑦′ + 3𝑦 = 3𝐵 cos(𝜔𝑡). 

As in that example, we consider 𝐵 cos(𝜔𝑡) to be the input. Find all the practical resonant 
frequencies. 
Solution: In Example 9.3 we found the gain function was 

3𝑔(𝜔) = √(3 − 2𝜔2)2 + (1.5𝜔)2 
. 

To find the practical resonance we have to find the value of 𝜔 where 𝑔(𝑤) has a maximum. 
There are a few tricks to shorten the algebra, but we’ll find the maximum straightforwardly 
by setting 𝑔′(𝜔) = 0. 

−8𝜔(3 − 2𝜔2) + 2(1.5)2𝜔 𝑔′(𝜔) = −3 ⋅ = 0.2 ((3 − 2𝜔2)2 + (1.5𝜔)2)3/2 

Setting the numerator to 0 and solving we find 𝜔 = 0 or 𝜔 = √9.75/8. We require the 
resonant frequency to be positive, so 𝜔𝑟 = √9.75/8 is the only practical resonant frequency. 
The graph below shows that this is, in fact, a maximum. (You can also check this using 
calculus.) 
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Graph of the gain function with practical resonance marked. 

Example 9.6. (A system with no practical resonant frequency.) Consider the system 

2𝑦″ + 10𝑦′ + 3𝑦 = 3𝐵 cos(𝜔𝑡), 

where we consider 𝐵 cos(𝜔𝑡) to be the input. Find all the practical resonant frequencies. 
Solution: This is similar to the previous example except that the damping constant is 
much larger. The algebra will be nearly identical, so we will skip past most of it. The gain 
is 3𝑔(𝜔) = √(3 − 2𝜔2)2 + (10𝜔)2 

. 

So, 
−8𝜔(3 − 2𝜔2) + 2(10)2𝜔 𝑔′(𝜔) = −3 ⋅ = 0.2 ((3 − 2𝜔2)2 + (10𝜔)2)3/2 

Setting the numerator to 0 and solving for 𝜔 we find 𝜔 = 0 or 𝜔 = 
√

−11. Since neither of 
these is a positive real number we say that there is no practical resonant frequency. 

Example 9.7. Consider the system 

𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝐹0 cos(𝜔𝑡) 

where we consider 𝐹0 cos(𝜔𝑡) to be the input. Find all the practical resonant frequencies. 
Solution: The sinusoidal solution to this equation is 

𝐹0 cos(𝜔𝑡 − 𝜙(𝜔)) 𝐹0𝑦𝑝 = = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
cos(𝜔𝑡−𝜙(𝜔)), where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔). |𝑃 (𝑖𝜔)| 

Therefore, the gain (output amplitude/input amplitude) is 

1𝑔(𝜔) = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

Here we consider the system parameters 𝑚, 𝑏, 𝑘 to be fixed, while the gain depends on the 
input parameter 𝜔. 
For this example, we’ll show you a standard trick for finding the maximum of 𝑔(𝜔). The 
expression for 𝑔(𝜔) is one over a square root. So 𝑔(𝜔) has a maximum where the expression 
under the square root has a minimum. That is, we need to find the minima of 

1ℎ(𝜔) = = (𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2.𝑔2 
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Setting the derivative equal to 0 and solving for 𝜔 we get 

ℎ′(𝜔) = −4𝑚𝜔(𝑘 − 𝑚𝜔2) + 2𝑏2𝜔 = 0. 
So, 𝜔 = 0 or 𝜔 = √𝑘/𝑚 − 𝑏2/2𝑚2. Since we require 𝜔𝑟 to be positive we have the following 
result. 

• If 𝑘/𝑚 − 𝑏2/2𝑚2 > 0 then this system has practical resonance at 

𝜔𝑟 = √𝑘/𝑚 − 𝑏2/2𝑚2 = √𝜔0
2 − 𝑏2/2𝑚2. 

Here, the last expression gives 𝜔𝑟 in terms of the natural frequency 𝜔0 = √𝑘/𝑚. 

• If 𝑘/𝑚 − 𝑏2/2𝑚2 < 0 then the system does not have a practical resonant frequency. 

𝜔𝑟 = √𝜔0
2 − 𝑏2/2𝑚2 𝜔0

2 − 𝑏2/2𝑚2 < 0 

(practical resonance). (no practical resonance). 
Notice that in this case if the damping gets too large there is no practical resonance. 
For this example, see the mathlet 
https://mathlets.org/mathlets/amplitude-and-phase-second-order-iv/. 
In the text by Edwards and Penney, section 2.7 on radio circuits gives another another 
example and an application of this. 

9.4 The undamped forced system 

For a spring-mass system without any damping, we have what is called a pure resonant 
frequency. At this frequency, the amplitude of the response keeps growing to infinity. In 
this case, we say the gain is infinite. We show this with a somewhat general example 
using symbols for the coefficients. 
Example 9.8. Solve the DE 𝑚𝑦″ + 𝑘𝑦 = 𝐵 cos(𝜔𝑡). 
Solution: We will only find the particular solution. You can supply the homogeneous 
solution. We start by doing some calculations we will need later. 
1. The natural frequency of the system is 𝜔0 = √𝑘/𝑚. 
2. Characteristic polynomial: 𝑃 (𝑟) = 𝑚𝑟2 + 𝑘. We will need both 𝑃 (𝑖𝜔) and 𝑃 ′(𝑖𝜔) in 
polar form. 

if 𝑘 − 𝑚𝜔2 > 0, i.e., 𝜔 < 𝜔0𝑃 (𝑖𝜔) = 𝑘 − 𝑚𝜔2 = |𝑘 − 𝑚𝜔2|𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = {0 

𝜋 if 𝑘 − 𝑚𝜔2 < 0, i.e., 𝜔 > 𝜔0 

𝑃 ′(𝑖𝜔) = 2𝑖𝑚𝜔 = 2𝑚𝜔𝑒𝑖𝜋/2. 

https://mathlets.org/mathlets/amplitude-and-phase-second-order-iv/
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Note that 𝑃 (𝑖𝜔) = 0 exactly when 𝜔 = √𝑘/𝑚 = 𝜔0. 
Now use the sinusoidal response formula to get 

𝐵 cos(𝜔𝑡)⎧ |𝑘−𝑚𝜔2| if 𝜔 < 𝜔0𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) {𝑦𝑝(𝑡) = = |𝑃 (𝑖𝜔)| ⎨{𝐵 cos(𝜔𝑡−𝜋) ⎩ |𝑘−𝑚𝜔2| if 𝜔 > 𝜔0 

𝐵𝑡 cos(𝜔0𝑡 − 𝜙(𝜔0)) 𝐵 𝑡 cos(𝜔0𝑡 − 𝜋/2) 𝑦𝑝(𝑡) = = if 𝜔 = 𝜔0.|𝑃 ′(𝑖𝜔0)| 2𝑚𝜔0 

Note: In the case 𝜔 = 𝜔0, we had to use the extended SRF since 𝑃 (𝑖𝜔0) = 0. 
Also note, the factor of 𝑡 in the case 𝜔 = 𝜔0. 

9.4.1 Resonance and amplitude response of the undamped harmonic oscillator 

Now let’s take 𝐵 cos(𝜔𝑡) to be the input to the system in the previous example. So the gain 
(output amplitude/input amplitude) for the system is 

1𝑔(𝜔) = .𝑚|𝜔0
2 − 𝜔2| 

The right hand plot below shows 𝑔(𝜔) as a function of 𝜔. There is a vertical asymptote at 
𝜔 = 𝜔0. Note that the graph is similar to the graph of the gain for the damped harmonic 
oscillator except that the peak is infinitely high. Since we don’t have a sinusoidal solution 
when 𝜔 = 𝜔0 there is no well defined gain at 𝜔0. However, given the graphs of the gain and 
the solution when 𝜔 = 𝜔0, it is conventional to say that the system has infinite gain at the 
frequency 𝜔 = 𝜔0. 
Let’s examine what this means. When 𝜔 = 𝜔0 we have 

𝐵 𝑡 cos(𝜔0𝑡 − 𝜋/2) 𝐵 𝑡 sin(𝜔0𝑡)𝑦𝑝(𝑡) = = .2𝑚𝜔0 2𝑚𝜔0 

This is called pure resonance. The natural frequency 𝜔0 is called the pure resonant 
frequency or simply the resonant frequency of the system. 
The graph of 𝑦𝑝(𝑡) is shown in the left-hand plot below. Notice that the response is oscil-
latory but not periodic. The amplitude keeps growing in time because of the factor of 𝑡 in
𝑦𝑝(𝑡). 
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Resonance response (𝜔 = 𝜔0) 

ω

g(ω)

ω0

Undamped amplitude response 

Note carefully the different units and different meanings in the plots. The left-hand 
plot is output vs. time for a fixed input frequency. The right-hand plot is gain vs. input 
frequency. 𝑥(𝑡) and 𝑔(𝜔) are in physical units dependent on the system, 𝑡 is in time, 𝜔 is 
in radians/time. 
Physically, for the undamped oscillator, resonance happens because the input force is in 
sync with the natural frequency of the system and every push adds energy, so the energy 
in the system keeps growing to infinity. If the input frequency is different from 𝜔0, then 
sometimes the input force acts to add energy and sometimes it removes energy from the 
system, so the energy stays bounded. Likewise, if there is damping then the damping force 
is always removing energy from the system and a sinusoidal input can’t cause the energy 
to grow without bound. 

9.5 Slight variation of the undamped oscillator 

Example 9.9. Consider the system 𝑚𝑦″ + 𝑘𝑦 = 𝑓′(𝑡) where we take 𝑓(𝑡) to be the input 
and 𝑦(𝑡) the response. Solve the DE when 𝑓(𝑡) = 𝐵 cos(𝜔𝑡) and give the gain of the system. 
Solution: To find a particular solution we will complexify first and then take the derivative 
of 𝑓(𝑡). This is generally slightly easier than taking the derivative and then complexifying. 
The complexified DE becomes 

𝑚𝑧″ + 𝑘𝑧 = (𝐵𝑒𝑖𝜔𝑡)′ = 𝑖𝐵𝜔𝑒𝑖𝜔𝑡, with 𝑦 = Re(𝑧). 

As in Example 9.8, we have the following. 
The natural frequency of the system is 𝜔0 = √𝑘/𝑚. 

if 𝑘 − 𝑚𝜔2 > 0, i.e., 𝜔 < 𝜔0𝑃 (𝑖𝜔) = 𝑘 − 𝑚𝜔2 = |𝑘 − 𝑚𝜔2|𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = {0 

𝜋 if 𝑘 − 𝑚𝜔2 < 0, i.e., 𝜔 > 𝜔0 

𝑃 ′(𝑖𝜔) = 2𝑖𝑚𝜔 = 2𝑚𝜔𝑒𝑖𝜋/2. 
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Now use the exponential response formula (and its extended version) to get 

⎧ 𝐵𝑖𝜔𝑒𝑖𝜔𝑡 𝐵𝜔𝑒𝑖𝜋/2𝑒𝑖𝜔𝑡 

= if 𝜔 ≠ 𝜔0, where 𝜙(𝜔) = Arg(𝑘 − 𝑚𝜔2){𝑘 − 𝑚𝜔2 |𝑘 − 𝑚𝜔2|𝑒𝑖𝜙(𝜔)
𝑧𝑝(𝑡) = ⎨𝐵 𝑡𝑖𝜔𝑒𝑖𝜔0𝑡 𝐵 𝑡𝜔𝑒𝑖𝜋/2𝜔𝑒𝑖𝜔0𝑡 

{ = if 𝜔 = 𝜔0⎩ 2𝑖𝑚𝜔0 2𝑚𝜔0𝑒𝑖𝜋/2 

So, 
⎧𝐵𝜔 cos(𝜔𝑡 + 𝜋/2) if 𝜔 < 𝜔0|𝑘 − 𝑚𝜔2|
{𝐵𝜔 cos(𝜔𝑡 − 𝜋/2)𝑦𝑝(𝑡) = Re(𝑧𝑝) = if 𝜔 > 𝜔0⎨ |𝑘 − 𝑚𝜔2|

𝐵 𝑡𝜔 cos(𝜔0𝑡){ if 𝜔 = 𝜔0⎩ 2𝑚𝜔0 

Since the input is 𝐵 cos(𝜔𝑡), we have the gain is 

𝜔 𝑔(𝜔) = |𝑘 − 𝑚𝜔2| 

As in Example 9.8, there is a vertical asymptote at 𝜔 = 𝜔0. We also see the gain is 0 when
𝜔 = 0. The amplitude response curve is shown below. 

ω

g(ω)

ω0

9.5.1 Zero-pole diagrams and gain 

If there is time we will discuss this in class. 
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