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1 Introduction to differential equations 

1.1 Goals 

1. Know the definition of a differential equation. 

2. Know our first and second most important equations and their solutions. 

3. Be able to derive the differential equation modeling a physical or geometric situation. 

4. Be able to solve a separable differential equation, including finding lost solutions. 

5. Be able to solve an initial value problem (IVP) by solving the differential equation 
and using the initial condition to find the constant of integration. 

1.2 Differential equations and solutions 

A differential equation (DE) is an equation with derivatives! 
Example 1.1. (DEs modeling physical processes, i.e., rate equations)

𝑑𝑇 1. Newton’s law of cooling: = −𝑘(𝑇 − 𝐴), where 𝑇 is the temperature of a body in an𝑑𝑡 
environment with ambient temperature 𝐴. 

2. Gravity near the earth’s surface: 𝑚𝑑2𝑥 = −𝑚𝑔, where 𝑥 is the height of a mass 𝑚 𝑑𝑡2 
above the surface of the earth. 

3. Hooke’s law: 𝑚𝑑2𝑥 = −𝑘𝑥, where 𝑥 is the displacement from equilibrium of a spring𝑑𝑡2 
with spring constant 𝑘. 

Other examples: Below we will give some examples of differential equations modeling 
some geometric situations. 
A solution to a differential equation is any function that satisfies the DE. Let’s focus on 
what this means by contrasting it with solving an algebraic equation. 
The unknown in an algebraic equation, such as 

𝑦2 + 2𝑦 + 1 = 0 

is the number 𝑦. The equation is solved by finding a numerical value for 𝑦 that satisfies the 
equation. You can check by substitution that 𝑦 = −1 is a solution to the equation shown. 
The unknown in the differential equation 

𝑑2𝑦 
𝑑𝑥2 + 2 

𝑑𝑦 
𝑑𝑥 

+ 𝑦 = 0 

1 
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is the function 𝑦(𝑥).The equation is solved by finding a function 𝑦(𝑥) that satisfies the 
equation One solution to the equation shown is 𝑦(𝑥) = 𝑒−𝑥. You can check this by substi-
tuting 𝑦(𝑥) = 𝑒−𝑥 into the equation. Again, note that the solution is a function. 
More often we will say that the solution is a family of functions, e.g., 𝑦 = 𝐶𝑒−𝑡. The 
parameter 𝐶 is like the constant of integration in 18.01. Every value of 𝐶 gives a different 
function which solves the DE. 

1.3 The most important differential equation in 18.03 

Here, in the very first class, we state and give solutions to our most important differential 
equations. In this case we will check the solutions by substitution. As we proceed in the 
course we will learn methods that help us discover solutions to equations. 
The most important DE we will study is 

𝑑𝑦 = 𝑎𝑦, (1)𝑑𝑡 
where 𝑎 is a constant (in units of 1/time). In words the equation says that 

the rate of change of 𝑦 is proportional to 𝑦. 

Because of its importance we will write down some other ways you might see it: 

𝑑𝑦 𝑦′ = 𝑎𝑦; = 𝑎𝑦(𝑡); ̇𝑦′ − 𝑎𝑦 = 0; 𝑦 − 𝑎𝑦 = 0.𝑑𝑡 
In the last equation, we used the physicist ‘dot’ notation to indicate the derivative is with 
respect to time. You should recognize that all of these are the same equation. 
The solution to this equation is 

𝑦(𝑡) = 𝐶𝑒𝑎𝑡, 
where 𝐶 is any constant. 

1.3.1 Checking the solution by substitution 

The above solution is easily checked by substitution. Because this equation is so important 
we show the details. Substituting 𝑦(𝑡) = 𝐶𝑒𝑎𝑡 into Equation 1 we have: 

Left side of 1: 𝑦′ = 𝑎𝐶𝑒𝑎𝑡 

Right side of 1: 𝑎𝑦 = 𝑎𝐶𝑒𝑎𝑡 

Since after substitution the left side equals the right, we have shown that 𝑦(𝑡) = 𝐶𝑒𝑎𝑡 is 
indeed a solution of Equation 1. 
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1.3.2 The physical model of the most important DE 

As a physical model this equation says that the quantity 𝑦 changes at a rate proportional 
to 𝑦. 
Because of the form the solution takes we say that Equation 1 models exponential growth 
or decay.’ 
In this course we will learn many techniques for solving differential equations. We will test 
almost all of them on Equation 1. After learning these techniques, you should, of course, 
understand how to use them to solve 1. However: whenever you see this equation you 
should remind yourself that it models exponential growth or decay and you should know 
the solution without computation. 

1.4 The second most important differential equation 

Our second most important DE is 

𝑚𝑦″ + 𝑘𝑦 = 0, (2) 

where 𝑚 and 𝑘 are constants. You can easily check that, with 𝜔 = √𝑘/𝑚, the function 

𝑦(𝑡) = 𝐶1 cos(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) 

is a solution. Equation 2 models a simple harmonic oscillator. More prosaically, it models 
a mass 𝑚 oscillating at the end of a spring with spring constant 𝑘. 

1.5 Solving differential equations by the method of optimism 

In our first and second most important equations above we simply told you the solution. 
Once you have a possible solution it is easy to check it by substitution into the differential 
equation. We will call this method, where you guess a solution and check it by plugging 
your guess into the equation, the method of optimism. In all seriousness, this will be an 
important method for us. Of course, its utility depends on learning how to make good 
guesses! 

1.6 General form of a differential equation 

We can always rearrange a differential equation so that the right hand side is 0. For 
example, 𝑦′ = 𝑎𝑦 can be written as 𝑦′ − 𝑎𝑦 = 0. With this in mind the most general form 
for a differential equation is 

𝐹(𝑡, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0, 
where 𝐹 is a function. For example, 

(𝑦′)2 + 𝑒𝑦″ sin(𝑡) − 𝑦(4) = 0. 

The order of a differential equation is the order of the highest derivative that occurs. So 
the example just above shows a DE of order 4. 
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1.7 Constructing a differential equation to model a physical situation 

We use rate equations, i.e., differential equations, to model systems that undergo change. 
The following argument using Δ𝑡 should be somewhat familiar from calculus. 
Example 1.2. Suppose a population 𝑃 (𝑡) has constant birth and death rates: 

𝛽 = 2%/year, 𝛿 = 1%/year 

Build a differential equation that models this situation. 
Solution: In the interval [𝑡, 𝑡 + Δ𝑡], the change in 𝑃 is given by 

Δ𝑃 = number of births - number of deaths. 

Over a small time interval Δ𝑡 the population is roughly constant so: 

Births in the time interval ≈ 𝑃(𝑡) ⋅ 𝛽 ⋅ Δ𝑡 
Deaths in the time interval ≈ 𝑃(𝑡) ⋅ 𝛿 ⋅ Δ𝑡 

Combining these we have: Δ𝑃 ≈ 𝑃 (𝑡) 𝛽 Δ𝑡 − 𝑃 (𝑡) 𝛿 Δ𝑡. So, 

Δ𝑃 
Δ𝑡 ≈ (𝛽 − 𝛿)𝑃 (𝑡). 

Finally, letting Δ𝑡 go to 0 we have derived the differential equation 

𝑑𝑃 = (𝛽 − 𝛿)𝑃 . 𝑑𝑡 
Notice that if 𝛽 > 𝛿 then the population is increasing. 
Of course, this DE is our most important DE 1: the equation of exponential growth or 

= 𝑃0𝑒(𝛽−𝛿)𝑡 decay. We know the solution is 𝑃 . 
Note: Suppose 𝛽 and 𝛿 are more complicated and depend on 𝑡, say 𝛽 = 𝑃 +2𝑡 and 𝛿 = 𝑃/𝑡. 
The derivation of the DE is the same, i.e. 

𝑑𝑃 = (𝛽(𝑡) − 𝛿(𝑡))𝑃 = (𝑃 + 2𝑡 − 𝑃 /𝑡)𝑃 . 𝑑𝑡 
Because 𝛽 and 𝛿 are no longer constants, this is not a situation of exponential growth and 
the solution will be more complicated (and probably harder to find). 

Example 1.3. Bacteria growth. Suppose a population of bacteria is modeled by the 
exponential growth equation 𝑃 ′ = 𝑘𝑃 . Suppose that the population doubles every 3 hours. 
Find the growth constant 𝑘. 
Solution: The equation 𝑃 ′ = 𝑘𝑃 has solution 𝑃(𝑡) = 𝐶𝑒𝑘𝑡. From the initial condition we 
have that 𝑃(0) = 𝐶. Since the population doubles every 3 hours we have 𝑃(3) = 𝐶𝑒3𝑘 = 2𝐶. 

Solving for 𝑘 we get 𝑘 = 3
1 ln 2 (in units of 1/hours.) 
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1.8 Initial value problems 

An initial value problem (IVP) is just a differential equation where one value of the solution 
function is specified. We illustrate with some simple examples. 
Example 1.4. Initial value problem. Solve the IVP 𝑦 ̇ = 3𝑦, 𝑦(0) = 7. 
Solution: We recognize this as an exponential growth equation, so 𝑦(𝑡) = 𝐶𝑒3𝑡. Using the 
initial condition we have 𝑦(0) = 7 = 𝐶. Therefore, 𝑦(𝑡) = 7𝑒3𝑡. 
Example 1.5. Initial value problem. Solve the IVP 𝑦′ = 𝑥2, 𝑦(2) = 7. 
Solution: Note, the use of 𝑥 indicates that the independent variable in this problem is 𝑥. 
This is really an 18.01 problem: integrating we get 𝑦 = 𝑥3/3+𝐶. Using the initial condition 
we find 𝐶 = 7 − 8/3. 

1.9 Separable Equations 

Now it’s time to learn our first technique for solving differential equations. A first-order DE 
is called separable if the variables can be separated from each other. We illustrate with a 
series of examples. 
Example 1.6. Exponential growth. Use separation of variables to solve the exponential 
growth equation 𝑦′ = 4𝑦. 

𝑑𝑦 Solution: We rewrite the equation as = 4𝑦. Next we separate the variables by getting 𝑑𝑡 
all the 𝑦’s on one side and the 𝑡’s on the other. 

𝑑𝑦 = 4 𝑑𝑡. 𝑦 

Now we integrate both sides: 

∫ 
𝑑𝑦 = ∫ 4 𝑑𝑡 ⇔ ln |𝑦| = 4𝑡 + 𝐶. 𝑦 

Now we solve for 𝑦 by exponentiating both sides: 

|𝑦| = 𝑒𝐶𝑒4𝑡 𝑜𝑟 𝑦 = ±𝑒𝐶𝑒4𝑡. 

Since ±𝑒𝐶 is just a constant we rename it simply 𝐾. We now have the solution we knew 
we’d get: 

𝑦 = 𝐾𝑒4𝑡. 

Example 1.7. Here is a standard example where the solution goes to infinity in a finite 
time (i.e., the solutions ’blow up’). One of the fun features of differential equations is how 
very simple equations can have very surprising behavior. 
Solve the initial value problem 

𝑑𝑦 = 𝑦2; 𝑦(0) = 1.𝑑𝑡 
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Solution: We can separate the variables by moving all the 𝑦’s to one side and the 𝑡’s to 
the other 𝑑𝑦 = 𝑑𝑡 𝑦2 

Integrating both sides we get: −1
𝑦 

= 𝑡 + 𝐶 

Think: The constant of integration is important, but we only need it on one side. 
Solving for 𝑦 we get the solution: 

1𝑦 = −𝑡 + 𝐶 
. 

Finally, we use initial condition 𝑦(0) = 1 to find that 𝐶 = −1. So the solution is: 
1𝑦(𝑡) = 1 − 𝑡 . 

We graph this function below. Note that the graph has a vertical asymptote at 𝑡 = 1. 

t

y

−2 −1 1 2 3 4

y = 1
1−t

Graph of the function 1/(1 − 𝑡) 

1.9.1 Technical definition of a solution 

Looking at the previous example we see the domain of 𝑦 consists of two intervals: (−∞, 1) 
and (1, ∞). For technical reasons we will require that the domain of a solution consists of 
exactly one interval. So the above graph really shows two solutions: 

Solution 1: 𝑦(𝑡) = 1/(1 − 𝑡), where 𝑦 is in the interval (−∞, 1) 
Solution 2: 𝑦(𝑡) = 1/(1 − 𝑡), where 𝑦 is in the interval (1, ∞) 

In the example problem, since our IVP had 𝑦(0) = 1 the solution must have 𝑡 = 0 in its 
domain. Therefore, solution 1 is the solution to the example’s IVP. 

1.9.2 Lost solutions 

We have to cover one more detail of separable equations. Sometimes solutions get lost and 
have to be recovered. This is a small detail, but you want to pay attention since it’s worth 
1 easy point on exams and psets. 

1Example 1.8. In the example 𝑦′ = 𝑦2, we found the solution 𝑦 = − But it is easy 𝑡 + 𝐶 
. 
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to check by substitution that 𝑦(𝑡) = 0 is also a solution. Since this solution can not be 
written as 𝑦 = −1/(𝑡 + 𝐶) we call it a lost solution. 
The simple explanation is that it got lost when we divided by 𝑦2. After all if 𝑦 = 0 it was 
not legitimate to divide by 𝑦2. 
General idea of lost solutions for separable DEs 

Suppose we have the differential equation 

𝑦′ = 𝑓(𝑥)𝑔(𝑦) 

If 𝑔(𝑦0) = 0 then you can check by substitution that 𝑦(𝑥) = 𝑦0 is a solution to the DE. It 
may get lost in when we separate variables because dividing by by 𝑔(𝑦) would then mean 
dividing by 0. 
Example 1.9. Find all the (possible) lost solutions of 𝑦′ = 𝑥(𝑦 − 2)(𝑦 − 3). 
Solution: In this case 𝑔(𝑦) = (𝑦 − 2)(𝑦 − 3). The lost solutions are found by finding all the 
roots of 𝑔(𝑦). That is, the lost solutions are 𝑦(𝑥) = 2 and 𝑦(𝑥) = 3. 

1.9.3 Implicit solutions 

Sometimes solving for 𝑦 as a function of 𝑥 is too hard, so we don’t! 
= 𝑥3+3𝑥+1Example 1.10. Implicit solutions. Solve 𝑦′ 

𝑦6+𝑦+1 . 
Solution: This is separable and after separating variables and integrating we have 

𝑦
7
7 

+ 
𝑦2 𝑥

4
4 

+ 
3𝑥2 

2 
+ 𝑦 = 2 

+ 𝑥 + 𝐶. 

This is too hard to solve for 𝑦 as a function of 𝑥 so we leave our answer in this implicit 
form. 

1.9.4 More examples 

𝑑𝑦 Example 1.11. Solve 𝑑𝑥 
= 𝑥𝑦. 

Solution: Separating variables: 𝑑𝑦 = 𝑥 𝑑𝑥. Therefore, ∫ 
𝑑𝑦 = ∫ 𝑥 𝑑𝑥, which implies𝑦 𝑦 

ln 𝑦 = 
𝑥
2
2 

+ 𝐶. Finally after exponentiation and replacing 𝑒𝐶 by 𝐾 we have 𝑦 = 𝐾𝑒𝑥2/2. 
Think: There is a lost solution that was found by some sloppy algebra. Can you spot the 
solution and the sloppy algebra?

𝑑𝑦 Example 1.12. Solve .𝑑𝑥 
= 𝑥3𝑦2 

Solution: Separating variables and integrating gives: −1 = 𝑥
4
4 + 𝐶. Solving for 𝑦 we have 𝑦 

4𝑦 = −𝑥4 + 4𝐶 
. 

There is also a lost solution: 𝑦(𝑥) = 0. 
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Example 1.13. Solve 𝑦′ + 𝑝(𝑥)𝑦 = 0. 
𝑑𝑦 Solution: We first rewrite this so that it’s clearly separable: = −𝑝(𝑥) 𝑑𝑥. After the 𝑦 

usual separation and integration we have 

log(|𝑦|) = − ∫ 𝑝(𝑥) 𝑑𝑥 + 𝐶 

Therefore, |𝑦(𝑥)| = 𝑒𝐶𝑒− ∫ 𝑝(𝑥) 𝑑𝑥 and 𝑦(𝑥) = 0 is a lost solution. 

1.10 Geometric Applications of DEs 

Since the slope of a curve is given by its derivatives, we can often use differential equations 
to describe curves. 
Example 1.14. An heavy object is dragged through the sand by rope. Suppose the object 
starts at (0, 𝑎) with the puller at the origin, so the rope has length 𝑎. The puller moves 
along the 𝑥-axis so that the rope is always taut and tangent to the curve followed by the 
object. This curve is called a tractrix. Find an equation for it.

𝑑𝑦 Solution: Since the rope is tangent to the curve, its slope is 𝑑𝑥 . Also, computing the slope 
𝑑𝑦 𝑦 geometrically as rise/run, the diagram below shows that 𝑑𝑥 

= −√𝑎2 − 𝑦2 
. 

x

y

(x, y)

y a

√
a2 − y2

a

The tractrix 

Thus, −√𝑎2

𝑦
− 𝑦2 

𝑑𝑦 = 𝑑𝑥. Integrating (details below) we get 

𝑎 ln (𝑎 + √𝑎2 − 𝑦2 
) − √𝑎2 − 𝑦2 = 𝑥 + 𝐶. 𝑦 

𝑥 = 𝑎 ln (𝑎 + √𝑎2 − 𝑦2 
The initial position (𝑥, 𝑦) = (0, 𝑎) implies 𝐶 = 0. Therefore, ) − √𝑎2 − 𝑦2.𝑦 

To finish the problem, we show that the integral is what we claimed it was: 

Let 𝐼 = − ∫ 
√𝑎2 − 𝑦2 

𝑑𝑦. 𝑦 
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Now use the trig. substitution: 𝑦 = 𝑎 sin 𝑢: 

⇒ 𝐼 = − ∫ 
𝑎 cos 𝑢 

sin 𝑢 
𝑑𝑢 𝑎 sin 𝑢 

𝑎 cos 𝑢 𝑑𝑢 = −𝑎 ∫ 
cos2 𝑢 

= −𝑎 ∫ 
1 − sin2 𝑢 𝑑𝑢 = −𝑎 ∫ csc 𝑢 − sin 𝑢 𝑑𝑢 sin 𝑢 

= 𝑎 ln(csc 𝑢 + cot 𝑢) − 𝑎 cos 𝑢 

Back substituting we get 𝐼 = −√𝑎2 − 𝑦2+𝑎 ln (𝑎 + √
𝑦
𝑎2 − 𝑦2 

), which is what we claimed 

above. 

Example 1.15. Suppose 𝑦 = 𝑦(𝑥) is a curve in the first quadrant and that the part of the 
curve’s tangent line that lies in the first quadrant is bisected by the point of tangency. Find 
and solve the DE for this curve. 
Solution: The figure shows the piece of the tangent bisected by the point (𝑥, 𝑦) on the

𝑑𝑦 −𝑦 curve. Thus the slope of the tangent = = . This differential equation is separable 𝑑𝑥 𝑥 
and is easily solved: 𝑦 = 𝐶/𝑥. 

x

y

(x, y)

y

2y

x x

1.11 Orthogonal trajectories 

This is mostly taken from the 18.03 Supplementary Notes by Arthur Mattuck. 
Given a one-parameter family of plane curves, its orthogonal trajectories are another one-
parameter family of curves, each one of which is perpendicular to all the curves in the 
original family. 
Example 1.16. Take the family consisting of all circles having center at the origin, i.e., 
the one-parameter family of curves 𝑥2 + 𝑦2 = 𝑐2. We know that all the rays from the origin 
are orthogonal to all the circles. That is the orthogonal trajectories to the circles are all 
the rays (half-lines) starting at the origin. 
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x

y

Blue rays are orthogonal to orange circles wherever they meet. 
The examples below will show how to find orthogonal trajectories using differential equa-
tions. 
Orthogonal trajectories arise in different contexts in applications. For example, if the origi-
nal family represents the lines of force in a gravitational or electrostatic field, its orthogonal 
trajectories represent the equipotentials, the curves along which the gravitational or elec-
trostatic potential is constant. 
To find the orthogonal trajectories for a one-parameter family: 
1. Find the ODE 𝑦′ = 𝑓(𝑥, 𝑦) satisfied by the family.

12. The orthogonal family has DE 𝑦′ = −𝑓((𝑥, 𝑦) . That is, the solutions of this DE are the 

orthogonal trajectories to the original family. 
This works because at any point (𝑥, 𝑦), the original curve has slope 𝑓(𝑥, 𝑦), so the orthogonal 
curve must have slope −1/𝑓(𝑥, 𝑦) (negative reciprocal). 
Example 1.17. Find the orthogonal trajectories to the family of curves 𝑦 = 𝑐 𝑥𝑛, where 𝑛 
is a fixed positive integer and 𝑐 an arbitrary constant. 
Solution: First note: If 𝑛 = 1, the curves are lines through the origin, so the orthogonal 
trajectories should be the circles centered at the origin – this will help check our work. 
Step 1 is to find the first-order DE of the family of curves. The parameter 𝑐 cannot be in 
this DE – it is the parameter in the solutions. 
One common trick is to isolate the 𝑐 and then differentiate with respect to 𝑥. Remember 
when differentiating that 𝑦 is a function of 𝑥. 

isolate 𝑐 derivative
𝑦 = 𝑐 𝑥𝑛 −−−−−−−−→ 𝑦𝑥−𝑛 = 𝑐 −−−−−−−−→ 𝑦′𝑥−𝑛 − 𝑛𝑦𝑥−𝑛−1 = 0. 

𝑦′ = 𝑛𝑦 Now, solving for 𝑦′ gives 𝑥 . This is the DE for our family of curves. 
The DE for the orthogonal trajectories is then 

𝑦′ = − 
𝑥 
𝑛𝑦 

. 

This is separable. After separating the variables and integrating, we have 

𝑥2 + 𝑛𝑦2 = 𝑑. 

We use 𝑑 as the constant of integration because 𝑐 was already used. This solution represents 
a family of ellipses, i.e., for each 𝑑 we have the equation of an ellipse. 
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x

y

𝑛 = 2: Orthogonal families 𝑦 = 𝑐𝑥2, 𝑥2 + 2𝑦2 = 𝑑. 
Note: When 𝑛 = 1, the ellipses are circles centered at the origin, as predicted. 

1.12 Definite integral solutions to IVPs 

Often we can write the solution to an initial value problem using definite integrals. While 
this will not play a major role in 18.03, it can be quite useful when the integrals are hard 
to compute or need to be computed numerically. We illustrate with an example. 
Example 1.18. Solve 𝑦′ = sin(𝑥2) cos(𝑦2), 𝑦(0) = 2. Give the solution implicitly using 
definite integrals. 

Solution: Seperating variables we have cos 
𝑑𝑦 
(𝑦2) 

= sin(𝑥2) 𝑑𝑥. We can write the solution as 

𝑦 𝑥 

∫ cos 
1
(𝑢2) 

𝑑𝑢 = ∫ sin(𝑣2) 𝑑𝑣. 
2 0 

Notes. 
1. We used dummy variables in the integrals because 𝑥, 𝑦 are in the limits. 
2. The 𝑦 integral starts at 𝑦 = 2, i.e., the initial 𝑦 value and the 𝑥 integral starts at 𝑥 = 0, 
i.e., at the initial 𝑥 value. 
3. Differentiating both integrals with respect to 𝑥, using the fundamental theorem of cal-
culus and the chain rule, we get 

1 𝑑𝑦 
cos(𝑦2) 𝑑𝑥 

= sin(𝑥2). 

This is equivalent to the original differential equation. 
4. The solution is given implicitly, i.e., a function of 𝑦 = a function of 𝑥. 
5. Setting 𝑥 = 0 and 𝑦 = 2, the integrals on both sides are 0. That is, the implicit solution 
satisfies the initial condition. 
6. These integrals cannot be computed in terms of our usual elementary functions, but they 
are easily computed numerically. 
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2 Linear systems: input-response models 

2.1 Goals 

1. Be able to classify a first-order differential equation as linear or nonlinear. 

2. Be able to put a first-order linear DE into standard form. 

3. Be able to use the variation of parameters formula to solve a first-order linear DE. 

4. Be able to explain why the superposition principle holds for first-order linear DEs 

5. Be able to use the superposition principle to solve a first-order linear DE by breaking 
the input into pieces. 

2.2 Linear first-order differential equations 

To start with we will define linear first-order equations by their form. Soon we will un-
derstand them by their properties. In particular, you should be on the lookout for the 
statement of the superposition principle and in later topics for the conceptual definition of 
linearity. 

2.2.1 General and standard form of first-order linear differential equations 

Definition. The general first-order linear differential equation has the form 

𝐴(𝑡)𝑑𝑦 
𝑑𝑡 + 𝐵(𝑡)𝑦(𝑡) = 𝐶(𝑡). (3) 

As long as 𝐴(𝑡) ≠ 0 we can simplify the equation by dividing by 𝐴(𝑡). This gives the 
standard form of a first-order linear differential equation. 

𝑑𝑦 
𝑑𝑡 + 𝑝(𝑡)𝑦(𝑡) = 𝑞(𝑡). (4) 

Most often when working with linear DEs we will need to put it in the standard form in 
Equation 4. 

2.2.2 Terminology and notation 

The functions 𝐴(𝑡), 𝐵(𝑡) in Equation 3 and 𝑝(𝑡) in Equation 4 are called the coefficients 
of the differential equation. If 𝐴 and 𝐵 (or 𝑝) are constants, i.e., do not depend on the 
variable 𝑡, then we say the equation is a constant coefficient differential equation. 
Notice that the functions 𝐶(𝑡) or 𝑞(𝑡) on the right-hand side of the equations are not called 
coefficients and do not have to be constant, even in a constant coefficient DE. 
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2.2.3 Homogeneous/inhomogeneous

If 𝐶(𝑡) = 0 in Equation 3 then the resulting equation:

𝐴(𝑡)𝑦′ + 𝐵(𝑡)𝑦 = 0 

is called homogeneous. Otherwise the equation is called inhomogeneous.
Note: Homogeneous is not the same word as homogenous (or homogenized). In homoge-
neous the syllable ’ge’ is pronounced with a long e and is stressed, while the syllable ’mo’
is stressed in homogenous.

2.2.4 Identifying first-order linear equations

The Equations 3 and 4 have the form that 𝑦′ and 𝑦 occur separately and only as first powers.

Example 2.1. The following differential equations are all linear:
Linear: 𝑦′ = 𝑘𝑦; 𝑦′ + 𝑒sin(𝑡)𝑦 = 𝑡2; 𝑦′ + 𝑡2𝑦 = 𝑡3.
And the following are all non-linear:
Non-linear: 𝑦′ + 𝑦2 = 𝑡; (𝑦′)2 + 𝑦 = 𝑡; 𝑦′𝑦 = 𝑡.
Notice that the coefficient functions in a linear DE are not restricted in any way, but that
𝑦 and 𝑦′ never occur in the same term and only have first powers.

Example 2.2. Modeling a population of oryx. A population of oryx has a natural growth
rate 𝑘 in units of 1/year and they are harvested at a constant rate of ℎ oryxes/year. Con-
struct a first-order differential equation modeling the population over time.

An Oryx gazella, also known as a Gemsbok
© Rod Waddington on Flickr. License CC BY-SA. Some rights reserved. 
This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use. 

Solution: Let 𝑦(𝑡) be the oryx population. By natural growth rate we mean that without any
outside influences population grows at a rate proportional to itself, i.e., 𝑦′ = 𝑘𝑦. The
harvesting changes the growth rate by removing oryx at the rate ℎ. Combining the two rates
we have

𝑦′ = 𝑘𝑦 − ℎ. 

https://www.flickr.com/photos/rod_waddington/
https://www.flickr.com/photos/rod_waddington/53075095548/
https://ocw.mit.edu/help/faq-fair-use
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This is a first-order linear DE. In standard form it reads 

𝑦′ − 𝑘𝑦 = −ℎ. 

2.3 Solving first-order linear equations 

2.3.1 The variation of parameters formula 

We start by giving a formula for the solution to a first-order linear DE in standard form. 
The differential equation 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡) has solution 

𝑦ℎ(𝑡) 
𝑑𝑡 + 𝐶𝑦ℎ(𝑡), where 𝑦ℎ(𝑡) = 𝑒− ∫ 𝑝(𝑡) 𝑑𝑡.𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 

𝑞(𝑡) (5) 

The function 𝑦ℎ(𝑡) is the solution to the associated homogeneous equation: 

𝑦ℎ
′ + 𝑝(𝑡)𝑦ℎ = 0. 

Notes: 1. As usual for a first-order DE, the solution is a one parameter family of functions. 
2. The formula in Equation 5 is called the variation of parameters formula. The reason 
for the name comes from the method of deriving it that we give in the last section of this 
topic’s notes. 
Warning: The variation of parameters formula is quite beautiful, but don’t be seduced 
into using it in every situation. Because it involves integration it is, generally speaking, 
our method of last resort. When we focus on constant coefficient equations we will learn 
easier and more informative techniques. 

2.3.2 Examples 

Example 2.3. Solve 𝑦′ + 𝑘𝑦 = 𝑘, where 𝑘 is a constant. 
Solution: In this case 𝑝(𝑡) = 𝑘 is a constant. The homogeneous solution is 

𝑦ℎ(𝑡) = 𝑒− ∫ 𝑘 𝑑𝑡 = 𝑒−𝑘𝑡. 
Therefore, the general solution to the DE is 

𝑘 𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 𝑞(𝑡)/𝑦ℎ(𝑡) 𝑑𝑡 + 𝐶𝑦ℎ(𝑡) = 𝑒−𝑘𝑡 ∫ 𝑒−𝑘𝑡 𝑑𝑡 + 𝐶𝑒−𝑘𝑡 

= 𝑒−𝑘𝑡 ∫ 𝑘𝑒𝑘𝑡 𝑑𝑡 + 𝐶𝑒−𝑘𝑡 = 𝑒−𝑘𝑡 ⋅ 𝑒𝑘𝑡 + 𝐶𝑒−𝑘𝑡 = 1 + 𝐶𝑒−𝑘𝑡 

(Again: don’t get too attached to this technique, later we will learn better techniques for 
solving constant coefficient equations.) 

Example 2.4. Solve 𝑦′ + 𝑘𝑦 = 𝑘𝑡, where 𝑘 is a constant. 
Solution: 𝑦ℎ is the same as in the previous example. Therefore, 

𝑦(𝑡) = 𝑒−𝑘𝑡 ∫ 𝑘𝑡𝑒𝑘𝑡 𝑑𝑡 + 𝐶𝑒−𝑘𝑡 = (𝑡 − 𝑘
1) + 𝐶𝑒−𝑘𝑡. 

(We computed this integral using integration by parts.) 
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2.4 Superposition principle 

We start by defining the terms superposition, input and output. 
Superposition is a fancy way of describing adding together multiples of two functions. 
Examples: 1. The function 𝑞(𝑡) = 3𝑡 + 4𝑡2 is a superposition of 𝑡 and 𝑡2. 
2. If 𝑞1(𝑡) and 𝑞2(𝑡) are functions then 𝑞(𝑡) = 3𝑞1 + 4𝑞2 is a superposition of 𝑞1 and 𝑞2. 
3. If 𝑞1(𝑡) and 𝑞2(𝑡) are functions and 𝑐1 and 𝑐2 are constants then 𝑞(𝑡) = 𝑐1𝑞1 + 𝑐2𝑞2 is a 
superposition of 𝑞1 and 𝑞2. 
We will also say that 𝑞 = 𝑐1𝑞1 + 𝑐2𝑞2 is a linear combination of 𝑞1 and 𝑞2. 
Suppose we have the first-order linear differential equation 

𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡). (6) 

We will often call the 𝑞(𝑡) the input. We will then call 𝑦(𝑡) the output of the system to 
the input 𝑞. Of course, 𝑦(𝑡) is nothing more than the solution to the DE. In Topic 3 we will 
expand on the notions of input and output. 
The superposition principle is easy but extremely important! It concerns the linear DE in 
Equation 6 with different inputs 𝑞 = 𝑞1, 𝑞 = 𝑞2 and 𝑞 = 𝑐1𝑞1 + 𝑐2𝑞2. 
Superposition principle. If

𝑦1 is a solution of the DE 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞1(𝑡)
and 

𝑦2 is a solution of the DE 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞2(𝑡)
then for any constants 𝑐1, 𝑐2 we have 

𝑐1𝑦1 + 𝑐2𝑦2 is a solution of the DE 𝑦′ + 𝑝(𝑡)𝑦 = 𝑐1𝑞1(𝑡) + 𝑐2𝑞2(𝑡). 
Important note: Notice that the coefficient 𝑝(𝑡) is the same for all the DEs. 
In words the superposition principle says: For first-order linear DEs 

If the input 𝑞1 has output 𝑦1 and the input 𝑞2 has output 𝑦2 then the input 
𝑐1𝑞1 + 𝑐2𝑞2 has output 𝑐1𝑦1 + 𝑐2𝑦2 

An even simpler formulation is: 
For linear DEs superposition of inputs gives superposition of outputs. 

2.4.1 Proof of the superposition principle 

First note that saying 𝑦1 is a solution to 𝑦′ + 𝑝𝑦 = 𝑞1 simply means 𝑦1
′ + 𝑝𝑦1 = 𝑞1 and 

likewise for 𝑦2. 
To prove the superposition principle we have to verify that 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 is indeed a 
solution to 𝑦′ + 𝑝𝑦 = 𝑐1𝑞1 + 𝑐2𝑞2. We do this by substitution: 

𝑦′ + 𝑝𝑦 = (𝑐1𝑦1 + 𝑐2𝑦2)′ + 𝑝(𝑐1𝑦1 + 𝑐2𝑦2) 
= 𝑐1𝑦1

′ + 𝑐2𝑦2
′ + 𝑐1𝑝𝑦1 + 𝑐2𝑝𝑦2 

= 𝑐1(𝑦1
′ + 𝑝𝑦1) + 𝑐2(𝑦2

′ + 𝑝𝑦2) 
= 𝑐1𝑞1 + 𝑐2𝑞2. 
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The last equality follows because of our assumption that 𝑦1
′ + 𝑝𝑦1 = 𝑞1 and the similar 

assumption for 𝑦2. Now, looking at the first and last terms in this string of equalities we 
see that we have proved the superposition principle. 
Example 2.5. Solve the linear DE 𝑦′ + 2𝑦 = 2 + 4𝑡. 
Solution: You can easily check that 

𝑦′ + 2𝑦 = 1 has solution 𝑦1 = 1/2 + 𝐶1𝑒−2𝑡 

𝑦′ + 2𝑦 = 𝑡 has solution 𝑦2 = 𝑡/2 − 
1
4 

+ 𝐶2𝑒−2𝑡 

The input 2 + 4𝑡 is a linear combination of the inputs 1 and 𝑡, so by the superposition 
principle the solution to the DE is a linear combination of the outputs 𝑦1, 𝑦2 

𝑦 = 2𝑦1 + 4𝑦2 = 1 + 2𝐶1𝑒−2𝑡 + 2𝑡 − 1 + 4𝐶2𝑒−2𝑡 = 2𝑡 + 𝐶𝑒−2𝑡. 

In the last equality we combined all of the coefficients of 𝑒−2𝑡 into a single symbol 𝐶. 

2.5 An extended example 

Example 2.6. (Heat diffusion.) I put my root beer in a cooler, but after a while it still 
gets warm. Let’s model its temperature using a differential equation. 
Solution: First we need to name the function that measures the temperature: 

Let 𝑥(𝑡) = root beer temperature at time 𝑡. 
The simplest model of this situation is Newton’s law of cooling. It says that the rate 
the temperature of the root beer changes is proportional to the difference between the 
temperatures of the root beer and its environment. In symbols, let 𝐸(𝑡) be the temperature 
of the environment, then (using ‘dot’ notation) 

̇𝑥(𝑡) = −𝑘(𝑥(𝑡) − 𝐸(𝑡)), 

where 𝑘 is the constant of proportionality. Rearranging this equation it becomes 

̇𝑥 + 𝑘𝑥 = 𝑘𝐸(𝑡). 

This is a first-order linear DE in standard form! 

Example 2.7. Suppose the environment in the previous example is 𝐸(𝑡) = 60 + 6𝑡, where
𝑡 is the time in hours from 10 AM. (So the temperature is rising linearly.) To be concrete, 
let’s also assume 𝑥(0) = 32∘F and 𝑘 = 1/3. If I want to drink my root beer before it reaches 
60∘F how much time do I have? 

Solution: Our strategy will be to first solve the initial value problem to find 𝑥(𝑡) and then 
use this to determine at what time 𝑥(𝑡) will be 60. 
From the previous example we know that 

̇ so, 𝑥 + 𝑘𝑥 = 60𝑘 + 6𝑘𝑡. 𝑥 + 𝑘𝑥 = 𝑘𝐸 ̇ 

We could apply the variation of parameters formula directly to this, but the superposition 
principle will do all the work for us. The input 60𝑘+6𝑘𝑡 is a superposition of the inputs from 
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Examples 2.3 and 2.4. Therefore, the solution (output) is a superposition of the outputs 
from those examples. We know: 
From Example 2.3: ̇ .𝑥 + 𝑘𝑥 = 𝑘 has solution 1 + 𝐶𝑒−𝑘𝑡 

From Example 2.4: ̇ .𝑥 + 𝑘𝑥 = 𝑘𝑡 has solution 𝑡 − 1/𝑘 + 𝐶𝑒−𝑘𝑡 

Therefore, ̇𝑥 + 𝑘𝑥 = 60𝑘 + 6𝑘𝑡 has solution 

𝑥(𝑡) = 60(1 + 𝐶𝑒−𝑘𝑡) + 6(𝑡 − 1/𝑘 + 𝐶𝑒−𝑘𝑡) = 60 + 6𝑡 − 6/𝑘 + 𝐶�̃� −𝑘𝑡. 

Here we combined all the coefficients of 𝑒−𝑘𝑡 into one constant 𝐶 .̃ Now we set 𝑘 = 1/3 to 
get 

𝑥(𝑡) = 42 + 6𝑡 + 𝐶�̃� −𝑡/3. 
Finally, we use the initial condition to find 𝐶 .̃ 

𝑥(0) = 42 + 𝐶 ̃ = 32, so 𝐶 ̃ = −10. 

We’ve found the temperature of the root beer in my cooler is 

𝑥(𝑡) = 42 + 6𝑡 − 10𝑒−𝑡/3. 

To answer the question we need to compute when 𝑥(𝑡) = 60. Probably the easiest way to 
do this is to plot 𝑥(𝑡) and see where it crosses 𝑥 = 60. We see this is at about 𝑡 = 3.5. I 
have until about 1:30 pm to enjoy my drink. 

0 1 2 3 4 5
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Plot of 𝑥(𝑡): 𝑥(𝑡) = 60 at approximately 𝑡 = 3.5. 
Remark redux: We hasten to point out once again that later we will learn faster and nicer 
techniques for solving equations like this. Techniques involving integration are generally last 
resorts, to be used when all else has failed. 

2.6 Nonlinear equations don’t satisfy the superposition principle 

The superposition principle is the main reason we focus on linear differential equations. 
As we have seen in a few examples, it allows us to break the input of a linear equation 
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into pieces and construct the full solution out of the solutions to the pieces. In fact, the 
superposition principle only holds for linear DEs. We will illustrate this by showing it does 
not hold for a given nonlinear DE. 
Example 2.8. Show that superposition does not hold for the nonlinear equation 

𝑦′ + 𝑦2 = 𝑞(𝑡). 

Solution: We can do this abstractly without actually solving the DE! Suppose 𝑦1
′ +𝑦1

2 = 𝑞1 
and 𝑦2

′ + 𝑦2
2 = 𝑞2. If superposition held for this equation then we would have 

(𝑦1 + 𝑦2)′ + (𝑦1 + 𝑦2)2 = 𝑞1 + 𝑞2. 

But it’s easy to see this equation is not true: 

(𝑦1 + 𝑦2)′ + (𝑦1 + 𝑦𝑦)2 = 𝑦1
′ + 𝑦2

′ + 𝑦1
2 + 2𝑦1𝑦2 + 𝑦2

2 

= 𝑦1 + 𝑦1
2 + 𝑦2 + 𝑦2

2 + 2𝑦1𝑦2 

= 𝑞1 + 𝑞2 + 2𝑦1𝑦2 

≠ 𝑞1 + 𝑞2. 

What went wrong here? One way to say it is that superposition works for linear equations 
because the terms in the sum do not really interact. That is, in expressions like (𝑦1 + 𝑦2)′ = 
𝑦1

′ + 𝑦2
′ and 𝑝(𝑦1 + 𝑦2) = 𝑝𝑦1 + 𝑝𝑦2 the effect on 𝑦1 is exactly what it would be if 𝑦2 was 

not there. On the other hand in the expression (𝑦1 + 𝑦2)2 = 𝑦1
2 + 2𝑦1𝑦2 + 𝑦2

2 the term 2𝑦1𝑦2 
represents an interaction between 𝑦1 and 𝑦2. That is, the effect of squaring on 𝑦1 is affected 
by the presence of 𝑦2. 

2.7 Definite integral solutions to linear initial value problems 

Consider the linear IVP 
𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡); 𝑦(0) = 𝑦0. 

We can solve this equation by two methods. 
Method 1: Use the variation of parameters formula in Equation 5 to find the general 
solution and then use the initial condition to solve for 𝐶. 
Method 2: Use definite integrals in the variation of parameters formula to give the solution 
directly. We show how this is done: Take 

𝑝(𝑢) 𝑑𝑢 𝑡0𝑦ℎ(𝑡) = 𝑒− ∫𝑡 

. 

(This is chosen so that 𝑦ℎ(0) = 1.) Then 

𝑡 𝑞(𝑢) 𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 𝑦ℎ(𝑢) 
𝑑𝑢 + 𝑦0 ⋅ 𝑦ℎ(𝑡).

0 

Notes. 1. This form of the solution is well-suited for numerical computation. 
2. We stated the problem with initial condition at 𝑡 = 0, but we could have been more 
general and take 𝑦(𝑡0) = 𝑦0. 
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Here is an example that illustrates both these points. Note that we don’t compute the 
integral exactly, but we can still use the computer to compute approximate values of the 
solution. 
Example 2.9. Solve the initial value problem 𝑥2𝑦′ + 𝑥𝑦 = sin 𝑥; 𝑦(1) = 𝑦0. 
Solution: First we need to convert the DE to standard form: 

sin 𝑥 𝑦′ + 1 .𝑥𝑦 = 𝑥2 

The homogeneous solution is 
1𝑦ℎ = 𝑒− ∫𝑥 
𝑢 𝑑𝑢 

𝑥
1 .1 = 

So the variation of parameters formula gives 
𝑥 1 sin 𝑢 𝑦 = 𝑑𝑢 + 

𝑦0
𝑥 ∫ 𝑢 𝑥 . 

1 

There is no closed form for the integral, but we can still use calculus to know a lot about 
this integral and to compute its value to any desired degree of accuracy. Here is a plot we 
made in Matlab (actually Octave) using its numerical integration function quad(). The 
initial value is 𝑦0 = 1. 

1 sin 𝑢 Plot of 𝑦 = 𝑥 (∫1
𝑥 

𝑢 𝑑𝑢 + 1) 

2.8 Proof of variation of parameters formula 

(You are not responsible for knowing this yet. We will come back to it when we study 
systems of linear equations.) 
One proof that the Equation 5 solves the DE in Equation 4 is by substitution. It’s not 
difficult to plug the formula for 𝑦(𝑡) into the differential equation and check that it works. 
Of course, this is not a very satisfying proof because it fails to answer the question of how 
we might arrive at such a formula in the first place. Here is another proof that gives more 
insight. 
First we solve the homogeneous equation 

𝑦′ + 𝑝(𝑡)𝑦 = 0. 

This equation is separable and easy to solve. We do the algebra quickly: The equation can 
be written as 𝑦′ = −𝑝(𝑡)𝑦. Separating variables gives: 𝑑𝑦/𝑦 = −𝑝(𝑡)𝑑𝑡. Integrating gives: 
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ln(𝑦) = − ∫ 𝑝(𝑡) 𝑑𝑡+𝐶. Now exponentiation gives the general solution to the homogeneous 
equation: 

𝑦(𝑡) = 𝐶𝑒− ∫ 𝑝(𝑡) 𝑑𝑡 

To avoid writing integrals repeatedly we let 𝑦ℎ(𝑡) = 𝑒− ∫ 𝑝(𝑡) 𝑑𝑡. So the general homogeneous 
solution is 𝑦(𝑡) = 𝐶𝑦ℎ(𝑡). 
Now consider the inhomogeneous equation 

𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡). 

This is not separable, so we need to do something else. The philosophy behind variation of 
parameters is to use what we already know. What we know is the homogeneous solution, 
so we guess that the solution is of the form 

𝑦(𝑡) = 𝑣(𝑡)𝑦ℎ(𝑡). 

What we’ve done is to turn the parameter 𝐶 in the homogeneous solution into a variable 𝑣 
which depends on 𝑡. Hence the name variation of parameters. 
Once we’ve guessed a solution, we substitute it into the inhomogeneous equation to see if 
we can solve for a 𝑣(𝑡) that works. The left-hand side of the inhomogeneous equation is 

𝑦′ + 𝑝(𝑡)𝑦 = (𝑣(𝑡)𝑦ℎ(𝑡))′ + 𝑝(𝑡)𝑣(𝑡)𝑦ℎ(𝑡) 
= 𝑣′𝑦ℎ + 𝑣𝑦ℎ

′ + 𝑝𝑣𝑦ℎ 

= 𝑣′𝑦ℎ + 𝑣(𝑦ℎ
′ + 𝑝𝑦ℎ) 

= 𝑣′𝑦ℎ (since 𝑦ℎ
′ + 𝑝𝑦ℎ = 0). 

Equating the left-hand side with the right-hand side we have 𝑣′(𝑡)𝑦ℎ(𝑡) = 𝑞(𝑡). This is easy 
to solve for 𝑣(𝑡): 

𝑣′(𝑡) = 𝑞(𝑡)/𝑦ℎ(𝑡) ⇒ 𝑣(𝑡) = ∫ 
𝑞(𝑡)
𝑦ℎ(𝑡) 

𝑑𝑡 + 𝐶. 

Now we put this back into our definition of 𝑦(𝑡) 

𝑦(𝑡) = 𝑣(𝑡)𝑦ℎ(𝑡) = 𝑦ℎ(𝑡) (∫ 
𝑞(𝑡) 

𝑦ℎ(𝑡) 
𝑑𝑡 + 𝐶 𝑦ℎ(𝑡).𝑦ℎ(𝑡) 

𝑑𝑡 + 𝐶) = 𝑦ℎ(𝑡) ∫ 
𝑞(𝑡) 

This is the variation of parameters formula we wanted to derive. 

3 Input-response models continued 

3.1 Goals 

1. Be able to use the language of systems and signals. 

2. Be familiar with the physical examples in these notes. 
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3.2 Introduction 

In ES.1803 we will use the engineering language of systems and signals. This topic is 
mostly devoted to learning the vocabulary for this. Our strategy will be to ingrain the 
words system, signal, input, output (or response) by looking at a series of examples. 
It is important to note that these are not mathematical terms and have no formal math-
ematical definition. Rather, they are engineering terms that will help us organize our 
thinking when we talk about specific examples. For example, for any given physical model 
the choice of what to call the input is somewhat arbitrary in the mathematical sense, but 
usually clear in the engineering sense. What this means in practice is that whenever we 
need to be mathematically precise, we’ll have to say explicitly what we mean by system, 
input and output. Nonetheless, we’ll find the language quite useful. And, in fact, there will 
be very little confusion when we use these terms. 
Another important point is that, in general we will use this language only for constant 
coefficient equations like any of the following: 

𝑦′ + 3𝑦 = 𝑐𝑜𝑠(𝑡), 
𝑦′ + 𝑘𝑦 = 𝑞(𝑡), where 𝑘 is a constant, 
𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝐹 (𝑡), where 𝑚, 𝑏, 𝑘 are constants. 

3.3 Signals 

By signal we will simply mean any function of time. 
Familiar examples are sound, which is a time varying pressure wave; AM radio signals, 
where the amplitude of the radio wave varies in time; and FM radio signals, where the 
frequency of the radio wave varies in time. All of these examples agree with the common 
definition of signal as something conveying information over time. 
In ES.1803 two recurring examples will be the position of a mass oscillating at the end of a 
spring or the temperature of a body over time. Both of these are clearly functions of time, 
and, if you think about it, both are conveying information. 

3.4 System, input, output (response) by example 

We’ll now give a series of examples to try to draw out how we use these terms. Remember, 
even though these choices are natural, they are physical and not mathematical. The key 
point is that in physical setups we can choose the input and response to be what makes the 
most sense physically. This needs to be fully specified if there is any chance of confusion. 
Example 3.1. Recall the example of my root beer from Topic 2. We have the following 
model. 

𝑥′ + 𝑘𝑥 = 𝑘𝐸(𝑡), (7) 

where 𝑥(𝑡) is the temperature of the root beer over time and 𝐸(𝑡) was the temperature of 
the environment. Let’s describe what we’ll choose to be the input, output and system for 
this setup. 
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Input signal: I’m interested in how the temperature of my root beer is affected by the 
environment. With this in mind it is natural to consider 𝐸(𝑡) to be the input signal. In 
general we will shorten this by saying that 𝐸(𝑡) is the input. 
Output signal or response of the system: The temperature of the root beer changes in 
response to the input 𝐸(𝑡). We’re interested in the function 𝑥(𝑡), so we call it the response 
of the system to the input. We usually simplify this by calling it the response or output. 
System: The system is the ‘mechanism’ that that converts the input to the output. In 
this case the mechanism is the root beer together with the insulation quality of the cooler 
(measured by 𝑘) Mathematically the system is modeled by the differential Equation 7. 
Think: What happens to 𝑘 as the insulation quality of the cooler gets better? 

Example 3.2. A spring-mass system. Suppose we have a mass on the end of a spring being 
pushed by an external force 𝐹 (𝑡). We’ll assume there is no damping, so between Newton 

and Hooke we have the following DE modeling this system 𝑚𝑑2𝑥 = −𝑘𝑥+𝐹(𝑡). In ES.1803 𝑑𝑡2 
we will typically write this with all the 𝑥 terms on the left-hand side and 𝐹 (𝑡) on the right: 

𝑚𝑑
𝑑𝑡 

2𝑥
2 + 𝑘𝑥 = 𝐹(𝑡), (8) 

where 𝑚=mass, 𝑘=spring constant, and 𝑥(𝑡)=displacement of mass from equilibrium. The 
following choices seem natural. 
System: The spring and mass along with the linkage to the force. 
Input: The external force 𝐹 (𝑡). 
Output or response: 𝑥(𝑡) the position of the mass over time. 
The following figures illustrate this with zero and nonzero input. 

m

k

System

Output = x(t) Input = 0

m

k

System

Output = x(t) Input = F (t)

F (t)

Systems with 0 and nonzero input 

Example 3.3. Money in the bank. Let 𝐴(𝑡) be the amount of money in my retirement 
account at time 𝑡. Suppose also, that interest is paid continuously at the rate 𝑟 in units of 
1/year and that I’m depositing into the account at the rate of 𝑞(𝑡) in units of $/year. While 
my son was in college 𝑞(𝑡) was small. When I retire it will be negative! 
Without any deposits or withdrawals 𝐴(𝑡) grows exponentially, modeled by 𝐴′ = 𝑟𝐴. If we 
include the deposit rate 𝑞(𝑡), we have 𝐴′ = 𝑟𝐴 + 𝑞(𝑡). We write this with all the 𝐴 terms 
on the left and the input 𝑞(𝑡) on the right. 

𝐴′ − 𝑟𝐴 = 𝑞(𝑡). 

Notice that for exponential growth the sign on the 𝑟𝐴 term is negative. For this situation 
we will say: 
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System: Money in the bank earning interest. 
Input: The deposit rate 𝑞(𝑡). 
Output or response: The amount of money in the bank 𝐴(𝑡). 

3.4.1 Relationship between engineering and mathematical language 

We summarize the relationship between the engineering language and the mathematical 
language as follows: 

Physical: system/input produces a response (output) ↔ Model: DE has a solution 

3.4.2 Mathematical input 

This is a math class and we may have the differential equation 

𝑦′ + 𝑘𝑦 = 𝑞(𝑡) 

that did not arise from a modeling physical situation. In that case, we will allow ourselves 
to call the right-hand side 𝑞(𝑡) the input and the solution of the DE 𝑦(𝑡) the output or 
response. We will think of 𝑞(𝑡) as the mathematical input. 

3.5 Worked examples 

We’ll now work some examples introducing several physical setups that we’ll use regularly 
in this class. 
Example 3.4. Mixing tanks. Suppose we have a tank which initially contains 60 liters of 
pure water. We start adding brine with a concentration of 3 g/liter at the rate of 2 liter/min. 
While we do this solution leaves the tank at the rate of 3 liter/min. (So the tank will be 
empty after 60 minutes.) 
Assuming instantaneous mixing, find the concentration 𝐶(𝑡) of salt in the tank as a function 
of time. 

3 g
l · 2

l
min = 6 g

min

3 l
min

Mixing tank with inflow and outflow. 
Solution: One key lesson in this example is to work with the amount of salt in the tank 
not the concentration. This is because when you combine solutions the amounts add, but 
the concentrations do not. At the end we can go back and compute the concentration from 
the amount and the volume. 
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Let 𝑡 be the time in minutes and let 𝑥(𝑡) be the amount of salt in the tank at time 𝑡 in 
grams. Since 2 liter/min. is entering the tank and 3 liter/min. is leaving the tank, the tank 
is emptying at the rate of 1 liter/min., i.e., the volume of solution in the tank is given by 
𝑉 (𝑡) = 60 − 𝑡 liters. The concentration is 𝐶(𝑡) = 𝑥(𝑡)/𝑉 (𝑡). 
We know that 

𝑥′(𝑡) = rate salt enters the tank − rate salt leaves the tank. 

We can easily compute these rates: 

g 2 
liter gRate-in = 3 ⋅ = 6liter min min 

= 3 
liter 𝑥(𝑡) g 3𝑥 gRate-out ⋅ = min 𝑉 (𝑡) liter 60 − 𝑡 min , 

3𝑥 Putting this together we have the DE 𝑥′(𝑡) = 6 − 60 − 𝑡. As usual we move all the 𝑥 terms 
to the left and get the first-order linear initial value problem 

3𝑥′(𝑡) + 𝑥(0) = 0.60 − 𝑡 𝑥 = 6; 

This is a first-order linear equation and we can solve it using the variation of parameters 
formula. We could use the method of finding the general solution and then using the initial 
condition to find 𝐶. Instead, we’ll practice the definite integral method. First we find the 
homogenous solution: 

𝑥ℎ(𝑡) = 𝑒− ∫0
𝑡 3/(60−𝑢) 𝑑𝑢 = 𝑒3 ln(60−𝑢)|𝑡0 = 

(60 − 𝑡)3 
.603 

The variation of parameters formula (in definite integral form) is 

𝑡 𝑞(𝑢) 𝑥(𝑡) = 𝑥ℎ(𝑡) (∫ 𝑥ℎ(𝑢) 
𝑑𝑢 + 𝑥0)

0 

(60 − 𝑡)3 6= (∫
𝑡 

603 (60 − 𝑢)3/603 𝑑𝑢 + 0) 
0 
𝑡 1= 6(60 − 𝑡)3 ∫ (60 − 𝑢)3 𝑑𝑢 

0 
𝑡 1= 6(60 − 𝑡)3 [2(60 − 𝑢)2 ]
0 

= 3(60 − 𝑡) − 
3(60 − 𝑡)3 

.602 

To answer the question asked: 

𝑥(𝑡)
𝑉 (𝑡) 

= 3 − 
3(60 − 𝑡)2

𝐶(𝑡) = .602 

Of course, this model is only valid until 𝑡 = 60 when the tank will be empty. 
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Example 3.5. A useful format. Consider the exponential growth equation 𝑥′ = 3𝑥 with 
initial time 𝑡 = 5 and initial condition 𝑥(5) = 2. A convenient way to write the solution to 
initial value problem is 

𝑥(𝑡) = 2𝑒3(𝑡−5). 
This is easy to check by substitution. The point is that since the initial condition is given 
for 𝑡 = 5 it’s easiest to write the solution in terms of (𝑡 − 5). This way the coefficient in 
front of the exponential is just the initial value of 𝑥. 
Example 3.6. Circuits. (Example of discontinuous input.) An 𝐿𝑅 circuit is a simple 
circuit with an inductor 𝐿, a resistor 𝑅 and voltage source 𝑉 . The differential equation 
that models the current 𝑖 is 

𝐿𝑑𝑖 
𝑑𝑡 + 𝑅𝑖 = 𝑉 . 

Consider the circuit shown. Assume compatible units and 𝐿 = 2, 𝑅 = 4 and 𝑉 = 8. Also 
assume that before the switch is closed there is no current in the circuit. At 𝑡 = 0 the 
switch is moved to position 𝐴. Then at 𝑡 = 1 the switch is moved to position 𝐵. 

−
+

V

L

R

i

A

B

Find the current 𝑖(𝑡) by writing and solving a differential equation that models this system. 
Solution: Each time the switch is moved the input voltage changes. We can write the 
initial value problem as 

for 0 < 𝑡 < 1 2𝑖′ + 4𝑖 = {8 , with IC 𝑖(𝑡) = 0 for 𝑡 < 0.0 for 1 < 𝑡 

The format of the input above is called cases format. Since the input is given in cases we 
must solve in cases. 
Case (i) For 0 < 𝑡 < 1 the DE is: 2𝑖′ + 4𝑖 = 8; 𝑖(0) = 0. 
We can solve this using the variation of parameters formula (or by inspection), later we will 
learn easier techniques: 𝑖(𝑡) = 2 + 𝐶𝑒−2𝑡. Using the initial condition: 𝑖(0) = 0 = 2 + 𝐶, so 
𝐶 = −2. Thus, 𝑖(𝑡) = 2 − 2𝑒−2𝑡. 
To get the initial condition for the next case we find the value of 𝑖(𝑡) at the end of this 
interval: 𝑖(1) = 2 − 2𝑒−2. 
Case (ii) For 1 < 𝑡 the DE is: 2𝑖′ + 4𝑖 = 0; 𝑖(1) = 2 − 2𝑒−2. 
Following the format in Example 3.5 we can write the solution to this as 
𝑖(𝑡) = 𝑖(1)𝑒−2(𝑡−1) = (2 − 2𝑒−2)𝑒−2(𝑡−1). 
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Writing the full solution in cases format we have: 

⎧0 for 𝑡 < 0 {
𝑖(𝑡) = 2 − 2𝑒−2𝑡 for 0 < 𝑡 < 1 ⎨{⎩(2 − 2𝑒−2)𝑒−2(𝑡−1) for 1 < 𝑡 

Here’s a graph of this solution. 

t

i(t)
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4 Complex numbers and exponentials 

4.1 Goals 

1. Do arithmetic with complex numbers. 

2. Define and compute: magnitude, argument and complex conjugate of a complex num-
ber. 

3. Be fluent in the use of Euler’s formula. 

4. Write sine and cosine in terms of complex exponentials (‘inverse Euler formulas’). 

5. Convert complex numbers back and forth between rectangular and polar form. 

6. Compute 𝑛th roots of complex numbers. 

4.2 Motivation 

The equation 𝑥2 = −1 has no real solutions, yet in ES.1803 we will see that this equation 
arises naturally and we will want to know its roots. As you may already know, we’ll 
introduce a new symbol for the roots and call it a complex number. 
Definition: The symbols ±𝑖 will stand for the solutions to the equation 𝑥2 = −1. We 
will call these new numbers complex numbers. We will also write 

√
−1 = ±𝑖 
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Notes: 1. 𝑖 is also called an imaginary number. This is a historical term. These are 
perfectly valid numbers that don’t happen to lie on the real number line. 
2. Our motivation for using complex numbers is not the same as the historical motivation. 
Mathematicians were willing to say 𝑥2 = −1 had no solutions. The problem was in the 
formula for the roots of cubics. Where square roots of negative numbers appeared even for 
the real roots of cubics. 
3. Engineers typically use 𝑗 instead of 𝑖. We’ll follow mathematical custom and use 𝑖 in 
ES.1803. 

We’re going to look at the algebra, geometry and, most important for us, the exponentiation 
of complex numbers. 
Before starting a systematic exposition of complex numbers we’ll work a simple example. 
If the explanation is not immediately clear, it should become clear as we learn more about 
this topic. 
Example 4.1. Solve the equation 𝑟2 + 𝑟 + 1 = 0 

Solution: We can apply the quadratic formula to get 

−1 ± 
√

1 − 4 −1 ± 
√

−3 −1 ± 
√

3
√

−1 −1 ± 
√

3 𝑖 𝑟 = = = = .2 2 2 2 

Think: Do you know how to solve quadratic equations by completing the square? This is 
how the quadratic formula is derived and is well worth knowing! 

4.2.1 Fundamental theorem of algebra 

One of the reasons for using complex numbers is because, by allowing complex roots, every 
polynomial has exactly the expected number of roots. 
Fundamental theorem of algebra. A polynomial of degree 𝑛 has exactly 𝑛 complex 
roots (repeated roots are counted with multiplicity.) 
Example 4.2. We’ll illustrate what we mean by this with a few examples. 
1. The polynomial 𝑟2 + 3𝑟 + 2 factors as (𝑟 + 1)(𝑟 + 2) therefore its roots are 𝑟 = −1 and
𝑟 = −2. It is a second-order polynomial with 2 roots. 
2. The polynomial 𝑟2 + 6𝑟 + 9 factors as (𝑟 + 3)(𝑟 + 3). We say it has the roots −3 and −3. 
That is it has two roots that happen to be the same. We will also say that −3 is a root of 
this polynomial with multiplicity 2. 
3. The polynomial (𝑟 + 1)(𝑟 + 2)(𝑟 + 3)2(𝑟2 + 1)2 has degree 8. Its 8 roots are 

−1, −2, −3, −3, 𝑖, 𝑖, −𝑖, −𝑖. 

This example illustrates an important point about polynomials: we prefer to have them 
in factored form. I think you’ll agree that you wouldn’t want to find the roots of the 
polynomial 

𝑟8 + 9𝑟7 + 31𝑟6 + 57𝑟5 + 77𝑟4 + 87𝑟3 + 65𝑟2 + 39𝑟 + 18. 
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Unless you happened to notice that it was the same as the factored polynomial in Example 
4.2(3)! Fortunately, computing packages like Matlab or Octave allow us to find these roots 
numerically for high order polynomials. 

4.3 Terminology and basic arithmetic 

Definitions. 

• Complex numbers are defined as the set of all numbers 

𝑧 = 𝑥 + 𝑦𝑖, 

where 𝑥 and 𝑦 are real numbers. 

• We denote the set of all complex numbers by C. (On the blackboard we will usually 
write ℂ –this font is called blackboard bold.) 

• We call 𝑥 the real part of 𝑧. This is denoted by 𝑥 = Re(𝑧). 

• We call 𝑦 the imaginary part of 𝑧. This is denoted by 𝑦 = Im(𝑧). 

Note well: The imaginary part of 𝑧 is a real number. It DOES NOT include the 𝑖. 

The basic arithmetic operations follow the standard rules. All you have to remember is that
𝑖2 = −1. We will go through these quickly using some simple examples. For ES.1803 it is 
essential that you become fluent with these manipulations. 

• Addition: (3 + 4𝑖) + (7 + 11𝑖) = 10 + 15𝑖 

• Subtraction: (3 + 4𝑖) − (7 + 11𝑖) = −4 − 7𝑖 

• Multiplication: (3 + 4𝑖)(7 + 11𝑖) = 21 + 28𝑖 + 33𝑖 + 44𝑖2 = −23 + 61𝑖. Here we have 
used the fact that 44𝑖2 = −44. 

Before talking about division and absolute value we introduce a new operation called con-
jugation. It will prove useful to have a name and symbol for this, since we will use it 
frequently. 
Complex conjugation is denoted with a bar and defined by 

𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝑦. 

If 𝑧 = 𝑥 + 𝑖𝑦 then its conjugate is 𝑧 = 𝑥 − 𝑖𝑦 and we read this as “z-bar = 𝑥 − 𝑖𝑦”. 
Example 4.3. 3 + 5𝑖 = 3 − 5𝑖. 
The following is a very useful property of conjugation. We will use it in the next example 
to help with division. 
Useful property of conjugation: If 𝑧 = 𝑥 + 𝑖𝑦 then 𝑧𝑧 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2. 

3 + 4𝑖 Example 4.4. (Division.) Write 1 + 2𝑖 in the standard form 𝑥 + 𝑖𝑦. 
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Solution: We use the useful property of conjugation to clear the denominator: 

3 + 4𝑖 3 + 4𝑖 1 − 2𝑖 11 − 2𝑖 11= ⋅ = 5 
− 2

5𝑖.1 + 2𝑖 1 + 2𝑖 1 − 2𝑖 = 5 

In the next section we will discuss the geometry of complex numbers, which give some 
insight into the meaning of the magnitude of a complex number. For now we just give the 
definition. 
Definition. The magnitude of the complex number 𝑥 + 𝑖𝑦 is defined as 

|𝑧| = √𝑥2 + 𝑦2. 

The magnitude is also called the absolute value or norm or modulus. 
Example 4.5. The norm of 3 + 5𝑖 = 

√9 + 25 = 
√

34. 
Note this really well: The norm is the sum of 𝑥2 and 𝑦2 it does not include the 𝑖! 
Therefore, it is always positive. 

4.4 The complex plane and the geometry of complex numbers 

Because it takes two numbers 𝑥 and 𝑦 to describe the complex number 𝑧 = 𝑥 + 𝑖𝑦 we 
can visualize complex numbers as points in the 𝑥𝑦-plane. When we do this we call it the 
complex plane. Since 𝑥 is the real part of 𝑧 we call the 𝑥-axis the real axis. Likewise, the 
𝑦-axis is the imaginary axis. 

Imaginary axis 

𝑟 

𝑥 

𝑦 
𝜃 

Imaginary axis 
𝑧 = 𝑥 + 𝑖𝑦 = (𝑥, 𝑦) 𝑧 = 𝑥 + 𝑖𝑦 = (𝑥, 𝑦) 

𝑟 

𝜃 Real axis Real axis −𝜃 
𝑟 

𝑧 = 𝑥 − 𝑖𝑦 = (𝑥, −𝑦) 

4.5 Polar coordinates 

In the figures above we have marked the length 𝑟 and polar angle 𝜃 of the vector from the 
origin to the point 𝑧 = 𝑥 + 𝑖𝑦. These are the same polar coordinates you saw in 18.02. 
There are a number of synonyms for both 𝑟 and 𝜃 

𝑟 = |𝑧| = magnitude = length = norm = absolute value = modulus 
𝜃 = Arg(𝑧) = argument of 𝑧 = polar angle of 𝑧 

As in 18.02 you should be able to visualize polar coordinates by thinking about the distance
𝑟 from the origin and the angle 𝜃 with the 𝑥-axis. 
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Example 4.6. In this example we make a table of 𝑧, 𝑟 and 𝜃 for some complex numbers. 
Notice that 𝜃 is not uniquely defined since we can always add a multiple of 2𝜋 to 𝜃 and still 
be at the same point in the plane. 
𝑧 = 𝑎 + 𝑏𝑖 𝑟 = |𝑧| 𝜃 = arg(𝑧) 

1 1 0, 2𝜋, 4𝜋, … Argument = 0, means 𝑧 is along the positive 𝑥-axis
𝑖 1 𝜋/2, 𝜋/2 + 2𝜋 … Argument = 𝜋/2, means 𝑧 is along the positive 𝑦-axis 

1 + 𝑖 
√

2 𝜋/4, 𝜋/4 + 2𝜋 … Argument = 𝜋/4, means 𝑧 is along the ray at 45∘ to the 𝑥-axis 

Real axis 

Imaginary axis
𝑖 

1 

1 + 𝑖 

4.6 Euler’s Formula 

Euler’s (pronounced ’oilers’) formula connects complex exponentials, polar coordinates and 
sines and cosines. It turns messy trig identities into tidy rules for exponentials. We will use 
it a lot. 
The formula is the following: 

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃). (9) 

There are many ways to approach Euler’s formula. Our approach is to simply take Equation 
9 as the definition of complex exponentials. This is mathematically legal, but does not show 
that it’s a good definition. To do that, we need to show that 𝑒𝑖𝜃 obeys all the rules we expect 
of an exponential. To do that, we go systematically through the properties of exponentials 
and check that they hold for complex exponentials. 

4.6.1 𝑒𝑖𝑡 behaves like a true exponential 

1. 𝑒𝑖𝑡 differentiates as expected: 𝑑𝑒
𝑑𝑡 

𝑖𝑡 = 𝑖𝑒𝑖𝑡. 
Proof. This follows directly from the definition: 

𝑑𝑒𝑖𝑡 𝑑 = 𝑑𝑡 (cos(𝑡) + 𝑖 sin(𝑡)) = − sin(𝑡) + 𝑖 cos(𝑡) = 𝑖(cos(𝑡) + 𝑖 sin(𝑡)) = 𝑖𝑒𝑖𝑡.𝑑𝑡 

2. 𝑒𝑖⋅0 = 1. 
Proof. 𝑒𝑖⋅0 = cos(0) + 𝑖 sin(0) = 1. 

3. The usual rules of exponents hold: 𝑒𝑖𝑎𝑒𝑖𝑏 = 𝑒𝑖(𝑎+𝑏). 
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Proof. This relies on the cosine and sine addition formulas. 

𝑒𝑖𝑎 ⋅ 𝑒𝑖𝑏 = (cos(𝑎) + 𝑖 sin(𝑎)) ⋅ (cos(𝑏) + 𝑖 sin(𝑏)) 
= cos(𝑎) cos(𝑏) − sin(𝑎) sin(𝑏) + 𝑖 (cos(𝑎) sin(𝑏) + sin(𝑎) cos(𝑏)) 
= cos(𝑎 + 𝑏) + 𝑖 sin(𝑎 + 𝑏) = 𝑒𝑖(𝑎+𝑏). 

4. The definition of 𝑒𝑖𝜃 is consistent with the power series for 𝑒𝑥. 
Proof. To see this we have to recall the power series for 𝑒𝑥, cos(𝑥) and sin(𝑥). They are 

𝑒𝑥 = 1 + 𝑥 + 𝑥2/2! + 𝑥3/3! + 𝑥4/4! + … 
cos(𝑥) = 1 − 𝑥2/2! + 𝑥4/4! − 𝑥6/6! + … 
sin(𝑥) = 𝑥 − 𝑥3/3! + 𝑥5/5! + … 

Now we can write the power series for 𝑒𝑖𝜃 and then split it into the power series for sine 
and cosine: 

∞
𝑒𝑖𝜃 (𝑖𝜃)𝑛 

= ∑ 𝑛!0 
∞ ∞ 𝜃2𝑘+1 

= ∑(−1)𝑘 𝜃2𝑘 
+ 𝑖 ∑(−1)𝑘 

0 (2𝑘)! 0 (2𝑘 + 1)! 
= cos(𝜃) + 𝑖 sin(𝜃). 

So the Euler formula definition is consistent with the usual power series for 𝑒𝑧. 
1-4 should convince you that 𝑒𝑖𝜃 behaves like an exponential. 

4.6.2 Complex exponentials and polar form 

Now let’s turn to the relation between polar coordinates and complex exponentials. 
Suppose 𝑧 = 𝑥 + 𝑖𝑦 has polar coordinates 𝑟 and 𝜃. That is, we have 𝑥 = 𝑟 cos(𝜃) and
𝑦 = 𝑟 sin(𝜃). Thus we get the important relationship 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟 cos(𝜃) + 𝑖𝑟 sin(𝜃) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) = 𝑟𝑒𝑖𝜃. 

This is so important you shouldn’t proceed without understanding it. We also record it 
without the intermediate equation. 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃. (10) 

Because 𝑟 and 𝜃 are the polar coordinates of (𝑥, 𝑦) we call 𝑧 = 𝑟𝑒𝑖𝜃 the polar form of 𝑧. 

4.6.3 Magnitude, argument, conjugate, multiplication and division are easy in 
polar form 

Magnitude. |𝑒𝑖𝜃| = 1. 

Proof. |𝑒𝑖𝜃| = | cos(𝜃) + 𝑖 sin(𝜃)| = √cos2(𝜃) + sin2(𝜃) = 1. 
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In words, this says that 𝑒𝑖𝜃 is always on the unit circle –this is useful to remember! 
Likewise, if 𝑧 = 𝑟𝑒𝑖𝜃 then |𝑧| = 𝑟. You can calculate this, but it should be clear from the 
definitions: |𝑧| is the distance from 𝑧 to the origin, which is exactly the same definition as 
for 𝑟. 
Argument. If 𝑧 = 𝑟𝑒𝑖𝜃 then Arg(𝑧) = 𝜃. 
Proof. This is again the definition: the argument is the polar angle 𝜃. 
Conjugate. (𝑟𝑒𝑖𝜃) = 𝑟𝑒−𝑖𝜃. 
Proof. (𝑟𝑒𝑖𝜃) = (𝑟(cos(𝜃) + 𝑖 sin(𝜃))) = 𝑟(cos(𝜃) − 𝑖 sin(𝜃)) = 𝑟𝑒−𝑖𝜃. 
In words: complex conjugation changes the sign of the argument. 
Multiplication. If 𝑧1 = 𝑟1𝑒𝑖𝜃1 and 𝑧2 = 𝑟2𝑒𝑖𝜃2 then 𝑧1𝑧2 = 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2). 
This is what mathematicians call trivial to see, just write the multiplication down. In words, 
the formula says the for 𝑧1𝑧2 the magnitudes multiply and the arguments add. 

𝑟1𝑒𝑖𝜃1 

Division. Again it’s trivial that = 
𝑟1 𝑒𝑖(𝜃1−𝜃2).𝑟2𝑒𝑖𝜃2 𝑟2 

Example 4.7. Multiplication by 2𝑖. Here’s a simple but important example. By looking 
at the graph we see that the number 2𝑖 has magnitude 2 and argument 𝜋/2. So, in polar 
coordinates, it equals 2𝑒𝑖𝜋/2. This means that multiplication by 2𝑖 multiplies lengths by 2 
and adds 𝜋/2 to arguments, i.e., rotates by 90∘. The effect is shown in the figures below 

Re

Im

2i = 2eiπ/2

π/2

|2𝑖| = 2, Arg(2𝑖) = 𝜋/2 

Re

Im

Re

Im× 2i

Multiplication by 2𝑖 rotates by 𝜋/2 and scales by 2 

Example 4.8. Raising to a power. Compute (i) (1 + 𝑖)6; (ii) (1+𝑖
√

3)
3 

2 

Solution: (i) 1 + 𝑖 has magnitude |1 + 𝑖| = 
√

2 and argument Arg(1 + 𝑖) = 𝜋/4, so
1 + 𝑖 = 

√
2𝑒𝑖𝜋/4. Raising to a power is now easy: 

= 8𝑒6𝑖𝜋/4 = 8𝑒3𝑖𝜋/2 = −8𝑖.(1 + 𝑖)6 = (
√

2𝑒𝑖𝜋/4)6 

3 

(ii) 1 + 𝑖
√

3 = 𝑒𝑖𝜋/3, so (1 + 𝑖
√

3) = (1 ⋅ 𝑒𝑖𝜋/3)3 = 𝑒𝑖𝜋 = −12 2 
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4.6.4 Complexification or complex replacement 

In the next example we will illustrate the technique of complexification or complex re-
placement by computing a trigonometric integral. Although, in ES.1803, we are not really 
concerned with trigonometric integrals, we will use complex replacement regularly in other 
contexts. 

Example 4.9. Use complex replacement to compute 𝐼 = ∫ 𝑒𝑥 cos(2𝑥) 𝑑𝑥. 

Solution: First we will show the steps for complex replacement. Then, below, we will 
justify them. We have Euler’s formula 𝑒2𝑖𝑥 = cos(2𝑥) + 𝑖 sin(2𝑥), so cos(2𝑥) = Re(𝑒2𝑖𝑥). 
The trick is to replace cos(2𝑥) by 𝑒2𝑖𝑥. We get 

𝐼𝑐 = ∫ 𝑒𝑥 cos 2𝑥 + 𝑖𝑒𝑥 sin 2𝑥 𝑑𝑥, where 𝐼 = Re(𝐼𝑐). 

Computing 𝐼𝑐 is straightforward: 

𝑒𝑥(1+2𝑖)
= ∫ 𝑒𝑥𝑒𝑖2𝑥 𝑑𝑥 = ∫ 𝑒𝑥(1+2𝑖) 𝑑𝑥 =𝐼𝑐 1 + 2𝑖 . 

Now we use polar form to simplify the expression for 𝐼𝑐: 
Write 1 + 2𝑖 = 𝑟𝑒𝑖𝜙, where 𝑟 = 

√
5 and 𝜙 = Arg(1 + 2𝑖) = tan−1(2) in the first quadrant. 

Then: 
𝑒𝑥(1+2𝑖) 𝑒𝑥 𝑒𝑥 

𝐼𝑐 = √
5𝑒𝑖𝜙 

= √5𝑒𝑖(2𝑥−𝜙) = √5(cos(2𝑥 − 𝜙) + 𝑖 sin(2𝑥 − 𝜙)). 

Thus, 𝐼 = Re(𝐼𝑐) = √𝑒
𝑥

5 
cos(2𝑥 − 𝜙). 

Justification of complex replacement. The trick comes by cleverly adding a new 

integral to 𝐼 as follows. Let 𝐽 = ∫ 𝑒𝑥 sin(2𝑥) 𝑑𝑥. Then we let 

𝐼𝑐 = 𝐼 + 𝑖𝐽 = ∫ 𝑒𝑥(cos(2𝑥) + 𝑖 sin(2𝑥)) 𝑑𝑥 = ∫ 𝑒𝑥𝑒2𝑖𝑥 𝑑𝑥. 

Clearly, Re(𝐼𝑐) = Re(𝐼 + 𝑖𝐽) = 𝐼 as claimed above. 
Rectangular coordinates –generally less preferred than polar. We show here the computation 
in rectangular coordinates –though we hasten to add that in ES.1803 we will almost always 
prefer polar form because it is easier and gives the answer in a more useable form. 

𝑒𝑥(1+2𝑖) 1 − 2𝑖 𝑒𝑥(cos(2𝑥) + 𝑖 sin(2𝑥))(1 − 2𝑖) 𝐼𝑐 = ⋅1 + 2𝑖 1 − 2𝑖 = 5 

= 5
1𝑒𝑥(cos(2𝑥) + 2 sin(2𝑥) + 𝑖(−2 cos(2𝑥) + sin(2𝑥))). 

So, 𝐼 = Re(𝐼𝑐) = 5
1𝑒𝑥(cos(2𝑥) + 2 sin(2𝑥)). 
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4.6.5 Nth roots 

We are going to need to be able to find the 𝑛th roots of complex numbers. The trick is to 
recall that a complex number has more than one argument, that is we can always add a 
multiple of 2𝜋 to the argument. For example, 

2 = 2𝑒0𝑖 = 2𝑒2𝜋𝑖 = 2𝑒4𝜋𝑖 … = 2𝑒2𝑛𝜋𝑖 

Example 4.10. Find all 5 fifth roots of 2. 

Solution: In polar form: (2𝑒2𝑛𝜋𝑖)1/5 = 21/5𝑒2𝑛𝜋𝑖/5. So the fifth roots of 2 are 

21/5 = 21/5𝑒2𝑛𝜋𝑖/5, where 𝑛 = 0, 1, 2, … 

The notation is a little strange, because the 21/5 on the left side of the equation means the 
complex roots and the 21/5 on the right hand side is a magnitude, so it is the positive real 
root. 
Looking at the right hand side we see that for 𝑛 = 5 we have 21/5𝑒2𝜋𝑖 which is exactly the 
same as the root when 𝑛 = 0, i.e., 21/5𝑒0𝑖. Likewise 𝑛 = 6 gives exactly the same root as
𝑛 = 1. So we have 5 different roots corresponding to 𝑛 = 0, 1, 2, 3, 4. 

21/5 = 21/5, 21/5𝑒2𝜋𝑖/5, 21/5𝑒24𝜋𝑖/5, 21/5𝑒6𝜋𝑖/5, 21/5𝑒8𝜋𝑖/5. 

Similarly we can say that, in general, 𝑧 = 𝑟𝑒𝑖𝜃 has 𝑁 different 𝑁 th roots: 

𝑧1/𝑁 = 𝑟1/𝑁𝑒𝑖𝜃/𝑁+𝑖 2𝜋(𝑛/𝑁) for 0, 1, 2, … 𝑁 − 1. 

Example 4.11. Find the 4 fourth roots of 1. 
Solution: 1 = 𝑒𝑖 2𝜋𝑛, so 11/4 = 𝑒𝑖 2𝜋(𝑛/4). So the 4 different fourth roots are 1, 𝑒𝑖 𝜋/2, 𝑒𝑖 𝜋, 𝑒𝑖 3𝜋/2, 𝑒𝑖 2𝜋. 
When the angles are ones we know about, e.g., 30, 60, 90, 45, etc., we should simplify the 
complex exponentials. In this case, the roots are 1, 𝑖, −1, −𝑖. 
Example 4.12. Find the 3 cube roots of -1. 
Solution: −1 = 𝑒𝑖 𝜋+𝑖 2𝜋𝑛. So, (−1)1/3 = 𝑒𝑖 𝜋/3+𝑖 2𝜋(𝑛/3) and the 3 cube roots are 𝑒𝑖𝜋/3, 𝑒𝑖𝜋, 𝑒𝑖5𝜋/3. 
Since 𝜋/3 radians is 60∘ we can simplify: 

𝑒𝑖𝜋/3 1 
√

3 
√

3= cos(𝜋/3) + 𝑖 sin(𝜋/3) = 2 + 𝑖 ⟶ (−1)1/3 = −1, 1
2 ± 2 

.2 

Example 4.13. Find the 5 fifth roots of 1 + 𝑖. 
Solution: 1 + 𝑖 = 

√
2𝑒𝑖(𝜋/4+2𝑛𝜋), for 𝑛 = 0, 1, 2, …. So the 5 fifth roots are 

(1 + 𝑖)1/5 = 21/10𝑒𝑖𝜋/20, 21/10𝑒𝑖9𝜋/20, 21/10𝑒𝑖17𝜋/20, 21/10𝑒𝑖25𝜋/20, 21/10𝑒𝑖33𝜋/20. 
Using a calculator we could write these numerically as 𝑎 + 𝑏𝑖, but there is no easy simplifi-
cation. 
Example 4.14. We should check that our technique works as expected for a simple prob-
lem. Find the 2 square roots of 4. 
Solution: 4 = 4𝑒𝑖 2𝜋𝑛. So, 41/2 = 2𝑒𝑖 𝜋𝑛. So the 2 square roots are 2𝑒0, 2𝑒𝑖𝜋 = ±2 as 
expected! 
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4.6.6 The geometry of 𝑛th roots 

Looking at the examples above we see that roots are always spaced evenly around a circle 
centered at the origin. For example, the fifth roots of 1 + 𝑖 are spaced at increments of 2𝜋/5 
radians around the circle of radius 21/5. 
Note also that the roots of real numbers always come in conjugate pairs. 

𝑦 𝑦 

𝑥 

1
2 + 𝑖

√
3

2 

1
2 − 𝑖

√
3

2 

−1 

Cube roots of -1 

𝑥 

1 + 𝑖 

Fifth roots of 1 + 𝑖 

4.7 Inverse Euler Formula 

Euler’s formula gives a complex exponential in terms of sines and cosines. We can turn this 
around to get the inverse Euler formulas. 
Euler’s formula says: 

𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡) and 𝑒−𝑖𝑡 = cos(𝑡) − 𝑖 sin(𝑡). 

By adding and subtracting we get: 

𝑒𝑖𝑡 + 𝑒−𝑖𝑡 𝑒𝑖𝑡 − 𝑒−𝑖𝑡 
cos(𝑡) = and sin(𝑡) = .2 2𝑖 

Warning. We also have the formula cos(𝑡) = Re(𝑒𝑖𝑡) which we used in complex replace-
ment. You want to pay attention to whether this or the inverse Euler formula is appropriate. 
In general, if you complexified to use complex replacement then at some point you’ll need 
to decomplexify by using the formula cos(𝑡) = Re(𝑒𝑖𝑡). If you never complexified then you 
probably need to use the inverse Euler formula. 

5 Homogeneous, linear, constant coefficient differential equa-
tions 

5.1 Goals 

1. Be able to solve homogeneous constant coefficient linear differential equations using 
the method of the characteristic equation. This includes finding the general real-valued 
solutions when the roots are complex or repeated. 
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2. Be able to give the reasoning leading to the method of the characteristic equation. 

3. Be able to state and prove the principle of superposition for homogeneous linear 
equations. 

4. For a damped harmonic oscillator be able to map the characteristic roots to the type 
of damping. 

5. Be able to create and interpret pole diagrams. 

5.2 Introduction 

In this topic we will start our study of constant coefficient differential equations. Most of 
our examples will look at second-order equations, which can be used to model a rich set of 
physical situations. Second-order equations are fairly simple computationally, yet feature 
many of the behaviors that higher order equations display. 

5.3 Second-order constant coefficient linear differential equations. 

The basic second-order constant coefficient linear differential equation can be written as: 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑓(𝑡), where 𝑚, 𝑏, 𝑘 are constants. 

The name says it all: 

1. Second-order: obvious. 

2. Constant coefficient: because the coefficients 𝑚, 𝑏, 𝑘 are constant. 

3. Linear: derivatives occur by themselves and to the first power. This is the same rule 
we had for first-order linear, and, just as in that case, we will see that second-order 
linear equations follow the superposition principle. 

4. Note: the ‘input’ 𝑓(𝑡) is not necessarily constant. 

Reasons to study second-order linear differential equations: 
1. There are a lot of second-order physical systems. For example, for moving particles you 
need the second derivative to capture acceleration. 
2. Many higher order systems are built from second-order components. 
3. The computations are easy to do by hand and will help us develop our intuition about 
second-order equations. This computational and intuitive understanding will guide us when 
we consider higher order equations. 
Remark. For second-order systems we will know how they behave and therefore what 
the solutions to the DEs should look like. For example, a mass oscillating at the end of a 
spring is a second-order system and we already have a good sense of what happens when 
we pull on the mass and let it go. So, in some sense, the math is not telling us that much. 
However, when you couple together 3 springs you have a sixth-order system and our intuition 



5 HOMOGENEOUS, LINEAR, CONSTANT COEFFICIENT DIFFERENTIAL EQUATIONS 37 

becomes a bit shakier. If you couple even more springs in a two or three dimensional lattice 
our intuition is shakier still. The success of our second-order models will give us confidence 
in our higher-order models. And the techniques used to solve second-order equations will 
carry over to the higher-order case. 

5.4 Second-order homogeneous constant coefficient linear differential equa-
tions. 

For this topic we will focus on the homogeneous equation (H) given just below. 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0. (H) 

We start with an example which pretty well sums up the general technique. Since this is a 
first example, we will break the solution into small pieces. In later examples we will give 
solutions that model what we’ll expect in your written work. 
Example 5.1. (Solving homogeneous constant coefficient DEs: long form solution.) Solve 
the DE 

𝑥″ + 8𝑥′ + 7𝑥 = 0. 
Solution: 1. Using the method of optimism we guess a solution of the form 𝑥(𝑡) = 𝑒𝑟𝑡. 
Note that we have left the 𝑟 unspecified. Our optimistic hope is that the value of 𝑟 will 
come out in the algebra. 
2. Substitute our guess (trial solution) into the DE: 

𝑟2𝑒𝑟𝑡 + 8𝑟𝑒𝑟𝑡 + 7𝑒𝑟𝑡 = 0. 

Divide by 𝑒𝑟𝑡 (this is okay, it is never 0) to get the characteristic equation 

𝑟2 + 8𝑟 + 7 = 0. 

3. This has roots: 𝑟 = −7, −1. Therefore, the method of optimism has found two basic 
solutions: 

𝑥1(𝑡) = 𝑒−7𝑡, 𝑥2 = 𝑒−𝑡 

4. Just below, we will discuss the superposition principle, here we will just apply it to get 
the general solution to the DE: 

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) = 𝑐1𝑒−7𝑡 + 𝑐2𝑒−𝑡. 

We remind you that the superposition of 𝑥1 and 𝑥2 is also called a linear combination. We 
will now explain why it works in this case. 

5.5 The principle of superposition for linear homogeneous equations 

We will state this as a theorem with a proof. The proof is just a small amount of algebra. 
Theorem. The superposition principle part 1. If 𝑥1 and 𝑥2 are solutions to (H) then so 
are all linear combinations 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 where 𝑐1, 𝑐2 are constants. 
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Proof. As we said, the proof is by algebra. Since we are given a supposed solution, we 
verify it by substitution, i.e., we plug 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 into (H). 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑚(𝑐1𝑥1 + 𝑐2𝑥2)″ + 𝑏(𝑐1𝑥1 + 𝑐2𝑥2)′ + 𝑘(𝑐1𝑥1 + 𝑐2𝑥2) 
= 𝑚𝑐1𝑥″

1 + 𝑚𝑐2𝑥2
″ + 𝑏𝑐1𝑥′

1 + 𝑏𝑐2𝑥2
′ + 𝑘𝑐1𝑥1 + 𝑘𝑐2𝑥2 

= 𝑐1(𝑚𝑥″
1 + 𝑏𝑥1

′ + 𝑘𝑥1) + 𝑐2(𝑚𝑥″
2 + 𝑏𝑥2

′ + 𝑘𝑥2) 
= 𝑐1 ⋅ 0 + 𝑐2 ⋅ 0 
(𝑚𝑥″

1 + 𝑏𝑥′
1 + 𝑘𝑥1 = 0 by the assumption that 𝑥1 solves (H). Likewise for 𝑥2.) 

= 0. 

We have verified that 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 is, in fact, a solution to the homogeneous DE (H). 
Superposition = linearity: At this point you should recall the example in Topic 2 where 
we showed that the nonlinear DE 𝑥′ + 𝑥2 = 0 did not satisfy the superposition principle. It 
is a general fact that only linear differential equations satisfy the superposition principle. 

Example 5.2. (Model solution.) In this example, we suggest a way to give the solutions 
in your own work. Solve 

𝑥″ + 4𝑥′ + 3𝑥 = 0. 
Solution: Characteristic equation: 𝑟2 + 4𝑟 + 3 = 0. 
Roots: 𝑟 = −1, −3. 
Basic solutions: 𝑥1(𝑡) = 𝑒−3𝑡, 𝑥2(𝑡) = 𝑒−𝑡. 
General solution by superposition: 𝑥(𝑡) = 𝑐1𝑥1 + 𝑐2𝑥2 = 𝑐1𝑒−3𝑡 + 𝑐2𝑒−𝑡. 
Note. We call the two solutions 𝑥1, 𝑥2 basic or modal solutions. 
Suggestion. For the next week or so every time you use this method remind yourself where 
each step came from (see the solution to Example 5.1. 
Every time we learn a new method we want to test it on our favorite DE. 
Example 5.3. Test case: exponential decay. Solve 𝑥′ + 𝑘𝑥 = 0 using the method of the 
characteristic equation. 
Solution: Characteristic equation (try 𝑥 = 𝑒𝑟𝑡): 𝑟 + 𝑘 = 0. 
Roots: 𝑟 = −𝑘. 
One solution: 𝑥1(𝑡) = 𝑒−𝑘𝑡 

General solution (by superposition): 𝑥(𝑡) = 𝑐1𝑥1 = 𝑐1𝑒−𝑘𝑡 (as expected). 
In practice, we don’t recommend solving this equation with this method. The recommended 
method is to recognize the DE as the equation of exponential decay and just give the 
solution. 

5.6 Families of solutions 

We call 𝑥(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡 a two-parameter family of functions. We will often look for 
subfamilies with special properties. 
Example 5.4. (a) Find all the members in the above family that go to 0 as 𝑡 → ∞. 
(b) Find all the members that go to ∞ as 𝑡 → ∞. 
Solution: (a) All the functions 𝑥(𝑡) = 𝑐2𝑒−𝑡 (i.e., 𝑐1 = 0). 
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(b) All the functions 𝑥(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡, where 𝑐1 > 0, 𝑐2 is arbitrary. 

5.7 Complex roots 

Example 5.5. (Model solution: complex roots) Solve the DE 

𝑥″ + 2𝑥′ + 4𝑥 = 0. 
Solution: 1. Characteristic equation: 𝑟2 + 2𝑟 + 4 = 0. 
2. Roots: 𝑟 = (−2 ± 

√
4 − 16)/2 = −1 ± 

√
3 𝑖. 

3. Two basic solutions : 𝑥1(𝑡) = 𝑒−𝑡 cos(
√

3𝑡), 𝑥2(𝑡) = 𝑒−𝑡 sin(
√

3𝑡). Here the exponential 
𝑒−𝑡 uses the real part of the roots and the frequency in the sinusoids cos(

√
3𝑡), sin(

√
3𝑡) 

comes from the imaginary part of the roots. All of this will be justified below. 
4. General real-valued solution by superposition: 

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) = 𝑐1𝑒−𝑡 cos(
√

3𝑡) + 𝑐2𝑒−𝑡 sin(
√

3𝑡). 

Notes. 1. The damped frequency of oscillation comes from the imaginary part of the roots 
±

√
3. 

2. In polar form the solution can be written 

𝑥(𝑡) = 𝑐1𝑒−𝑡 cos(
√

3𝑡) + 𝑐2𝑒−𝑡 sin(
√

3𝑡) = 𝐴𝑒−𝑡 cos(
√

3𝑡 − 𝜙), 
where 𝐴, 𝜙, 𝑐1 and 𝑐2 are related by the usual polar triangle with 𝑐1 = 𝐴 cos(𝜙), 𝑐2 = 
𝐴 sin(𝜙). 

A

c1

c2

φ

Example 5.6. Solve 𝑥″ + 4𝑥 = 0. 
Solution: This is the DE for the simple harmonic oscillator a.k.a. a spring-mass system. 
Using the characteristic equation method: 
Characteristic equation: 𝑟2 + 4 = 0. 
Roots: 𝑟 = ±2𝑖. 
General real-valued solution: 𝑥 = 𝑐1 cos(2𝑡) + 𝑐2 sin(2𝑡). 

Example 5.7. A fifth-order constant coefficient linear homogeneous DE has roots −2, 1 ± 
7𝑖, ±3𝑖. What is the general solution? 

Solution: 𝑥 = 𝑐1𝑒−2𝑡 + 𝑐2𝑒𝑡 cos(7𝑡) + 𝑐3𝑒𝑡 sin(7𝑡) + 𝑐4 cos(3𝑡) + 𝑐5 sin(3𝑡). 

5.7.1 Justification of the model solution 

In Example 5.5, the model solution Steps 1, 2 and 4 are the same as in previous examples 
with real roots. We need to explain the reasoning behind finding the two basic solutions in 
step 3: 



5 HOMOGENEOUS, LINEAR, CONSTANT COEFFICIENT DIFFERENTIAL EQUATIONS 40 

Amazingly, superposition makes this easy to do. We start with a theorem that tells us how 
to get real-valued solutions from complex-valued ones. 
Theorem. If 𝑧(𝑡) is a complex-valued solution to a homogeneous linear DE with real 
coefficients. Then both the real and imaginary parts of 𝑧 are also solutions. 
Proof. The proof is similar to the proofs of all of our other statements about superposition. 
Consider the linear homogeneous equation 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 (H) 

and suppose that 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) is a solution, where 𝑥(𝑡) and 𝑦(𝑡) are respectively the 
real and imaginary parts of 𝑧(𝑡). We have to show that 𝑥 and 𝑦 are also solutions of (H). 
By assumption 0 = 𝑧″ + 𝑏𝑧′ + 𝑘𝑧. Replacing 𝑧 by 𝑥 + 𝑖𝑦 we get 

0 + 0 𝑖 = 𝑚(𝑥 + 𝑖𝑦)″ + 𝑏(𝑥 + 𝑖𝑦)′ + 𝑘(𝑥 + 𝑖𝑦) 
= (𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥) + 𝑖(𝑚𝑦″ + 𝑏𝑦″ + 𝑘𝑦). 

Since both the real and imaginary parts are 0 we have. 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 and 𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 0. 

This says exactly that 𝑥 and 𝑦 are solutions to (H). 

Now, let’s apply this to the situation in Example 5.5. 
We saw that there were two characteristic roots −1±𝑖

√
3. These roots give two exponential 

solutions. Of course, since the roots are complex they are complex exponentials: 

𝑧1 = 𝑒(−1+𝑖
√

3)𝑡 = 𝑒−𝑡𝑒𝑖
√

3𝑡 = 𝑒−𝑡(cos(
√

3𝑡) + 𝑖 sin √(3𝑡)) 

𝑧2 = 𝑒(−1−𝑖
√

3)𝑡 = 𝑒−𝑡𝑒−𝑖
√

3𝑡 = 𝑒−𝑡(cos(
√

3𝑡) − 𝑖 sin √(3𝑡)) 

Now the theorem above says that both the real and imaginary parts of 𝑧1 and 𝑧2 are also 
solutions. So we have (nominally) four solutions which we’ll label 𝑢1, 𝑢2, 𝑣1, 𝑣2 to avoid 
overusing the letter 𝑥. 

𝑧1 = 𝑢1 + 𝑖𝑣1 ∶ 𝑢1(𝑡) = 𝑒−𝑡 cos(
√

3𝑡), 𝑣1(𝑡) = 𝑒−𝑡 sin(
√

3𝑡) 

𝑧2 = 𝑢2 + 𝑖𝑣2 ∶ 𝑢2(𝑡) = 𝑒−𝑡 cos(
√

3𝑡), 𝑣2(𝑡) = −𝑒−𝑡 sin(
√

3𝑡). 

We see that 𝑢1 and 𝑢2 are the same and, except for the minus sign, 𝑣1 and 𝑣2. So we have 
only two truly different solutions, which is exactly the number we need. These are the basic 
solutions given in step (3) of Example 5.5 (except that we used the names 𝑥1 and 𝑥2 instead 
of 𝑢1 and 𝑣1). 

5.7.2 Another way to see this 

Another way to see that 𝑥1 and 𝑥2 are solutions is to use superposition directly on the 
two complex exponential solutions. Since 𝑧1 and 𝑧2 are both solutions so are all linear 
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combinations of 𝑧1 and 𝑧2. In particular, 𝑥1 and 𝑥2 are linear combinations of 𝑧1 and 𝑧2 as 
follows: 

1 
2𝑧1(𝑡) + 

1
2𝑧2(𝑡) = (𝑒−𝑡 

cos(
√

3𝑡) + 𝑖𝑒−𝑡 
sin(

√
3𝑡)) + (𝑒−𝑡 

cos(
√

3𝑡) − 𝑖 𝑒
−𝑡 

sin(
√

3𝑡))2 2 2 2 
= 𝑒−𝑡 cos(

√
3𝑡) 

= 𝑥1(𝑡). 
1 
2𝑖𝑧1(𝑡) − 2𝑖

1 𝑧2(𝑡) = (𝑒
2𝑖
−𝑡 

cos(
√

3𝑡) + 𝑖𝑒
2𝑖
−𝑡 

sin(
√

3𝑡)) − (𝑒
2𝑖
−𝑡 

cos(
√

3𝑡) − 𝑖 𝑒2𝑖
−𝑡 

sin(
√

3𝑡)) 

= 𝑒−𝑡 sin(
√

3𝑡) 
= 𝑥2(𝑡). 

This shows that 𝑥1 and 𝑥2 are both solutions to the DE. 

5.7.3 Complex exponential solutions 

We have seen that when the roots of the characteristic equation are complex, we get complex 
exponentials as solutions. But, with a small amount of algebra, we can write our solutions 
as linear combinations of real-valued functions. We do this because physically meaningful 
solutions should have real values. In ES.1803 we won’t have much need for the general 
complex-valued solution, but we record it here for posterity. 
The general complex-valued solution to the equation in Example 5.5 is 

𝑧 = 𝑐1̃ 𝑧1 + 𝑐2̃ 𝑧2 = 𝑐1̃ 𝑒(−1+𝑖
√

3)𝑡 + 𝑐2̃ 𝑒(−1−𝑖
√

3)𝑡, 

where 𝑐1̃ and 𝑐2̃ are complex constants. You should be aware that many engineers work 
directly with these complex solutions and don’t bother rewriting them in terms of sines and 
cosines. 

5.8 Repeated roots 

When the characteristic equation has repeated roots it will not do to use the same solution 
multiple times. This is because, for example, 𝑐1𝑒2𝑡 + 𝑐2𝑒2𝑡 is not really a two-parameter 
family of solutions, since it can be rephrased as 𝑐𝑒2𝑡. For now we will simply assert how to 
find the other solutions. After we have developed some more algebraic machinery we will 
be able to explain where they come from. 
Example 5.8. A constant coefficient linear homogeneous DE has roots 3, 3, 5, 5, 5, 2. 
Give the general solution to the DE. What is the order of the DE? 

Solution: General solution: 

𝑥(𝑡) = 𝑐1𝑒3𝑡 + 𝑐2𝑡𝑒3𝑡 + 𝑐3𝑒5𝑡 + 𝑐4𝑡𝑒5𝑡 + 𝑐5𝑡2𝑒5𝑡 + 𝑐6𝑒2𝑡. 

There are 6 roots so the DE has order 6. 
In words: every time a root is repeated we get another solution by adding a factor of 𝑡 to 
the previous one. 
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Example 5.9. A constant coefficient linear homogeneous DE has roots 1 ± 2𝑖, 1 ± 2𝑖, −3. 
Give the general real-valued solution to the DE. What is the order of the DE? 

Solution: The general real-valued solution is 

𝑥 = 𝑐1𝑒𝑡 cos(2𝑡) + 𝑐2𝑒𝑡 sin(2𝑡) + 𝑐3𝑡𝑒𝑡 cos(2𝑡) + 𝑐4𝑡𝑒𝑡 sin(2𝑡) + 𝑐5𝑒−3𝑡. 

There are 5 roots so the DE has order 5. 

5.9 Existence and uniqueness for constant coefficient linear DEs 

So far we have rather casually claimed to have found the general solution to DEs. Our 
techniques have guaranteed that these are solutions, but we need a theorem to guarantee 
that these are all the solutions. There is such a theorem and it is called the existence and 
uniqueness theorem. 
Theorem: Existence and uniqueness. The initial value problem consisting of the DE 

𝑎𝑛𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + ⋯ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 

with initial conditions 

𝑦(𝑡0) = 𝑏0, 𝑦′(𝑡0) = 𝑏1, … , 𝑦(𝑛−1)(𝑡0) = 𝑏𝑛−1 

has a unique solution. 
The proof is beyond the scope of this course. The outline of the proof for a general existence 
and uniqueness theorem is posted with the class notes. 
Here is a short explanation for why this theorem guarantees that what we’ve called the 
general solution does indeed include every possible solution: The theorem says that there is 
exactly one solution for each set of initial conditions. Therefore, all we have to show is that 
our general solution includes a solution matching every possible set of initial conditions. 
Matching a set of 𝑛 initial conditions means solving for the 𝑛 coefficients 𝑐1, …, 𝑐𝑛. That is, 
it means solving a linear system of 𝑛 algebraic equations in 𝑛 unknowns. Once we’ve done 
more linear algebra we’ll be able to show this without difficulty. Right now we’ll just look 
at a representative example. 
Example 5.10. Suppose a linear second-order constant coefficients homogeneous DE has 
characteristic roots 2 and 3. Show that the resulting general solution can match every 
possible set of initial conditions. 
Solution: Our general solution is the two-parameter family 

𝑥(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒3𝑡. 

Our initial conditions have the form 𝑥(𝑡0) = 𝑏0 and 𝑥′(𝑡0) = 𝑏1. To match these conditions 
we have to solve for 𝑐1 and 𝑐2. That is, we have to solve 

𝑥(𝑡0) = 𝑐1𝑒2𝑡0 + 𝑐2𝑒3𝑡 = 𝑏0 

𝑥(𝑡0) = 2𝑐1𝑒2𝑡0 + 3𝑐2𝑒3𝑡 = 𝑏1 
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Writing these equations in matrix form we have 

[ 𝑒
2𝑡0 𝑒3𝑡0 

] = [𝑏0
2𝑒2𝑡0 3𝑒3𝑡0

] [𝑐
𝑐

1
2 𝑏1

] . 

The coefficient matrix has determinant 

𝑒2𝑡0 𝑒3𝑡0
∣ ∣ = 𝑒5𝑡0 ≠ 0. 2𝑒2𝑡0 3𝑒3𝑡0 

Since the determinant is not 0 we know there is a solution giving 𝑐1 and 𝑐2. In fact, we 
know the solution must be unique. 

5.10 Damped harmonic oscillators: the spring-mass-damper 

We will use these repeatedly. Please master them. 
In ES.1803 one of our main physical examples will be the spring-mass-damper. This is one 
type of damped harmonic oscillator. (We will encounter others, e.g., an LRC circuit.) In 
this system we have a mass 𝑚 attached to a spring with spring constant 𝑘. The mass is 
also attached to a damper that is being dragged through a viscous fluid. The fluid exerts a 
force on the damper that is proportional to the speed and resists the motion. Let’s call the 
constant in this case the damping coefficient 𝑏. 

m

x(t)

k

damping coefficient b

Spring-mass-damper with no outside force 

For this topic we will assume there is no outside force on the system. So, if 𝑥(𝑡) is the 
displacement of the mass from equilibrium, then Newton’s laws tell us 

𝑚𝑥″ = −𝑘𝑥 − 𝑏𝑥′. 

Writing this in our usual fashion, with all the 𝑥 on the left, we see our standard homogeneous 
second-order linear constant coefficient DE: 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0. 

A standard notation will be to write 𝜔0 = √𝑘/𝑚. We’ll call 𝜔0 the natural frequency of 
the system. This term will be explained below. 

Simple harmonic oscillator (the undamped spring-mass-dashpot system). 
We start with the case of no damping, i.e., 𝑏 = 0. Our equation is then 

𝑚𝑥″ + 𝑘𝑥 = 0 or 𝑥″ + 𝜔0
2𝑥 = 0, 

where 𝜔0 = √𝑘/𝑚 = the natural frequency of the oscillator. 
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Using the characteristic equation method we find: 
Characteristic equation: 𝑟2 + 𝜔0

2 = 0. 
Roots: 𝑟 = ±√−𝜔0

2 = ±𝑖 𝜔0. 
Two solutions: 𝑥1(𝑡) = cos(𝜔0𝑡), 𝑥2(𝑡) = sin(𝜔0𝑡). 
General real-valued solution: 

𝑥(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡). 

We now see why 𝜔0 is called the natural frequency: it is the angular frequency of the 
oscillation when the system is undamped and unforced. We will see that damping changes 
the frequency of oscillation. 

Solving the spring-mass-dashpot system: the damped case 

Characteristic equation: 𝑚𝑟2 + 𝑏𝑟 + 𝑘 = 0. (Comes from the trial solution 𝑥 = 𝑒𝑟𝑡.) 
−𝑏 ± 

√
𝑏2 − 4𝑚𝑘 Roots: 𝑟 = .2𝑚 

Looking at the formula for the roots we see that there are three cases based on what is 
under the square root sign. We add a fourth case for when 𝑏 = 0 

(i) 𝑏 = 0 (undamped) 

(ii) 𝑏2 − 4𝑚𝑘 > 0 (overdamped; 𝑏 large) 

(iii) 𝑏2 − 4𝑚𝑘 < 0 (underdamped; 𝑏 small) 

(iv) 𝑏2 − 4𝑚𝑘 = 0 (critically damped; 𝑏 just right) 

We will go through these cases one at a time. 
Case (i) (Undamped) 

We did this case earlier, The characteristic roots are ±𝜔0 𝑖. The general real-valued solution 
is 

𝑥(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡). 
The longterm behavior is periodic (sinusoidal) motion. 

Case (ii) (Overdamped: real characteristic roots) 

To simplify writing we’ll name the expression with the square root. Let 𝐵 = √|𝑏2 − 4𝑚𝑘|, 
so the roots are −𝑏 + 𝐵 −𝑏 − 𝐵 𝑟1 = 𝑟2 = .2𝑚 2𝑚 
First we show that the roots are real and negative. This follows because 𝐵 is the 
square root of something less than 𝑏2. So, in both −𝑏 + 𝐵 and −𝑏 − 𝐵, the 𝐵 term is not 
big enough to change the sign of the −𝑏 term. Therefore, 𝑟1 and 𝑟2 must both be negative. 
The general real-valued solution to the overdamped system is 

𝑥(𝑡) = 𝑐1𝑒(−𝑏+𝐵)𝑡/(2𝑚) + 𝑐2𝑒(−𝑏−𝐵)𝑡/(2𝑚) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡. 

The negative exponents imply that in the longterm as 𝑡 gets large 𝑥(𝑡) goes to 0. 
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The following claim gives an important feature of overdamped systems. 
Claim. If an overdamped system starts from rest at a position away from the equilibrium, 
then it never crosses the equilibrium position. 
Since 𝑥 = 0 is the equilibrium position, the claim says that if 𝑥(0) ≠ 0 and 𝑥′(0) = 0 then 
the graph of 𝑥(𝑡) does not cross the 𝑡-axis for 𝑡 > 0. 
Proof. The proof involves some picky algebra: We know that the roots 𝑟1 and 𝑟2 are both 
negative. We also have 𝑥(𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡 with initial conditions 

𝑥(0) = 𝑐1 + 𝑐2 ≠ 0, 𝑥′(0) = 𝑟1𝑐1 + 𝑟2𝑐2 = 0 

Now we need to show that 𝑥(𝑡) = 0 never happens for 𝑡 > 0. Let’s just do the case 𝑟1 = −5 
and 𝑟2 = −2. The presentation will be simpler and anyone who cares to can redo it for any 
𝑟1 and 𝑟2. Using these values of the roots, we have 

𝑥(𝑡) = 𝑐1𝑒−5𝑡 + 𝑐2𝑒−2𝑡, 𝑥(0) = 𝑐1 + 𝑐2 ≠ 0 𝑥′(0) = −5𝑐1 − 2𝑐2 = 0. 

The condition 𝑐1 + 𝑐2 ≠ 0 guarantees that 𝑐1 and 𝑐2 are not both 0. So the other initial 
condition gives −𝑐2/𝑐1 = 5/2. Next we’ll solve for the times 𝑡 when 𝑥(𝑡) = 0. 

𝑥(𝑡) = 0 = 𝑐1𝑒−5𝑡 + 𝑐2𝑒−2𝑡 therefore − 𝑐2/𝑐1 = 𝑒−3𝑡 

Combining −𝑐2/𝑐1 = 5/2 and −𝑐2/𝑐1 = 𝑒−3𝑡, we have 𝑒−3𝑡 = 5/2. Taking the log of both 
sides we have 

−3𝑡 = ln(5/2) > 0, so, 𝑡 < 0. 
We see that 𝑥(𝑡) = 0 for exactly one value of 𝑡 and that value is before 𝑡 = 0. This is exactly 
what we needed to show! 
The proof also showed us that an unforced overdamped harmonic oscillator crosses the 
equilibrium position at most once. 

t

x

Starting from rest

Large negative initial velocity

An overdamped oscillator crosses equilibrium at most once. 

t

x

An underdamped oscillator crosses equilibrium infinitely many times. 
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Case (iii) (Underdamping: complex characteristic roots) 

Again to simplify the writing we’ll name the expression with the square root. Let 𝐵 = 
−𝑏 ± 𝑖𝐵 √|𝑏2 − 4𝑚𝑘|. So the characteristic roots are . Just as in Example 5.5, the general 2𝑚 

real-valued solution is 

𝑥(𝑡) = 𝑒−𝑏𝑡/(2𝑚) (𝑐1 cos (
𝐵𝑡 

2𝑚)) . 2𝑚) + 𝑐2 sin ( 
𝐵𝑡 

Longterm behavior: The negative exponent causes 𝑥(𝑡) to go to 0 as 𝑡 goes to ∞. The sine 
and cosine causes it to oscillate back and forth across the equilibrium. 

Case (iv) (Critical damping: repeated real characteristic roots) 

In this case the expression under the square root is 0, so we have repeated negative charac-
teristic roots 𝑟 = −𝑏/(2𝑚), −𝑏/(2𝑚). Thus the general solution to the DE is 

𝑥(𝑡) = 𝑐1𝑒−𝑏𝑡/(2𝑚) + 𝑐2𝑡𝑒−𝑏𝑡/(2𝑚). 
Qualitatively the picture looks like the overdamped case. Just as in the overdamped case a 
critically damped oscillator crosses equilibrium at most once. 

5.11 Decay rates 

Whether its overdamped, underdamped or critically damped a damped harmonic oscillator 
goes to 0 as 𝑡 goes to infinity. We say that 𝑥(𝑡) decays to 0. How fast it goes to 0 is its 
decay rate. 
Example 5.11. The rate controlling term. The decay rate of 𝑥(𝑡) = 𝑐1𝑒−3𝑡 + 𝑐2𝑒−5𝑡 

is the same as that of 𝑒−3𝑡. At first glance this might seem surprising because 𝑒−5𝑡 decays 
faster than 𝑒−3𝑡. But that is exactly the point: the rate of decay is the same as that of the 
slowest term. We might call it the rate controlling term. In this case that is 𝑒−3𝑡. 
It turns out that critical damping is precisely the level of damping that gives the greatest 
decay rate. The precise statement is as follows. 
Critical damping is optimal. For a fixed mass and spring, i.e., 𝑚 and 𝑘, critical damping 
is the choice of damping that causes the oscillator to have the greatest decay rate without 
oscillating. 
We will not go through the arithmetic to show this. Anyone interested can ask me about 
it. 

t

x

overdamped

underdamped

critically damped

undamped

For a fixed 𝑚 and 𝑘 critical damping decays the fastest to equilibrium. 
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5.12 Pole diagrams 

Pole diagrams are a nice way to visualize the characteristic roots of a constant coefficient 
system 𝑃 (𝐷)𝑥 = 0. For these systems the term pole is a synonym for characteristic root. 
(In general, pole is a mathematical term with a broader meaning.) 
The pole diagram is drawn in the complex plane. You construct it by drawing an × at 
each pole (characteristic root). It is easy to read off information about the system from the 
diagram. 

• By counting the poles you can determine the order of the system. 

• If all the poles are in the left half-plane then the exponents in the homogeneous 
solutions all have negative real part. That is, the general homogeneous solution decays 
to 0, i.e., the system always returns to equilibrium. (We call such a system stable.) 

• If there are complex poles then the system is oscillatory. 

• For a stable system the exponential rate that the unforced (homogeneous) system 
returns to equilibrium is determined by the real part of the right-most pole. 

Example 5.12. The pole diagram on the left shows 4 poles, all in the left-half plane. 
Therefore, the system is fourth-order and stable. Since there are complex roots the system 
is oscillatory. The right-most pole has real part −1/2, so the general homogeneous solution 
decays to 0 like 𝑒−𝑡/2. 
The pole diagram on the right has a pole in the right-half plane at 𝑠 = 1. So the general 
homogeneous solution grows exponentially, i.e., the system is unstable. 
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A nice applet showing pole diagrams for second-order systems is the Damped Vibrations 
applet at https://mathlets.org/mathlets/damped-vibrations/. Set 𝑘 = .7, 𝑚 = 1 and 
let 𝑏 vary. 

https://mathlets.org/mathlets/damped-vibrations/
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6 Operators, inhomogeneous DEs, ERF and SRF 

6.1 Goals 

1. Be able to define linear differential operators. 

2. Be able to define polynomial differential operators and use them to express linear 
constant coefficient differential equations. 

3. Be able to use the Exponential Response Formula to find particular solutions to poly-
nomial differential equations with exponential or sinusoidal input. 

4. Be able to derive the Sinusoidal Response Formula. 

5. Be able to use the Sinusoidal Response Formula to solve polynomial differential equa-
tions with sinusoidal input. 

6. Be able to build models of damped harmonic oscillators with input. 

6.2 Linear Differential Equations 

Linear 𝑛th-order differential equations have the form 

𝑝0(𝑡)𝑦(𝑛) + 𝑝1(𝑡)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑡)𝑦 = 0 (H) 
𝑝0(𝑡)𝑦(𝑛) + 𝑝1(𝑡)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑡)𝑦 = 𝑓(𝑡) (I) 

As usual, we call (H) homogeneous and (I) inhomogeneous. 
Also as usual, if the coefficients are all constant then we have a constant coefficient linear 
differential equation. 

𝑎0𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 0 (H) 
𝑎0𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 𝑓(𝑡) (I) 

In Topic 5 we learned about the characteristic equation 

𝑎0𝑟𝑛 + 𝑎1𝑟𝑛−1 + ⋯ + 𝑎𝑛 = 0 

It will be useful to give a name to the polynomial on the left side of this equation. 

𝑃 (𝑟) = 𝑎0𝑟𝑛 + 𝑎1𝑟𝑛−1 + ⋅ + 𝑎𝑛. 

We will call it the characteristic polynomial. That is, the characteristic equation can 
be written 𝑃(𝑟) = 0. 

6.3 Operators 

A function is a rule that takes a number as input and returns another number as output. 
Example 6.1. (Examples of functions.) 
1. 𝑓(𝑡) = 𝑡2. If 𝑡 = 2 is the input then 𝑓(2) = 4 is the output. 
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2. The identity function is 𝑓(𝑡) = 𝑡. 
3. The zero function is 𝑓(𝑡) = 0. 
An operator is similar to a function except that it takes as input a function and returns 
another function as output. We will often use upper case letters like 𝑇 or 𝐿 to denote 
operators. If 𝑥 is a function when 𝑇 acts on it we will write 

𝑇 (𝑥) or 𝑇 𝑥. 
We will read this as “𝑇 of 𝑥” or “𝑇 applied to 𝑥” or “𝑇 acting on 𝑥.” A few examples will 
make this clear. 

Example 6.2. The differentiation operator is 𝐷 = 𝑑𝑡 
𝑑 . This takes any function as input 

and returns its derivative as output. For example, 
(i) If 𝑥(𝑡) = 𝑡3 then 𝐷(𝑥) = 3𝑡2. We also write 𝐷𝑥 = 3𝑡2. 
(ii) If 𝑦(𝑡) = 𝑒4𝑡 then 𝐷𝑦 = 4𝑒4𝑡. 
(iii) 𝐷(𝑡3 + 2𝑡2 + 5𝑡 + 7) = 3𝑡2 + 4𝑡 + 5. 
(iv) In general, 𝐷𝑥 = 𝑥′ . 

Example 6.3. The second derivative operator is 𝐷2 = 𝑑𝑡 
𝑑2

2 . For example: 

(i) 𝐷2(𝑒4𝑡) = 42𝑒4𝑡. 
In this example we used 𝐷2 to mean first apply 𝐷 to the function and then apply it again. 
Writing this out in more detail we get 

𝐷2(𝑒4𝑡) = 𝐷(𝐷(𝑒4𝑡)) = 𝐷(4𝑒4𝑡) = 42𝑒4𝑡. 
(ii) In general, 𝐷2𝑥 = 𝑥″ . Likewise, 𝐷3 = 𝑥‴ . 

For obvious reasons we call 𝐷, 𝐷2, 𝐷3, … differential operators. 

Example 6.4. The identity operator 𝐼 takes any function as input and returns the same 
function as output. For example: 
(i) 𝐼(𝑥) = 𝑥. 
(ii) 𝐼(𝑡2 + 3𝑡 + 2) = 𝑡2 + 3𝑡 + 2. 
Example 6.5. We can combine these operators. For example we can let 

𝑇 = 𝐷2 + 8𝐷 + 7𝐼. 
To understand what this operator does we have to apply it to a function and see what 
happens. If we apply 𝑇 to 𝑥 we get 

𝑇 𝑥 = (𝐷2 + 8𝐷 + 7𝐼)𝑥 = 𝑥″ + 8𝑥′ + 7𝑥. 

Example 6.6. The zero operator takes any function as input and returns the zero 
function as output. There is no standard notation for this function, let’s call it 𝑍. For 
example: 
(i) 𝑍(𝑥) = 0. 
(ii) 𝑍(𝑡2 + 3𝑡 + 2) = 0. 
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6.4 Polynomial differential operators 

Consider the polynomial 𝑃 (𝑟) = 𝑟2+8𝑟+7. If we replace 𝑟 by 𝐷 we have 𝑃 (𝐷) = 𝐷2+8𝐷+7. 
We will call 𝑃 (𝐷) a polynomial differential operator. We can use it to simplify writing 
down DEs and to help with algebraic manipulations. 
Example 6.7. Consider the constant coefficient differential equation 

𝑥″ + 8𝑥′ + 7𝑥 = 0. 
This has characteristic polynomial 𝑃(𝑟) = 𝑟2 +8𝑟+7. We can rewrite the DE in polynomial 
notation as 

(𝐷2 + 8𝐷 + 7𝐼)𝑥 = 0 or, even more simply, 𝑃 (𝐷)𝑥 = 0. 

One great thing about polynomial operators is how simply we can express constant coeffi-
cient differential equations using them. We can rewrite (H) and (I) above as 

𝑃(𝐷) = 0 (H) 
𝑃(𝐷) = 𝑓(𝑡), (I) 

where 𝑃 (𝐷) = 𝐷𝑛 + 𝑎1𝐷𝑛−1 + 𝑎2𝐷𝑛−2 + ⋯ + 𝑎𝑛𝐼 . 

6.5 Linearity/superposition for polynomial differential operators 

The superposition principle was awkward to state and prove because it was phrased in 
terms of equations. Linearity is equivalent to superposition, but easier to discuss because 
we phrase it in terms of operators. 
Important definition. An operator 𝑇 is called a linear operator if for any functions 
𝑥1, 𝑥2 and any constants 𝑐1, 𝑐2 we have 

𝑇 (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑇 𝑥1 + 𝑐2𝑇 𝑥2. (11) 

Claim. Show that the differential operator 𝐷 is linear. 
Proof. This is easy to check directly from the definition of linearity: 

𝐷(𝑐1𝑥1 + 𝑐2𝑥2) = (𝑐1𝑥1 + 𝑐2𝑥2)′ = 𝑐1𝑥′
1 + 𝑐2𝑥2

′ = 𝑐1𝐷𝑥1 + 𝑐2𝐷𝑥2 

Looking at the first and last terms in this string of equalities we see that Equation 11 holds 
for the operator 𝐷. 
Similarly we can show that the operators 𝐷2, 𝐷3 are linear. Likewise, for any polynomial 
𝑃 , the operator 𝑃 (𝐷) is linear. 
Example 6.8. Show directly from the definition that 𝑃(𝐷) = 𝐷2 + 8𝐷 + 7𝐼 is linear. 
Solution: We use the same argument as in the proof of the claim just above: 

𝑃 (𝐷)(𝑐1𝑥1 + 𝑐2𝑥2) = (𝑐1𝑥1 + 𝑐2𝑥2)″ + 8(𝑐1𝑥1 + 𝑐2𝑥2)′ + 7(𝑐1𝑥1 + 𝑐2𝑥2) 
= 𝑐1(𝑥″

1 + 8𝑥1
′ + 7𝑥1) + 𝑐2(𝑥″

2 + 8𝑥2
′ + 7𝑥2) 

= 𝑐1𝑃 (𝐷)𝑥1 + 𝑐2𝑃 (𝐷)𝑥2 
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I hope the examples have convinced you that the linearity of an operator is easy to ver-
ify. You might also have noticed how similar the arguments felt to those showing the 
superposition principle. For completeness we state and show that the two are equivalent. 
Equivalence of linearity and the superposition principle. Suppose 𝑇 is an operator. 
Then 𝑇 is linear if and only if the equation 𝑇 𝑥 = 𝑞(𝑡) satisfies the superposition principle. 
Proof. This is really just a matter of unwinding the definitions. Suppose 𝑇 𝑥1 = 𝑞1 and
𝑇 𝑥2 = 𝑞2. Suppose the superposition principle holds, then 

𝑇 (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑞1 + 𝑐2𝑞2 = 𝑐1𝑇 𝑥1 + 𝑐2𝑇 𝑥2. 

This shows that 𝑇 is linear. Likewise, if 𝑇 is linear, then 

𝑇 (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑇 𝑥1 + 𝑐2𝑇 𝑥2 = 𝑐1𝑞1 + 𝑐2𝑞2, 

which shows that the superposition principle holds. 

6.6 The algebra of 𝑃 (𝐷) applied to exponentials 

For this section 𝑃 (𝐷) will be a polynomial differential operator and 𝑎 will be a constant. 
Here are two easy and useful rules concerning 𝑃 (𝐷) and 𝑒𝑎𝑥. We will use them immediately 
to show why we have factors of 𝑡 in the solutions to DEs with repeated roots. 

6.6.1 Substitution rule 

Substitution rule. 𝑃 (𝐷)𝑒𝑎𝑡 = 𝑃 (𝑎)𝑒𝑎𝑡. This is called the substitution rule because we 
just substitute 𝑎 for 𝐷. 
‘Proof’ by example. We show the rule holds for 𝑃(𝑟) = 𝑟2 + 8𝑟 + 7: 

𝑃 (𝐷)𝑒𝑎𝑡 = (𝑒𝑎𝑡)″ + 8(𝑒𝑎𝑡)′ + 7𝑒𝑎𝑡 = (𝑎2 + 8𝑎 + 7)𝑒𝑎𝑡 = 𝑃 (𝑎)𝑒𝑎𝑡. 

6.6.2 Exponential shift rule 

We will call 𝑃(𝐷 + 𝑎𝐼) a shift of 𝑃 (𝐷) by 𝑎. For example, if 𝑃(𝐷) = 𝐷2 + 6𝐷 + 9𝐼 then 

𝑃(𝐷 − 3𝐼) = (𝐷 − 3𝐼)2 + 6(𝐷 − 3𝐼) + 9𝐼 = 𝐷2 − 6𝐷 + 9𝐼 + 6𝐷 − 18𝐼 + 9𝐼 = 𝐷2. 

Exponential shift rule for 𝐷. For any function 𝑢(𝑡), 

𝐷(𝑒𝑎𝑡𝑢(𝑡)) = 𝑒𝑎𝑡 (𝐷 + 𝑎𝐼)𝑢(𝑡). 

Proof. The derivation of this is just the product rule for differentiation: 

𝐷(𝑒𝑎𝑡𝑢(𝑡)) = 𝑎𝑒𝑎𝑡𝑢(𝑡) + 𝑒𝑎𝑡𝑢′(𝑡) = 𝑒𝑎𝑡(𝑎𝑢(𝑡) + 𝑢′(𝑡)) = 𝑒𝑎𝑡(𝐷 + 𝑎𝐼)𝑢(𝑡). 

Exponential shift rule for 𝐷2. For any function 𝑢(𝑡), 

𝐷2(𝑒𝑎𝑡𝑢(𝑡)) = 𝑒𝑎𝑡 (𝐷 + 𝑎𝐼)2𝑢(𝑡). 
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A similar statememt holds for 𝐷3, 𝐷4, … 

Proof. To derive this for 𝐷2 we just use the rule for 𝐷 twice. Higher powers are similar. 
Now it is clear (by linearity!) that the rule applies to any 𝑃 (𝐷): 
Exponential shift rule for 𝑃 (𝐷). For any function 𝑢(𝑡) and polynmial operator 𝑃 (𝐷), 

𝑃(𝐷)(𝑒𝑎𝑡𝑢(𝑡)) = 𝑒𝑎𝑡 𝑃 (𝐷 + 𝑎𝐼)𝑢(𝑡). 

6.6.3 Repeated roots 

We are now in a positition to explain the rule for solutions with repeated roots. Recall: 
Rule for repeated roots. If the characteristic equation 𝑃 (𝑟) has a repeated root 𝑟1 then 
both 𝑥1(𝑡) = 𝑒𝑟1𝑡 and 𝑥2(𝑡) = 𝑡𝑒𝑟1𝑡 are solutions to the homogeneous DE 𝑃 (𝐷)𝑥 = 0. 
‘Proof’ by example. Use the exponential shift rule to show the the equation 𝑥″−6𝑥′+9 = 
0 has general solution 𝑥(𝑡) = 𝑐1𝑒3𝑡 + 𝑐2𝑡𝑒3𝑡. 
Solution: First we rewrite this equation in terms of 𝑃 (𝐷). The characteristic polynomial 
is 

𝑃(𝑟) = 𝑟2 − 6𝑟 + 9 = (𝑟 − 3)2. 
So, 𝑃(𝐷) = (𝐷 − 3)2 and the differential equation is 𝑃 (𝐷)𝑥 = 0. 
We know 𝑃 (𝑟) has repeated roots 𝑟 = 3, 3. So, 𝑥(𝑡) = 𝑐1𝑒3𝑡 is a solution. Let’s vary the 
parameters to look for other solutions, i.e., let’s try 𝑥(𝑡) = 𝑒3𝑡𝑢(𝑡). We substitute this into 
the equation and apply the shift rule: 

𝑃 (𝐷)𝑥 = 0 
= 𝑃(𝐷)(𝑒3𝑡𝑢) 
= 𝑒3𝑡𝑃 (𝐷 + 3𝐼)𝑢 
= 𝑒3𝑡(𝐷 + 3𝐼 − 3𝐼)2𝑢 
= 𝑒3𝑡𝐷2𝑢. 

Thus we have the equation 𝐷2𝑢 = 0, i.e., 𝑢″(𝑡) = 0. This is an 18.01 problem and the 
solution is 𝑢(𝑡) = 𝑐1 + 𝑐2𝑡. Putting this back into 𝑥(𝑡) we have found 

𝑥(𝑡) = 𝑒3𝑡𝑢(𝑡) = 𝑒3𝑡(𝑐1 + 𝑐2𝑡), 
which is exactly what the rule for repeated roots rule said we would find. 

6.6.4 Complexification example 

Example 6.9. Use complexification to compute 𝐷3(𝑒𝑥 sin(𝑥)). 
Solution: We know that 𝑒𝑥 sin(𝑥) = Im(𝑒𝑥𝑒𝑖𝑥). So, 𝐷3(𝑒𝑥 sin(𝑥)) = Im (𝐷3(𝑒𝑥+𝑖𝑥)). Com-
puting this we have 

(𝐷3(𝑒𝑥+𝑖𝑥)) = (1 + 𝑖)3𝑒𝑥+𝑖𝑥 

= (
√

2𝑒𝑖𝜋/4)3𝑒𝑥𝑒𝑖𝑥 

= 23/2𝑒𝑖3𝜋/4𝑒𝑥𝑒𝑖𝑥 

= 23/2𝑒𝑥𝑒𝑖(𝑥+3𝜋/4) 
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Taking the imaginary part we have 

𝐷3(𝑒𝑥 sin(𝑥)) = Im (𝐷3(𝑒𝑥+𝑖𝑥)) = 23/2𝑒𝑥 sin(𝑥 + 3𝜋/4) . 

6.7 Exponential Response Formula 

This is one of our key formulas. We will use throughout the rest of ES.1803. 
Exponential Response Formula (ERF). Let 𝑃 (𝐷) be a polynomial differential operator. 
The inhomogeneous, constant coefficient, linear DE 𝑃 (𝐷)𝑦 = 𝑒𝑎𝑡 has a particular solution 

⎧𝑒𝑎𝑡/𝑃 (𝑎) provided 𝑃(𝑎) ≠ 0 
{𝑡𝑒𝑎𝑡/𝑃 ′(𝑎) if 𝑃(𝑎) = 0 and 𝑃 ′(𝑎) ≠ 0𝑦𝑝(𝑡) = ⎨𝑡2𝑒𝑎𝑡/𝑃 ″(𝑎) if 𝑃(𝑎) = 𝑃 ′(𝑎) = 0 and 𝑃 ″(𝑎) ≠ 0
{… …⎩ 

Simple proof: The substitution rule says 

𝑃 (𝐷)𝑒𝑎𝑡 = 𝑃 (𝑎)𝑒𝑎𝑡. (12) 

If 𝑃(𝑎) ≠ 0, then dividing 12 by 𝑃 (𝑎) proves the theorem in this case. 
If 𝑃(𝑎) = 0, then we differentiate 12 with respect to 𝑎. This gives 

𝑃(𝐷)(𝑡𝑒𝑎𝑡) = 𝑃 ′(𝑎)𝑒𝑎𝑡 + 𝑃(𝑎)𝑡𝑒𝑎𝑡. 

Since 𝑃(𝑎) = 0, the second term on the right is 0 and we have 𝑃 (𝐷)(𝑡𝑒𝑎𝑡) = 𝑃 ′(𝑎)𝑒𝑎𝑡. 
Dividing by 𝑃 ′(𝑎) proves the theorem in the case 𝑃(𝑎) = 0 and 𝑃 ′(𝑎) ≠ 0. 
We can continue in this manner for 𝑃(𝑎) = 𝑃 ′(𝑎) = 0 etc. 
Notes: 
1. We will call the cases where 𝑃(𝑎) = 0 the Extended Exponential Response Formula. 
2. You will need to know how to use the Extended ERF. You will not be asked to know 
the proof –although doing so is certainly good for you. 

Example 6.10. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 3𝐼 . 
(a) Find a solution to 𝑃 (𝐷)𝑥 = 𝑒3𝑡. 
(b) Find a solution to 𝑃 (𝐷)𝑥 = 𝑒−3𝑡. 
Note: The question only asks for one solution, not all of them. 
Solution: (a) The equation has exponential input, so we use the exponential response 
formula: 

𝑒3𝑡 𝑒3𝑡 
Compute, 𝑃(3) = 24, so the ERF gives 𝑥𝑝(𝑡) = 𝑃(3) 

= 24 
. 

(b) We try the ERF: Since 𝑃(−3) = 0, we need the extended ERF. 
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𝑡 𝑒−3𝑡 

𝑃 ′(−3) 
= −𝑡 𝑒−3𝑡 

𝑃(𝑟) = 𝑟2 + 4𝑟 + 3, so 𝑃 ′(𝑟) = 2𝑟 + 4 and 𝑃 ′(−3) = −2. Thus, 𝑥𝑝(𝑡) = .2 

In the next example we combine complex replacement and the ERF. 
Example 6.11. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 5𝐼 . Find a solution to 𝑃 (𝐷)𝑥 = cos(2𝑡). 
Solution: (Long form of the solution with explanatory details.) 
First we show the details of replacing cos(2𝑡) by the complex exponential 𝑒2𝑖𝑡. 
Let 𝑦(𝑡) satisfy 𝑃 (𝐷)𝑦 = sin(2𝑡). Then, by linearity, 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) satisfies the 
DE 

𝑃 (𝐷)𝑧 = 𝑃 (𝐷)𝑥 + 𝑖𝑃 (𝐷)𝑦 = cos(2𝑡) + 𝑖 sin(2𝑡) = 𝑒2𝑡𝑖 and 𝑥 = Re(𝑧). (13) 

Now, in preparation for using the ERF, we compute 𝑃(2𝑖) = 1 + 8𝑖. Next, we put this in 
polar form. 

|𝑃 (2𝑖)| = |1+8𝑖| = 
√

65 and 𝜙 = Arg(𝑃 (2𝑖)) = Arg(1 + 8𝑖) = tan−1(8) in quadrant 1. 

Thus we have 𝑃 (2𝑖) = 
√

65𝑒𝑖𝜙. The ERF gives us complex-valued solution to 13: 

𝑒2𝑖𝑡 𝑒2𝑖𝑡 𝑒𝑖(2𝑡−𝜙)
𝑧𝑝(𝑡) = = .𝑃 (2𝑖) 

= √65𝑒𝑖𝜙 
√

65 

All that’s left is to take the real part to get a solution to the original DE: 

cos(2𝑡 − 𝜙) 𝑥𝑝(𝑡) = Re(𝑧𝑝(𝑡)) = .√
65 

𝑒2𝑖 1To summarize: and = where 𝜙 = Arg(𝑃 (2𝑖)).𝑧𝑝 = 𝑃 (2𝑖) 
𝑥𝑝 |𝑃 (2𝑖)| cos(2𝑡 − 𝜙), 

(This example points to the sinusoidal response formula (SRF), which we will look at in 
the next section. 

Example 6.12. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 5𝐼 . Find a solution to 𝑃 (𝐷)𝑥 = 𝑒𝑡 cos(2𝑡). 
Solution: (Short form of solution.) Complexify the DE: 

= 𝑒(−1+2𝑖)𝑡,𝑃 (𝐷)𝑧 = 𝑒−𝑡𝑒2𝑡𝑖 where 𝑥 = Re(𝑧). 

Side work: 𝑃 (−1+2𝑖) = −2+4𝑖 = 2
√

5𝑒𝑖𝜙, where 𝜙 = Arg(−2 + 4𝑖) = tan−1(−2), in Q2 . 

𝑒(−1+2𝑖)𝑡 𝑒(−1+2𝑖)𝑡 𝑒−𝑡𝑒2𝑖𝑡 𝑒−𝑡𝑒𝑖(2𝑡−𝜙)
ERF: 𝑧𝑝(𝑡) = = = .𝑃 (−1 + 2𝑖) 

= −2 + 4𝑖 2
√

5𝑒𝑖𝜙 2
√

5 

𝑒−𝑡 
Therefore, 𝑥𝑝 = Re(𝑧𝑝) = 2

√
5 
cos(2𝑡 − 𝜙). 

Example 6.13. With the same 𝑃 (𝐷) as in the previous example, find a solution to
𝑃 (𝐷)𝑥 = 𝑒−2𝑡 cos(𝑡) 

Solution: Complexify: 𝑃 (𝐷)𝑧 = 𝑒−2𝑡𝑒𝑡𝑖 = 𝑒(−2+𝑖)𝑡 where 𝑥 = Re(𝑧). 
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Side work: 𝑃(−2 + 𝑖) = 0, so we’ll need 𝑃 ′(−2 + 𝑖): 
𝑃 ′(𝑟) = 2𝑟 + 4, So, 𝑃 ′(−2 + 𝑖) = 2𝑖 = 2𝑒𝑖𝜋/2. 

𝑡𝑒(−2+𝑖)𝑡 𝑡𝑒(−2+𝑖)𝑡 𝑡𝑒−2𝑡𝑒𝑖(𝑡−𝜋/2) 
Extended ERF: 𝑧𝑝(𝑡) = = .𝑃 ′(−2 + 𝑖) 

= 2𝑒𝑖𝜋/2 2 

𝑡𝑒−2𝑡 
Real part: 𝑥𝑝(𝑡) = Re(𝑧(𝑡)) = cos(𝑡 − 𝜋/2). 2 

You want to get good at this, we will do it a lot. 

6.8 The Sinusoidal Response Formula 

In the examples above we saw a pattern when the input was sinusoidal. We use it so often 
that we will codify the result as the Sinusoidal Response Formula. 
Sinusoidal Response Formula (SRF). Consider the polynomial differential equation 

𝑃 (𝐷)𝑥 = cos(𝜔𝑡) 

If 𝑃 (𝑖𝜔) ≠ 0 then the DE has a particular solution 

1𝑥𝑝(𝑡) = |𝑃 (𝑖𝜔)| cos(𝜔𝑡 − 𝜙(𝜔)), where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). 

If 𝑃 (𝑖𝜔) = 0 we have the Extended SRF. For example, if 𝑃 (𝑖𝜔) = 0 and 𝑃 ′(𝑖𝜔) ≠ 0 then 
the DE has a particular solution 

𝑡 cos(𝜔𝑡 − 𝜙(𝜔)) 𝑥𝑝(𝑡) = , where 𝜙(𝜔) = Arg(𝑃 ′(𝑖𝜔)). |𝑃 ′(𝑖𝜔)| 

Proof. To prove the extended SRF we just follow the steps from the examples above. 
1. Complexify: 𝑃(𝐷)𝑧 = 𝑒𝑖𝜔𝑡, where 𝑥 = Re(𝑧). 
2. Write 𝑃 ′(𝑖𝜔) in polar coordinates: 𝑃 ′(𝑖𝜔) = |𝑃 ′(𝑖𝜔)|𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = Arg(𝑃 ′(𝑖𝜔)). 

𝑡𝑒𝑖𝜔𝑡 𝑡𝑒𝑖(𝜔𝑡−𝜙(𝜔))
3. Use the extended ERF: 𝑧𝑝 = .𝑃 ′(𝑖𝜔) 

= |𝑃 ′(𝑖𝜔)| 
4. Find the real part of 𝑧𝑝: 

𝑥𝑝(𝑡) = Re(𝑧𝑝(𝑡) = Re (𝑡𝑒𝑖(𝜔𝑡−𝜙(𝜔)) 𝑡 cos(𝜔𝑡 − 𝜙(𝜔)) .|𝑃 (𝑖𝜔)| ) = |𝑃 (𝑖𝜔)| 

Remember: If in doubt when using the extended SRF, you can always derive it using 
complexification and the extended ERF. 

6.9 Physical models 

In this section we will look at three versions of the driven spring-mass-dashpot. These have 
analogies, which we won’t show here, in RLC circuits. 
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In all three examples, we assume linear damping with damping constant 𝑏. That is, if the 
damper is moving with velocity 𝑣 through the dashpot, then the force of the dashpot on 
the damper is −𝑏𝑣. This is a reasonable model if the dashpot is filled with a viscous oil. 
Example 6.14. Driving through the mass. In this version, there is a spring-mass-dashpot 
which is driven by a variable force applied to the mass as shown. The position of the mass 
is 𝑥(𝑡), with 𝑥 = 0 being the equilibrium position, i.e., the position where the spring is 
relaxed. 

m

F (t)

x(t)

k

damping coefficient b

To model this, we consider all the forces on the mass and then use Newton’s second law. 
The spring is stretched by 𝑥, so it exerts a restoring force: −𝑘𝑥. The velocity of the damper 
through the dashpot is 𝑥,̇ so it exerts a resisting force: −𝑏𝑥.̇ Thus Newton’s law gives 

𝑚𝑥̈ = −𝑘𝑥 − 𝑏𝑥 + 𝐹 (𝑡) ⇔̇ 𝑚 ̈ ̇𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝐹(𝑡) . 

Example 6.15. Driving through the spring. In this version, the spring-mass-dashpot is 
driven by a mechanism that positions the end of the spring at 𝑦(𝑡) as shown. As before, 
𝑥(𝑡) is position of the mass. We calibrate 𝑥 and 𝑦 so that 𝑥 = 0, 𝑦 = 0 is an equilibrium 
position of the system. 

m

y(t)
x(t)

k

damping coefficient b

To model this, we must consider all the forces on the mass. At time 𝑡, the spring is stretched 
an amount 𝑥(𝑡)−𝑦(𝑡), so the spring force is −𝑘(𝑥 − 𝑦). Likewise, the velocity of the damper 
through the dashpot is 𝑥,̇ so the damping force is −𝑏𝑥.̇ Thus, 

𝑚𝑥̈ = −𝑘(𝑥 − 𝑦) − 𝑏𝑥 ⇔̇ 𝑚 ̈ ̇𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑘𝑦 . 

Example 6.16. Driving through the dashpot. In this version, the spring-mass-dashpot is 
driven by a mechanism that positions the end of the dashpot at 𝑦(𝑡) as shown. Again, 𝑥(𝑡)
is position of the mass and 𝑥 = 0, 𝑦 = 0 is an equilibrium position of the system. 
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m

y(t)
x(t)

k

damping coefficient b

More briefly than the previous examples: 
spring force: −𝑘𝑥 
damping force: −𝑏( ̇ ̇𝑥 − 𝑦). 
Model: 𝑚𝑥̈ = −𝑘𝑥 − 𝑏(𝑥 − ̇̇ 𝑦) ⇔ 𝑚 ̈ ̇ 𝑦 ̇ .𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑏 

7 Solving linear DEs; method of undetermined coefficients 

7.1 Goals 

1. Be able to solve a linear differential equation by superpositioning a particular solution 
with the general homogeneous solution. 

2. Be able to find a particular solution to a linear constant coefficient differential equation 
with polynomial input. 

3. Be able to work with the operator 𝐷, e.g., be able to check if two operators are equal 
by checking their behavior on test functions. 

4. Understand the statement of the existence and uniqueness theorem for second-order 
linear DEs. 

7.2 Linear (not necessarily constant coefficient) DEs 

7.2.1 Nice simple operator notation 

The general linear differential equation has the form 

𝑦(𝑛) + 𝑝1(𝑡)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑡)𝑦 = 𝑓(𝑡) (14) 

We can simplify our notation by defining the differential operator 

𝐿 = 𝐷𝑛 + 𝑝1(𝑡)𝐷𝑛−1 + ⋯ + 𝑝𝑛(𝑡)𝐼. 
Think: In this case, we used the letter 𝐿 because it is a linear operator. You should recall 
what this means from Topic 6. 
Remember: to see how an operator behaves we apply it to a function. In this case: 

𝐿𝑥 = [𝐷𝑛 + 𝑝1(𝑡)𝐷𝑛−1 + ⋯ + 𝑝𝑛(𝑡)𝐼] 𝑥 = 𝑥(𝑛) + 𝑝1(𝑡)𝑥(𝑛−1) + ⋯ 𝑝𝑛(𝑡)𝑥. 
So we can rewrite Equation 14 as 

𝐿𝑦 = 𝑓(𝑡) (pretty simple looking). 



7 SOLVING LINEAR DES; METHOD OF UNDETERMINED COEFFICIENTS 58 

7.2.2 General solution to a linear inhomogeneous equation 

The superposition principle for a linear differential operator 𝐿 says the following: 

• If 𝑦𝑝 is a particular solution to the inhomogeneous equation 𝐿𝑦 = 𝑓 

• and 𝑦ℎ is a solution to the homogeneous equation 𝐿𝑦 = 0 

• then 𝑦 = 𝑦𝑝 + 𝑦ℎ is also a solution to 𝐿𝑦 = 𝑓 . 

The proof of this is a straightforward use of the definition of linearity: 

𝐿𝑦 = 𝐿(𝑦𝑝 + 𝑦ℎ) = 𝐿𝑦𝑝 + 𝐿𝑦ℎ = 𝑓 + 0 = 𝑓. 

7.2.3 Strategy for finding the general solution to 𝐿𝑦 = 𝑓 

1. Find the general solution to the homogeneous equation 𝐿𝑦 = 0. Call it 𝑦ℎ. 
2. Find any one particular solution to 𝐿𝑦 = 𝑓 . Call it 𝑦𝑝. 
3. The general solution to 𝐿𝑦 = 𝑓 is 𝑦 = 𝑦𝑝 + 𝑦ℎ. 

Example 7.1. Let 𝐿 = 𝐷2 + 4𝐷 + 5. Solve 𝐿𝑦 = 𝑒−𝑡. 
Solution: 1. First we solve the homogeneous equation: 𝐿𝑦 = 0. Since this is a constant 
coefficient equation, we can use the method of the characteristic equation. 
Characteristic equation: 𝑃(𝑟) = 𝑟2 + 4𝑟 + 5 = 0. This has roots 𝑟 = −2 ± 𝑖. 
General real-valued homogeneous solution: 

𝑦ℎ(𝑡) = 𝑐1𝑒−2𝑡 cos 𝑡 + 𝑐2𝑒−2𝑡 sin 𝑡. 

2. Find a particular solution using the exponential response formula: 

𝑒−𝑡 𝑒−𝑡 
𝑦𝑝(𝑡) = .𝑃 (−1) 

= 2 

3. The general real-valued solution to 𝐿𝑦 = 𝑒−𝑡 is a superposition of the particular and the 
homogeneous solutions: 

𝑒−𝑡 
𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡) = 2 

+ 𝑐1𝑒−2𝑡 cos 𝑡 + 𝑐2𝑒−2𝑡 sin 𝑡. 

7.3 The method of undetermined coefficients for polynomial input 

The method of undetermined coefficients for polynomial input is yet another version of the 
method of optimism. In this case, we try a polynomial solution and use algebra to find the 
coefficients. 

Example 7.2. Solve 𝑦″ + 5𝑦′ + 4𝑦 = 2𝑡 + 3. 
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Solution: We follow these steps: 
1. First, to find a particular solution: 
(a) We guess a trial solution of the form 𝑦𝑝(𝑡) = 𝐴𝑡 + 𝐵. Our guess has the same degree as 
the input. 
(b) Substitute the guess into the DE and do the algebra to compute the coefficients. Here 
is one way to present the calculation: 

𝑦𝑝 = 𝐴𝑡 + 𝐵 
𝑦𝑝

′ = 𝐴 
𝑦𝑝

″ = 0 
𝑦𝑝

″ + 5𝑦𝑝
′ + 4𝑦𝑝 = 5𝐴 + 4(𝐴𝑡 + 𝐵) = 4𝐴𝑡 + (5𝐴 + 4𝐵) 

Substituting this into the DE we get: 

4𝐴𝑡 + (5𝐴 + 4𝐵) = 2𝑡 + 3. 
Now we equate the coefficients on both sides to get two equations in two unknowns. 

Coefficients of 𝑡 ∶ 4𝐴 = 2 
Coefficients of 1 ∶ 5𝐴 +4𝐵 = 3 

This is called a triangular system of equations. It is easy: 𝐴 = 1/2, 𝐵 = 1/8. So,
1𝑦𝑝(𝑡) = 2𝑡 + 

1 
8. 

2. Next we find solution of homogeneous DE: 𝑦″ + 5𝑦′ + 4𝑦 = 0. 
Characteristic equation: 𝑟2 + 5𝑟 + 4 = 0. This has roots 𝑟 = −1, −4. 
General homogeneous solution: 𝑦ℎ(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−4𝑡. 
3. Finally, we use the superposition principle to write the general solution to our DE: 

1𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡) = 2𝑡 + 
1
8 

+ 𝑐1𝑒−𝑡 + 𝑐2𝑒−4𝑡. 

Example 7.3. Solve 𝑦″ + 5𝑦′ + 4𝑦 = 2𝑡2 + 3𝑡. 
Solution: Guess a trial solution of the form 𝑦𝑝(𝑡) = 𝐴𝑡2 + 𝐵𝑡 + 𝐶 (same degree as the 
input). Substitute the guess into the DE (we don’t show the algebra): 

𝑦𝑝
″ + 3𝑦𝑝

′ + 4𝑦𝑝 = 4𝐴𝑡2 + (10𝐴 + 4𝐵)𝑡 + (2𝐴 + 5𝐵 + 4𝐶) = 𝑡2 + 3𝑡. 
Equate the coefficients of the polynomials on both sides of the equation: 

Coeff. of 𝑡2: 4𝐴 = 1 
Coeff. of 𝑡: 10𝐴 +4𝐵 = 3 
Coeff. of 1: 5𝐴 +5𝐵 +4𝐶 = 0 

This triangular system is easy to solve: 𝐴 = 1/4, 𝐵 = 1/8, 𝐶 = −9/32. Therefore, a 
particular solution is 

1𝑦𝑝(𝑡) = 4𝑡2 + 
1
8𝑡 − 

15 
32. 
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We can use the homogeneous solution from previous example. So the general solution to 
the DE is 𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡). 

Example 7.4. What can go wrong (and how to fix it). Find a solution to 

𝑦″ + 𝑦′ = 𝑡 + 1. 

Solution: Since the input is a first-degree polynomial, we try a first-degree solution: 𝑦𝑝(𝑡) = 
𝐴𝑡 + 𝐵. Substituting this into the DE we get 

𝐴 = 𝑡 + 1. 

This can’t be solved! 
The problem is that there is no 𝑦 term in 𝑦″ + 𝑦′ (or rather, its coefficient is 0). The 
fix is to bump all degrees up by the order of the lowest derivative, i.e., try the solution 
𝑦𝑝 = 𝐴𝑡2 + 𝐵𝑡. 
Substitute: 2𝐴𝑡 + (2𝐴 + 𝐵) = 𝑡 + 1. 
Equate coefficients: 2𝐴 = 1; (2𝐴 + 𝐵) = 1. 
Solve for 𝐴 and 𝐵: 𝐴 = 1/2, 𝐵 = 0. 
Thus, 𝑦𝑝(𝑡) = 1

2𝑡2. 

Example 7.5. Find a solution to 𝑦‴ + 3𝑦″ = 𝑡. 
Solution: The input has degree 1 and the lowest order derivative in the DE is 2. So we 
guess 𝑦𝑝 = 𝐴𝑡3 + 𝐵𝑡2. 
Substitute: 18𝐴𝑡 + 6𝐴 + 6𝐵 = 𝑡. 
Equate coefficients: 18𝐴 = 1; 6𝐴 + 6𝐵 = 0. 
Solve for 𝐴 and 𝐵: 𝐴 = 1/18, 𝐵 = −1/18. 

𝑡3 
Thus, 𝑦𝑝(𝑡) = 18 

− 
𝑡2 

18 . 

Example 7.6. Exponential Shift Rule. Solve 𝑦″ + 5𝑦′ + 4𝑦 = 𝑒2𝑡(𝑡 + 3). 
Solution: In operator form this is 𝑃 (𝐷)𝑦 = 𝑒2𝑡(𝑡 + 3), where 𝑃(𝐷) = 𝐷2 + 5𝐷 + 4. 
First we find a particular solution by looking for one of the form 𝑦 = 𝑒2𝑡𝑢. We substitute 
this into the DE and use the exponential shift rule to pull out the exponential. The left-hand 
side of the equation is 

𝑃(𝐷)(𝑒2𝑡𝑢) = 𝑒2𝑡𝑃 (𝐷 + 2𝐼)𝑢 = 𝑒2𝑡((𝐷 + 2𝐼)2 + 5(𝐷 + 2𝐼) + 4𝐼)𝑢 = 𝑒2𝑡(𝐷2 + 9𝐷 + 18𝐼)𝑢. 

Equating this with the right-hand side we have 

𝑒2𝑡(𝐷2 + 9𝐷 + 18𝐼)𝑢 = 𝑒2𝑡(𝑡 + 3) or (𝐷2 + 9𝐷 + 18𝐼)𝑢 = 𝑡 + 3. 

The method of undetermined coefficients gives (we don’t show the algebra): 

1𝑢𝑝(𝑡) = 18𝑡 + 
5 
36. 
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Thus, 𝑦𝑝(𝑡) = 𝑒2𝑡𝑢𝑝(𝑡) = 𝑒2𝑡 (18
1 𝑡 + 36

5 ) . 

To finish solving we find the homogenous solution (again without showing the algebra).
𝑦ℎ(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−4𝑡. 

So the general solution to the DE is 𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡). 

7.4 A bit more on the operator 𝐷 

𝑑 We remind you that 𝐷 = 𝑑𝑡 , i.e., 𝐷𝑓 = 𝑓′ . 

7.4.1 Algebra with constant coefficients 

For polynomial differential operators, we can add and multiply in any order using the usual 
rules of arithmetic. 
Example 7.7. Show that (𝐷 − 3𝐼)(𝐷 − 2𝐼) = (𝐷 − 2𝐼)(𝐷 − 3𝐼) = 𝐷2 − 5𝐷 + 6𝐼 . 
Note. In words this says that the operators 𝐷 − 3𝐼 and 𝐷 − 2𝐼 commute and that the 
usual rules of multiplying polynomials apply. 
Solution: To show two operators are equal we have to show they give the same result when 
applied to any function. This is easy if a bit tedious: 

(𝐷 − 3𝐼)(𝐷 − 2𝐼)𝑓 = (𝐷 − 3𝐼)(𝑓′ − 2𝑓) = 𝑓″ − 3𝑓′ − 2𝑓′ + 6𝑓 = 𝑓″ − 5𝑓′ + 6𝑓 
(𝐷 − 2𝐼)(𝐷 − 3𝐼)𝑓 = (𝐷 − 2𝐼)(𝑓′ − 3𝑓) = 𝑓″ − 2𝑓′ − 3𝑓′ + 6𝑓 = 𝑓″ − 5𝑓′ + 6𝑓 

Since (𝐷 − 3𝐼)(𝐷 − 2𝐼) and (𝐷 − 2𝐼)(𝐷 − 3𝐼) give the same result when applied to a test 
function 𝑓 , they are the same operator. The right hand side of both of the equations above 
shows they both equal 𝐷2 − 5𝐷 + 6𝐼 , as stated in the problem. 
The next examples show that we must have constant coefficients for this to work. 

7.4.2 Algebra with non-constant coefficient operators 

Example 7.8. Let 𝑀 be the ‘multiplication by 𝑡’ operator, i.e., 𝑀𝑓 = 𝑡𝑓 . Show that
𝑀𝐷 ≠ 𝐷𝑀 , i.e., show 𝑀 and 𝐷 do not commute. 
Solution: We need to apply each operator to a test function 𝑓 and see that we get different 
results. 

𝑀𝐷𝑓 = 𝑀𝑓′ = 𝑡𝑓′ 

𝐷𝑀𝑓 = 𝐷(𝑡𝑓) = 𝑓 + 𝑡𝑓′ 

We see that the two are not equal, so the operators don’t commute. 
Notational note. It is common to use a shorthand and write the operator 𝑀 as 𝑡. So we 
could have written the example as: Show 𝑡𝐷 ≠ 𝐷𝑡 as operators. We will also sometimes 
write the operator 𝑀 as 𝑡𝐼 . 
Example 7.9. Show that (𝐷 − 𝑡𝐼)𝐷 ≠ 𝐷(𝐷 − 𝑡𝐼). 
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Solution: As is now usual, we show this by applying both operators to a test function 𝑦 
and seeing that we get different results. 

(𝐷 − 𝑡𝐼)𝐷𝑦 = (𝐷 − 𝑡𝐼)𝑦′ = 𝑦″ − 𝑡𝑦′ = (𝐷2 − 𝑡𝐷)𝑦. 
𝐷(𝐷 − 𝑡𝐼)𝑦 = 𝐷(𝑦′ − 𝑡𝑦) = 𝑦″ − 𝑡𝑦′ − 𝑦 = (𝐷2 − 𝑡𝐷 − 𝐼)𝑦. 

7.5 General theory of linear second-order equations 

In this section we’ll collect up much of what we’ve already done and add to it the existence 
and uniqueness theorem. 
The general second-order linear DE is 

𝐴(𝑡)𝑦″ + 𝐵(𝑡)𝑦′ + 𝐶(𝑡)𝑦 = 𝐹(𝑡). 

The standard form is 
𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑓(𝑡). (L) 

Example 7.10. Here is a linear second-order DE in general and standard form: 

General: 𝑡2𝑦″ + 𝑡𝑦′ + 𝑦 = 𝑒𝑡 

𝑒𝑡 𝑒𝑡 
Standard: 𝑦″ + 1

𝑡 𝑦′ + 
1 = 𝑡2 𝑡2 𝑡2 

Homogeneous (standard form): 

𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 0 (H) 

7.5.1 Superposition/Linearity 

The general principle of superposition says that, for a linear DE, superposition of inputs 
leads to superposition of outputs, i.e. 

If 𝑦1 solves 𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑓1(𝑡) and 𝑦2 solves 𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑓2(𝑡), 
then 𝑐1𝑦1 + 𝑐2𝑦2 solves 𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡). 

We have already made repeated use of the following two forms of the principle. 
1. Superposition of homogeneous solutions: If 𝑦1 and 𝑦2 are solutions to Equation H then 
so is 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2. 

2. Superposition of homogeneous and inhomogeneous solutions: If 𝑦𝑝 is a solution to Equa-
tion L and 𝑦ℎ is a solution to Equation H then 𝑦 = 𝑦𝑝 + 𝑦ℎ is also a solution to L. 
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7.5.2 Existence and Uniqueness 

The existence and uniqueness theorem is an important technical tool for us. When solving 
a differential equation it guarantees that we can find a solution and it also tells us when 
we’ve found them all. 
Theorem. Existence and uniqueness. Consider the initial value problem 

𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑓(𝑡); 𝑦(𝑎) = 𝑏0, 𝑦′(𝑎) = 𝑏1. 

If 𝑝, 𝑞 and 𝑓 are continuous on an interval 𝐼 containing the point 𝑎 then there exists a 
unique solution to this differential equation satisfying the given initial conditions. 
Important graphical note: The theorem tells us that the graphs of two different solutions 
to the DE can cross, but they cannot touch tangentially. 
(i) If they cross transversally, then they have the same position at the time they cross, but 
different velocities. 
(ii) If they did touch tangentially, then they would have the same position and the same 
velocity at the time they touch. By the existence and uniqueness theorem, there is exactly 
one solution –not two– with that position and velocity, so this is impossible. 

𝑦 

𝑎 

𝑦 
(a) (b) 

𝑡 𝑎 
𝑡 

Figure (a) shows transversal curves. These could both be solutions to a second-order DE 
that satisfies the conditions of the existence and uniqueness theorem. 
Figure (b) shows curves that touch tangentially. These cannot both be solutions to such a 
DE. 

8 Applications: stability 

8.1 Goals 

1. Know the meaning of the term ’linear time invariance’. 

2. Be able to apply linear time invariance to solve equations with input shifted in time. 

3. Know the definitions of mathematical and physical stability 

4. Be able to determine if a given 1st, 2nd or 3rd order system is stable. 



8 APPLICATIONS: STABILITY 64 

8.2 Time invariance 

Constant coefficient differential equations have the property of time invariance. Physically 
this means that the system responds the same way to an input no matter when the input 
is started. Mathematically we write this as follows. 
Definition. Time invariance of a constant coefficient system is the property that if 𝑥𝑝(𝑡)
satisfies 𝑃(𝐷)𝑥 = 𝑓(𝑡) then 𝑥𝑝(𝑡 − 𝑡𝑜) satisfies 𝑃(𝐷)𝑥 = 𝑓(𝑡 − 𝑡0). 
Example 8.1. We know that 𝑥′ + 3𝑥 = 𝑒−𝑡 has solution 𝑥1(𝑡) = 𝑒−𝑡/2. Time invariance 
says that 𝑥′ + 3𝑥 = 𝑒−(𝑡−3) has solution 𝑥2(𝑡) = 𝑥1(𝑡 − 3) = 𝑒−(𝑡−3)/2. The figure below 
illustrates that shifting the input in time simply shifts the output in time. 

t

x

0.5

1

1 3 5

Input e−t Shifted input e−(t−3)

Output e−t/2 Shifted output e−(t−3)/2

Physically this has to be the case –an exponential decay system doesn’t care what time it 
gets started. 

8.3 Mathematical stability 

We introduce the idea of stability with an example that shows how negative exponents 
imply that initial conditions do not affect the long-term behavior of a system. 
Example 8.2. Consider the DE 𝑥″ + 2𝑥′ + 3𝑥 = cos(2𝑡) 

(a) Solve the DE with initial conditions 𝑥(0) = 2, 𝑥′(0) = 3. Describe the long-term 
behavior of the solution. 
(b) Describe the long-term behavior of the solution with initial conditions 𝑥(0) = 1, 𝑥′(0) = 
1. 
Solution: (a) First we find the general homogeneous solution. 
Homogeneous solution. 
The characteristic equation is 𝑟2 + 2𝑟 + 3 = 0. This has roots: 𝑟 = −1 ± 

√
2 𝑖. 

So, 𝑥ℎ(𝑡) = 𝑐1𝑒−𝑡 cos(
√

2) 𝑡 + 𝑐2𝑒−𝑡 sin(
√

2 𝑡) 

Particular solution. 
Next we find a particular solution using the sinusoidal response formula. For this we need 
to compute 𝑃 (2𝑖) and put it in polar form.. 

𝑃(2𝑖) = −4 + 4𝑖 + 3 = −1 + 4𝑖 = 
√

17𝑒𝑖𝜙, where 𝜙 = Arg(𝑃 (2𝑖)) = tan−1(−4) in Q2 . 
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Now the SRF gives 𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙) .√

17 
General solution. 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) = 
cos(2𝑡 − 𝜙) + 𝑐1𝑒−𝑡 cos(

√
2 𝑡) + 𝑐2𝑒−𝑡 sin(

√
2 𝑡).√

17 

Finally, we use the initial conditions to determine the values of 𝑐1, 𝑐2. 

𝑥(0) = cos(−𝜙)/
√

17 + 𝑐1 = 2 ⟶ 𝑐1 = 35/17 

𝑥′(0) = −2 sin(−𝜙)/
√

17 − 𝑐1 + 𝑐2
√

2 = 3 ⟶ 𝑐2 = 39 ∗ 
√

2/17 

So, 𝑥(𝑡) = 
cos(2𝑡 − 𝜙) + 

35√
17 17𝑒−𝑡 cos(

√
2 𝑡) + 

39
17

√
2𝑒−𝑡 sin(

√
2 𝑡). 

The question also asks what happens to the system in the long-term, i.e., as 𝑡 → ∞. 
Looking at the solution above, we see that the terms with 𝑒−𝑡 go to 0. This means that, in 
the long-term, we have 

𝑥(𝑡) ≈ 𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙), for large 𝑡.√

17 

(b) The general solution is the same as in Part (b). Since it has negative exponents, 𝑥ℎ(𝑡) 
goes to 0 as 𝑡 goes to infinity. This means that, in the long-term, the solution 𝑥(𝑡) behaves 
exactly like the solution in Part (a), i.e., goes asymptotically to 𝑥𝑝(𝑡). 
This is the key point: the values of 𝑐1 and 𝑐2 will change with the initial conditions, but in 
the long-term, the terms with 𝑐1 and 𝑐2 will go to 0, i.e., the initial conditions don’t affect 
the long-term behavior of the system. 
This leads to our definition of stability and several equivalent ways of describing it. 
Definition. Mathematical stability means the long-term behavior doesn’t depend (sig-
nificantly) on initial conditions. 
Linear Systems. The system 𝐿𝑦 = 𝑓 is stable if the general homogeneous solution
𝑦ℎ(𝑡) → 0 as 𝑡 → ∞. In this case, 𝑦ℎ is called the transient. 
Linear CC Systems. The system 𝑃 (𝐷)𝑦 = 𝑓 is stable if all the characteristic roots have 
negative real part. 
For linear systems stability is determined by the homogeneous solution. That is, 

Stability is about the system not the input. 

Example 8.3. 𝑥′ + 2𝑥 = 𝑓(𝑡) is stable because 𝑥ℎ(𝑡) = 𝑐𝑒−2𝑡 → 0. 
Example 8.4. A constant coefficient system with roots −2 ± 3𝑖, −3 is stable. 
Example 8.5. A constant coefficient system with roots −2, −3, 4 is unstable. 
Example 8.6. 𝑃(𝐷)𝑦 = 𝑦″ + 8𝑦′ + 7𝑦 = 𝑓(𝑡) has characteristic roots -7, -1. These are 
negative so the system is stable. 
Example 8.7. 𝑃 (𝐷)𝑦 = 𝑦″ − 6𝑦′ + 25𝑦 = 𝑓 has characteristic roots 3 ± 4𝑖. The real parts 
of these roots are positive, so the system is not stable. 
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8.4 Stability criteria for linear CC systems 

1. Stability ⇔ for any IC 𝑦ℎ → 0 as 𝑡 → ∞. 

2. Stability ⇔ all characteristic roots have negative real part. 

3. Stability ⇔ all solutions to the homogeneous equation 𝑃 (𝐷)𝑦 = 0 go asymptotically 
to the homogeneous equilibrium solution 𝑦(𝑡) = 0. 

4. For a first-order system 𝑃(𝐷)𝑦 = 𝑦′ + 𝑘𝑦 = 𝑓(𝑡): 
Characteristic root = −𝑘. Therefore, stability ⇔ 𝑘 > 0. 

5. For a second-order system 𝑃(𝐷)𝑦 = 𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝑓(𝑡): 
Stability ⇔ 𝑚, 𝑏, 𝑘 all have the same sign (easy to prove). 

6. For a third-order system 𝑃 (𝐷)𝑦 = 𝑦‴ + 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓 : 
Stability ⇔ 𝑎, 𝑏, 𝑐 > 0 and 𝑎𝑏 > 𝑐 (harder to prove). 
This shows that third-order systems with positive coefficients aren’t necessarily stable. 
Example: An unstable system with positive coefficients

(𝑟 + 5)(𝑟 − 1 − 100𝑖)(𝑟 − 1 + 100𝑖) = 𝑟3 + 3𝑟2 + 96𝑟 + 505. 

7. The stability criteria for third-order systems is an example of the Routh-Hurwitz 
stability criteria, which is described below in the last section of this topic. 
Key point: This criteria is somewhat complicated, but it allows us to determine 
stability from the coefficients of a system. That is, it does not require finding the 
roots! 

8.5 Physical stability 

Definition. Physical stability. An unforced physical system with a single equilibrium is 
called stable if, for any initial conditions, it always returns to the equilibrium. 
Later in the course we will expand on the notion of stability for systems with multiple 
equilibria. The next example shows how physical and mathematical stability are related. 
Example 8.8. Damped-spring-mass system: Physical stability matches mathematical 
stability. The equilibrium solution is 𝑥(𝑡) = 0. The unforced system is modeled by 
𝑚𝑥′ + 𝑏𝑥′ + 𝑘𝑥 = 0. Since the roots have negative real part, 𝑥(𝑡) → 0, no matter what the 
initial conditions. 
Note: The previous section on stability criteria show that second-order physical systems, 
like springs and LRC circuits are always stable. This is not true of 3rd (and higher) order 
physical systems. An example is given in the in-class notes for this topic which discuss 
Maxwell’s model of steam engines. 

8.6 Routh-Hurwitz stability criteria 

This section is copied from Section S of the 18.03 Supplementary Notes by Arthur Mattuck. 
We include it for anyone who is interested. You are not responsible for knowing this in 
18.03. 
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Assume 𝑎0 > 0, the constant coefficient, linear system 

(𝑎0𝐷𝑛 + 𝑎1𝐷𝑛−1 + … + 𝑎𝑛−1𝐷 + 𝑎𝑛𝐼)𝑥 = 𝑓(𝑡) 

is stable if and only if 
in the matrix below, all of the 𝑛 principal minors (i.e., the subdeterminants in the upper 
left corner having sizes respectively 1, 2, … , 𝑛) are greater than 0. 

𝑎1 𝑎0 0 0 0 0 … 0
⎡ ⎤𝑎3 𝑎2 𝑎1 𝑎0 0 0 … 0⎢ ⎥
⎢ 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 … 0 ⎥
⎢ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⎥ 

… … …⎣𝑎2𝑛−1 𝑎2𝑛−2 𝑎2𝑛−3 𝑎2𝑛−4 𝑎𝑛⎦ 

In the matrix, we define 𝑎𝑘 = 0 if 𝑘 > 𝑛. Thus, for example, the last row always has just 
one non-zero entry, 𝑎𝑛. 
The proof of this is some fairly elaborate algebra, which we won’t reproduce here. 

Example 8.9. Apply the Routh-Hurwitz criteria to the system 

𝑥‴ + 𝑎𝑥″ + 𝑏𝑥′ + 𝑐𝑥 = 𝑓(𝑡). 
Solution: The matrix for this system is 

𝑎 1 0
⎡ ⎤⎢𝑐 𝑏 𝑎⎥
⎣0 0 𝑐⎦ 

The three principle minors are 

𝑎 1 0𝑎 1∣𝑎∣ = 𝑎, ∣ ∣ = 𝑎𝑏 − 𝑐, ∣𝑐 𝑏 𝑎∣ = 𝑐(𝑎𝑏 − 𝑐) 𝑐 𝑏 0 0 𝑐 

The Routh-Hurwitz criteria are that all three minors must be positive. That is, 

𝑎 > 0, 𝑎𝑏 − 𝑐 > 0, 𝑐(𝑎𝑏 − 𝑐) > 0 

Since 𝑎𝑏 −𝑐 > 0, the condition 𝑐(𝑎𝑏 − 𝑐) > 0 implies 𝑐 > 0. Then, since 𝑎 and 𝑐 are positive, 
the condition 𝑎𝑏 − 𝑐 > 0 implies 𝑏 > 0. Thus we have the criteria stated above: 
The system is stable is equivalent to 𝑎, 𝑏, 𝑐 are positive and 𝑎𝑏 > 𝑐. 

9 Applications: frequency response 

9.1 Goals 

1. Be able to use the engineering terminology of gain, phase lag, resonance. 

2. Understand that the gain depends on what we declare to be the input. 

3. Be able to find practical or pure resonant frequencies if they exist. 
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9.2 Review of a forced damped harmonic oscillator 

Note. You can also see the text by Edwards and Penney, sections 2.4 and 2.7 for a nice 
discussion of RLC circuits and practical resonance. 
Throughout this topic we will be considering damped harmonic oscillators. There will be 
important variations, but let’s start by reviewing one such system. 
Example 9.1. Consider the system 

𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝑘𝐵 cos(𝜔𝑡), (15) 

where 𝑚, 𝑏, 𝑘, 𝐵, and 𝜔 are constants. For this system, we will consider 𝐵 cos(𝜔𝑡) to be 
the input. Below we will discuss how the input and output are not mathematical notions. 
In an engineering context we must always say what we mean by the input and the output. 
Let’s review our method of solution for this equation 

1. Find the homogeneous solution. 
−𝑏 ± 

√
𝑏2 − 4𝑚𝑘 Characteristic roots = .2𝑚 

√|𝑏2 − 4𝑚𝑘|Let 𝛽 = . (Note the absolute value inside the square root.) There are three2𝑚 cases: 

(i) 𝑏2 − 4𝑚𝑘 > 0 (overdamped): 𝑦ℎ(𝑡) = 𝑐1𝑒(−𝑏/2𝑚+𝛽)𝑡 + 𝑐2𝑒(−𝑏/2𝑚−𝛽)𝑡. 

(ii) 𝑏2 − 4𝑚𝑘 < 0 (underdamped): 𝑦ℎ(𝑡) = 𝑐1𝑒−𝑏𝑡/2𝑚 cos(𝛽𝑡) + 𝑐2𝑒−𝑏𝑡/2𝑚 sin(𝛽𝑡). 

(iii) 𝑏2 − 4𝑚𝑘 = 0 (critically damped): 𝑦ℎ(𝑡) = 𝑐1𝑒−𝑏𝑡/2𝑚 + 𝑐2 𝑡𝑒−𝑏𝑡/2𝑚. 

2. Find a particular solution. 
We can apply the sinusoidal response formula (SRF) directly: 

𝑘𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) 𝑦𝑝(𝑡) = ,|𝑃 (𝑖𝜔)| 

where 𝑃 (𝑟) is the characteristic polynomial and 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). 
Because we will want to make small variations in this formula we will also review the method 
of complexification that leads to the sinusoidal response formula. 
Step 1. Complexify the DE to get: 

𝑚𝑧″ + 𝑏𝑧′ + 𝑘𝑧 = 𝑘𝐵𝑒𝑖𝜔𝑡, where 𝑦 = Re(𝑧). 

Step 2. We will need 𝑃 (𝑖𝜔) in polar form. The characteristic polynomial is 𝑃 (𝑟) = 
𝑚𝑟2 + 𝑏𝑟 + 𝑘. So, 

𝑃 (𝑖𝜔) = (𝑘 − 𝑚𝜔2) + 𝑖𝑏𝜔 = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 𝑒𝑖𝜙(𝜔), 

𝑏𝜔 where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)) = tan−1 (𝑘 − 𝑚𝜔2 ) in the first or second quadrants. 
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Think: Why is 𝜙(𝜔) in Q1 or Q2? 

Step 3. Use the exponential response formula to give a particular (complex-valued) solution: 

𝑘𝐵𝑒𝑖𝜔𝑡 𝑘𝐵𝑒𝑖(𝜔𝑡−𝜙(𝜔))
𝑧𝑝 = = (16)𝑃 (𝑖𝜔) √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 

. 

Step 4. Uncomplexify by taking the real part to find 𝑦𝑝. 

𝑘𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) 𝑦𝑝(𝑡) = Re(𝑧(𝑡)) = (17)√(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

Finally we use superposition to give the general real-valued solution: 

𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡). 

9.2.1 Terminology 

Still referring to the system in Example 9.1: 

• 𝑦ℎ(𝑡) is called the transient because it goes to 0 as 𝑡 goes to infinity. 
Think: How do we know that 𝑦ℎ(𝑡) decays to 0? 

• 𝑦𝑝(𝑡) is called the periodic or sinusoidal solution. 
Since 𝑦ℎ(𝑡) goes to 0, all solutions go asymptotically to 𝑦𝑝(𝑡). 

In thinking about this system, we are going to assume the 𝑚, 𝑏, and 𝑘 are fixed. We will 
imagine that we have a knob that can be used to set 𝜔 just before we need to solve the 
equation. Thus the response of the system will depend on the value of 𝜔. 
The following is a list of terms with short definitions. We will discuss them in much more 
detail below. 

• Input: When talking about gain and phase lag, we will always take the input to be 
sinusoidal, i.e., 𝐵 cos(𝜔𝑡). 

• Input frequency: The angular frequency of the sinusoidal input, i.e., 𝜔. (In radi-
ans/time.) 

• Input amplitude: The amplitude of the sinusoidal input. 

• Output amplitude: The amplitude of the sinusoidal solution. 

• Gain or amplitude response: the amount by which the system scales the input 
amplitude to get the output amplitude, i.e., the ratio of the output to input ampli-
tudes. 

• Complex gain: the ‘gain’ for the complexified equation, i.e., the ratio of output to 
input. 
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• Phase lag: the angle by which the output maximum trails the input maximum. 

• Time lag: the time by which the output maximum trails the input maximum. 

• Frequency response: both amplitude response and phase lag taken together. 

By looking at the solutions in Equations 16 and 17, we can give these quantities for the 
system discussed above. Pay attention to the abstract statements involving 𝑃 (𝑖𝜔), they are 
more useful to know than the formulas with square roots etc. 

• Input: 𝐵 cos(𝜔𝑡). 

• Input frequency: 𝜔. 

• Input amplitude: Since we declared the input to be 𝐵 cos(𝜔𝑡), the input amplitude 
is 𝐵. 

𝑘𝐵 𝑘𝐵 • Output amplitude: 𝐴(𝜔) = = |𝑃 (𝑖𝜔)| √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

• Gain: The gain is the ratio of the output amplitude to the input amplitude. So the 
gain 𝑔(𝜔) is 

𝑘𝐵/|𝑃 (𝑖𝜔)| 𝑘 𝑘 𝑔(𝜔) = = =𝐵 |𝑃 (𝑖𝜔)| √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

• Complex gain: In the complexified DE, we replace 𝑖𝜔 by 𝑠 to get the equation with 
exponential input: 

𝑃(𝐷)𝑧 = 𝐵𝑒𝑠𝑡, 
where 𝑠 can be any complex number, e.g., 𝑖𝜔 or 2 + 3𝑖. 

𝑘𝐵𝑒𝑠𝑡 
The input is 𝐵𝑒𝑠𝑡 and the output is The complex gain is the ratio of output 𝑃 (𝑠) 

. 

𝑘𝐵𝑒𝑠𝑡/𝑃(𝑠) 𝑘 𝑘 to input: = =𝐵𝑒𝑠𝑡 𝑃 (𝑠) 𝑚𝑠2 + 𝑏𝑠 + 𝑘 
. 

𝑏𝜔 • Phase lag: 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)) = tan−1 (𝑘 − 𝑚𝜔2 ) in Q1 or Q2. 

• Time lag: 𝜙(𝜔)/𝜔. 

9.2.2 Input and gain 

Important note: The gain depends on what we designate as the input. Do not try to 
memorize the exact formulas for gain in the example above. In other systems the formulas 
will be slightly different. You will need to think about each system! Pay attention to this 
in all the examples below. 
Example 9.2. Consider the damped harmonic oscillator driven by pushing on the end of 
the spring. If 𝑓(𝑡) is the displacement of the end from its equilibrium position, then the 
system is modeled by 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑘𝑓(𝑡). 
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In this case, it is reasonable to consider 𝑓(𝑡) to be the input. 
Taking 𝑓(𝑡) = 𝐵 cos(𝜔𝑡), this is exactly the DE from Example 9.1 above. We saw that this 

𝑘 has gain 𝑔(𝜔) = .|𝑃 (𝑖𝜔)| 
Example 9.3. Consider the system 

2𝑦″ + 1.5𝑦′ + 3𝑦 = 3𝐵 cos(𝜔𝑡) 

where we consider 𝐵 cos(𝜔𝑡) to be the input. (Note the input does not include the factor 
of 3). Plot the graph of the gain as a function of 𝜔. 
Solution: The sinusoidal solution to this equation is 

3𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) 3𝐵 𝑦𝑝 = = √(3 − 2𝜔2)2 + (1.5𝜔)2 
cos(𝜔𝑡−𝜙(𝜔)) (where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). |𝑃 (𝑖𝜔)| 

So the gain (output amplitude/input amplitude) is 

3𝑔(𝜔) = √(3 − 2𝜔2)2 + (1.5𝜔2)
. 

Here is the plot of 𝑔(𝜔): 
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Graph of the gain function for Example 9.3 

9.2.3 Phase Lag 

Example 9.4. In the figure below the blue curve is the input and the orange curve is the 
response. The damping causes a lag between the time the input reaches its maximum and 
the time the output reaches its maximum. 

• The figure shows that the output lags 𝜋 seconds behind the input. This is the time 
lag 

• The period of both input and response is 4𝜋 seconds. So the output is 𝜋/4𝜋 = 1/4
cycle = 𝜋/2 radians behind the input. The angle 𝜙 = 𝜋/2 radians is the phase lag. 
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time lag = φ/ω

The response lags behind the input by 𝜋 seconds or 𝜋/2 radians. 

The phase lag is important in many applications, but in this class we will be more interested 
in the gain. 

9.3 Amplitude response and practical resonance 

The gain is a function of 𝜔. It tells us the size of the system’s response at the given input 
frequency. If the gain has a relative maximum at 𝜔𝑟 > 0, then we call 𝜔𝑟 a practical 
resonant frequency. 
Example 9.5. (Finding practical resonance.) Consider the system from Example 9.3: 

2𝑦″ + 1.5𝑦′ + 3𝑦 = 3𝐵 cos(𝜔𝑡). 

As in that example, we consider 𝐵 cos(𝜔𝑡) to be the input. Find all the practical resonant 
frequencies. 
Solution: In Example 9.3 we found the gain function was 

3𝑔(𝜔) = √(3 − 2𝜔2)2 + (1.5𝜔)2 
. 

To find the practical resonance we have to find the value of 𝜔 where 𝑔(𝑤) has a maximum. 
There are a few tricks to shorten the algebra, but we’ll find the maximum straightforwardly 
by setting 𝑔′(𝜔) = 0. 

−8𝜔(3 − 2𝜔2) + 2(1.5)2𝜔 𝑔′(𝜔) = −3 ⋅ = 0.2 ((3 − 2𝜔2)2 + (1.5𝜔)2)3/2 

Setting the numerator to 0 and solving we find 𝜔 = 0 or 𝜔 = √9.75/8. We require the 
resonant frequency to be positive, so 𝜔𝑟 = √9.75/8 is the only practical resonant frequency. 
The graph below shows that this is, in fact, a maximum. (You can also check this using 
calculus.) 
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Graph of the gain function with practical resonance marked. 

Example 9.6. (A system with no practical resonant frequency.) Consider the system 

2𝑦″ + 10𝑦′ + 3𝑦 = 3𝐵 cos(𝜔𝑡), 

where we consider 𝐵 cos(𝜔𝑡) to be the input. Find all the practical resonant frequencies. 
Solution: This is similar to the previous example except that the damping constant is 
much larger. The algebra will be nearly identical, so we will skip past most of it. The gain 
is 3𝑔(𝜔) = √(3 − 2𝜔2)2 + (10𝜔)2 

. 

So, 
−8𝜔(3 − 2𝜔2) + 2(10)2𝜔 𝑔′(𝜔) = −3 ⋅ = 0.2 ((3 − 2𝜔2)2 + (10𝜔)2)3/2 

Setting the numerator to 0 and solving for 𝜔 we find 𝜔 = 0 or 𝜔 = 
√

−11. Since neither of 
these is a positive real number we say that there is no practical resonant frequency. 

Example 9.7. Consider the system 

𝑚𝑦″ + 𝑏𝑦′ + 𝑘𝑦 = 𝐹0 cos(𝜔𝑡) 

where we consider 𝐹0 cos(𝜔𝑡) to be the input. Find all the practical resonant frequencies. 
Solution: The sinusoidal solution to this equation is 

𝐹0 cos(𝜔𝑡 − 𝜙(𝜔)) 𝐹0𝑦𝑝 = = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
cos(𝜔𝑡−𝜙(𝜔)), where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔). |𝑃 (𝑖𝜔)| 

Therefore, the gain (output amplitude/input amplitude) is 

1𝑔(𝜔) = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

Here we consider the system parameters 𝑚, 𝑏, 𝑘 to be fixed, while the gain depends on the 
input parameter 𝜔. 
For this example, we’ll show you a standard trick for finding the maximum of 𝑔(𝜔). The 
expression for 𝑔(𝜔) is one over a square root. So 𝑔(𝜔) has a maximum where the expression 
under the square root has a minimum. That is, we need to find the minima of 

1ℎ(𝜔) = = (𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2.𝑔2 



ω

g(ω)

ωr ω

g(ω)

9 APPLICATIONS: FREQUENCY RESPONSE 74 

Setting the derivative equal to 0 and solving for 𝜔 we get 

ℎ′(𝜔) = −4𝑚𝜔(𝑘 − 𝑚𝜔2) + 2𝑏2𝜔 = 0. 
So, 𝜔 = 0 or 𝜔 = √𝑘/𝑚 − 𝑏2/2𝑚2. Since we require 𝜔𝑟 to be positive we have the following 
result. 

• If 𝑘/𝑚 − 𝑏2/2𝑚2 > 0 then this system has practical resonance at 

𝜔𝑟 = √𝑘/𝑚 − 𝑏2/2𝑚2 = √𝜔0
2 − 𝑏2/2𝑚2. 

Here, the last expression gives 𝜔𝑟 in terms of the natural frequency 𝜔0 = √𝑘/𝑚. 

• If 𝑘/𝑚 − 𝑏2/2𝑚2 < 0 then the system does not have a practical resonant frequency. 

𝜔𝑟 = √𝜔0
2 − 𝑏2/2𝑚2 𝜔0

2 − 𝑏2/2𝑚2 < 0 
(practical resonance). (no practical resonance). 

Notice that in this case if the damping gets too large there is no practical resonance. 
For this example, see the mathlet 
https://mathlets.org/mathlets/amplitude-and-phase-second-order-iv/. 
In the text by Edwards and Penney, section 2.7 on radio circuits gives another another 
example and an application of this. 

9.4 The undamped forced system 

For a spring-mass system without any damping, we have what is called a pure resonant 
frequency. At this frequency, the amplitude of the response keeps growing to infinity. In 
this case, we say the gain is infinite. We show this with a somewhat general example 
using symbols for the coefficients. 
Example 9.8. Solve the DE 𝑚𝑦″ + 𝑘𝑦 = 𝐵 cos(𝜔𝑡). 
Solution: We will only find the particular solution. You can supply the homogeneous 
solution. We start by doing some calculations we will need later. 
1. The natural frequency of the system is 𝜔0 = √𝑘/𝑚. 
2. Characteristic polynomial: 𝑃 (𝑟) = 𝑚𝑟2 + 𝑘. We will need both 𝑃 (𝑖𝜔) and 𝑃 ′(𝑖𝜔) in 
polar form. 

if 𝑘 − 𝑚𝜔2 > 0, i.e., 𝜔 < 𝜔0𝑃 (𝑖𝜔) = 𝑘 − 𝑚𝜔2 = |𝑘 − 𝑚𝜔2|𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = {0 
𝜋 if 𝑘 − 𝑚𝜔2 < 0, i.e., 𝜔 > 𝜔0 

𝑃 ′(𝑖𝜔) = 2𝑖𝑚𝜔 = 2𝑚𝜔𝑒𝑖𝜋/2. 

https://mathlets.org/mathlets/amplitude-and-phase-second-order-iv/
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Note that 𝑃 (𝑖𝜔) = 0 exactly when 𝜔 = √𝑘/𝑚 = 𝜔0. 
Now use the sinusoidal response formula to get 

𝐵 cos(𝜔𝑡)⎧ |𝑘−𝑚𝜔2| if 𝜔 < 𝜔0𝐵 cos(𝜔𝑡 − 𝜙(𝜔)) {𝑦𝑝(𝑡) = = |𝑃 (𝑖𝜔)| ⎨{𝐵 cos(𝜔𝑡−𝜋) ⎩ |𝑘−𝑚𝜔2| if 𝜔 > 𝜔0 

𝐵𝑡 cos(𝜔0𝑡 − 𝜙(𝜔0)) 𝐵 𝑡 cos(𝜔0𝑡 − 𝜋/2) 𝑦𝑝(𝑡) = = if 𝜔 = 𝜔0.|𝑃 ′(𝑖𝜔0)| 2𝑚𝜔0 

Note: In the case 𝜔 = 𝜔0, we had to use the extended SRF since 𝑃 (𝑖𝜔0) = 0. 
Also note, the factor of 𝑡 in the case 𝜔 = 𝜔0. 

9.4.1 Resonance and amplitude response of the undamped harmonic oscillator 

Now let’s take 𝐵 cos(𝜔𝑡) to be the input to the system in the previous example. So the gain 
(output amplitude/input amplitude) for the system is 

1𝑔(𝜔) = .𝑚|𝜔0
2 − 𝜔2| 

The right hand plot below shows 𝑔(𝜔) as a function of 𝜔. There is a vertical asymptote at 
𝜔 = 𝜔0. Note that the graph is similar to the graph of the gain for the damped harmonic 
oscillator except that the peak is infinitely high. Since we don’t have a sinusoidal solution 
when 𝜔 = 𝜔0 there is no well defined gain at 𝜔0. However, given the graphs of the gain and 
the solution when 𝜔 = 𝜔0, it is conventional to say that the system has infinite gain at the 
frequency 𝜔 = 𝜔0. 
Let’s examine what this means. When 𝜔 = 𝜔0 we have 

𝐵 𝑡 cos(𝜔0𝑡 − 𝜋/2) 𝐵 𝑡 sin(𝜔0𝑡)𝑦𝑝(𝑡) = = .2𝑚𝜔0 2𝑚𝜔0 

This is called pure resonance. The natural frequency 𝜔0 is called the pure resonant 
frequency or simply the resonant frequency of the system. 
The graph of 𝑦𝑝(𝑡) is shown in the left-hand plot below. Notice that the response is oscil-
latory but not periodic. The amplitude keeps growing in time because of the factor of 𝑡 in
𝑦𝑝(𝑡). 
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Resonance response (𝜔 = 𝜔0) 
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Undamped amplitude response 

Note carefully the different units and different meanings in the plots. The left-hand 
plot is output vs. time for a fixed input frequency. The right-hand plot is gain vs. input 
frequency. 𝑥(𝑡) and 𝑔(𝜔) are in physical units dependent on the system, 𝑡 is in time, 𝜔 is 
in radians/time. 
Physically, for the undamped oscillator, resonance happens because the input force is in 
sync with the natural frequency of the system and every push adds energy, so the energy 
in the system keeps growing to infinity. If the input frequency is different from 𝜔0, then 
sometimes the input force acts to add energy and sometimes it removes energy from the 
system, so the energy stays bounded. Likewise, if there is damping then the damping force 
is always removing energy from the system and a sinusoidal input can’t cause the energy 
to grow without bound. 

9.5 Slight variation of the undamped oscillator 

Example 9.9. Consider the system 𝑚𝑦″ + 𝑘𝑦 = 𝑓′(𝑡) where we take 𝑓(𝑡) to be the input 
and 𝑦(𝑡) the response. Solve the DE when 𝑓(𝑡) = 𝐵 cos(𝜔𝑡) and give the gain of the system. 
Solution: To find a particular solution we will complexify first and then take the derivative 
of 𝑓(𝑡). This is generally slightly easier than taking the derivative and then complexifying. 
The complexified DE becomes 

𝑚𝑧″ + 𝑘𝑧 = (𝐵𝑒𝑖𝜔𝑡)′ = 𝑖𝐵𝜔𝑒𝑖𝜔𝑡, with 𝑦 = Re(𝑧). 

As in Example 9.8, we have the following. 
The natural frequency of the system is 𝜔0 = √𝑘/𝑚. 

if 𝑘 − 𝑚𝜔2 > 0, i.e., 𝜔 < 𝜔0𝑃 (𝑖𝜔) = 𝑘 − 𝑚𝜔2 = |𝑘 − 𝑚𝜔2|𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = {0 
𝜋 if 𝑘 − 𝑚𝜔2 < 0, i.e., 𝜔 > 𝜔0 

𝑃 ′(𝑖𝜔) = 2𝑖𝑚𝜔 = 2𝑚𝜔𝑒𝑖𝜋/2. 
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Now use the exponential response formula (and its extended version) to get 

⎧ 𝐵𝑖𝜔𝑒𝑖𝜔𝑡 𝐵𝜔𝑒𝑖𝜋/2𝑒𝑖𝜔𝑡 
= if 𝜔 ≠ 𝜔0, where 𝜙(𝜔) = Arg(𝑘 − 𝑚𝜔2){𝑘 − 𝑚𝜔2 |𝑘 − 𝑚𝜔2|𝑒𝑖𝜙(𝜔)

𝑧𝑝(𝑡) = ⎨𝐵 𝑡𝑖𝜔𝑒𝑖𝜔0𝑡 𝐵 𝑡𝜔𝑒𝑖𝜋/2𝜔𝑒𝑖𝜔0𝑡 
{ = if 𝜔 = 𝜔0⎩ 2𝑖𝑚𝜔0 2𝑚𝜔0𝑒𝑖𝜋/2 

So, 
⎧𝐵𝜔 cos(𝜔𝑡 + 𝜋/2) if 𝜔 < 𝜔0|𝑘 − 𝑚𝜔2|
{𝐵𝜔 cos(𝜔𝑡 − 𝜋/2)𝑦𝑝(𝑡) = Re(𝑧𝑝) = if 𝜔 > 𝜔0⎨ |𝑘 − 𝑚𝜔2|

𝐵 𝑡𝜔 cos(𝜔0𝑡){ if 𝜔 = 𝜔0⎩ 2𝑚𝜔0 

Since the input is 𝐵 cos(𝜔𝑡), we have the gain is 

𝜔 𝑔(𝜔) = |𝑘 − 𝑚𝜔2| 

As in Example 9.8, there is a vertical asymptote at 𝜔 = 𝜔0. We also see the gain is 0 when
𝜔 = 0. The amplitude response curve is shown below. 

ω

g(ω)

ω0

9.5.1 Zero-pole diagrams and gain 

If there is time we will discuss this in class. 

10 Direction fields, integral curves, existence of solutions 

10.1 Goals 

All of our goals refer to the first-order differential equation 𝑦′ = 𝑓(𝑥, 𝑦). 

1. Know the general form 𝑦′ = 𝑓(𝑥, 𝑦) for a first-order DE. 

2. Be able to use the method of isoclines to sketch the direction field of the DE and to 
sketch some integral (solution) curves. 
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3. Know the definition of a nullcline and be able to use nullclines to get a qualitative 
understanding of the solutions to a given DE. 

4. Know the statement of the existence and uniqueness theorem for first-order DEs. 

5. Be able to use, isoclines and known integral curves to form fences and funnels for the 
integral curves of a given DE. 

10.2 Introduction 

This unit is about first-order –not necessarily linear– differential equations. If 𝑥 is the 
independent variable and 𝑦(𝑥) is a function of 𝑥 then the general first-order DE is 

𝑦′(𝑥) = 𝑓(𝑥, 𝑦), 

where 𝑓(𝑥, 𝑦) is some function. 
Examples: 𝑦′ = 𝑥 − 𝑦 + 1, 𝑦′ = 𝑥2 + 𝑦2, ... 
In general, it is not possible to solve first-order equations exactly. Nonetheless without 
solving we can find approximate numerical solutions, use visual techniques to understand 
the systems and determine their long-term behavior. 
In this topic we will explore visualization using direction fields. We will also state a gen-
eral existence and uniqueness theorem that will give us confidence that our approximate 
techniques are approximating something that really exists. 

10.2.1 Integral curves 

Here is as good a place as any to introduce the term integral curve. An integral curve for 
a differential equation is the graph of a solution, i.e., a solution curve. 

10.3 Direction or slope fields 

We will motivate our use of direction fields with a simple example. 
Example 10.1. Suppose you had the first-order differential equation 

𝑦′ = 𝑓(𝑥, 𝑦) (18) 

If you knew a solution you could simply graph it. Then at some points on the graph you 
could add a direction field element, i.e., a little tangent segment, along the graph. The first 
figure below shows just the curve. The second shows the and the curve with direction field 
elements added. The third figure shows just the direction field elements. Notice how well 
they represent the curve! 
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The slope elements show the shape of the curve. 
We will also use the term slope element for direction field element. 
Important point. The important point is that while we might not know the solution to 
Equation (18) at any point (𝑥, 𝑦) we know the slope of the solution that goes through (𝑥, 𝑦), 
i.e., slope = 𝑓(𝑥, 𝑦). This means we can always draw the direction element at (𝑥, 𝑦). As we 
saw, these elements allow us to visualize the curves quite nicely. 

10.4 Drawing direction fields using isoclines 

The basic algorithm for drawing the direction field for Equation (18) is to choose a lot of 
points (𝑥, 𝑦) and draw a slope element at each one. (As defined above, a slope element 
is a “little segment” of slope 𝑓(𝑥, 𝑦).) The key idea is that the (unknown) solution curve 
through (𝑥, 𝑦) must have the same slope as the slope element. 
Computer: With a computer drawing the slope field is easy, you just have the computer 
draw elements at an evenly spaced set grid of points. One tool we will use for this is the 
Isoclines mathlet: https://mathlets.org/mathlets/isoclines/. 
By hand: People are not as patient as computers, so by hand we will use the method of 
isoclines. This limits the amount of computation needed and gives us some information 
which is not as readily accessible in the computer method. 
Definition. The isocline of slope 𝑚 for 𝑦′ = 𝑓(𝑥, 𝑦) is the set of points (𝑥, 𝑦) where
𝑓(𝑥, 𝑦) = 𝑚, i.e., a set of points where all the slope elements have the same slope. (You can 
parse the word isocline as ’iso = same’ and ’cline = slope’.) 
Example 10.2. (Drawing a direction field using isoclines.) Consider the initial value 
problem (IVP) 

𝑦′ = √𝑥2 + 𝑦2; 𝑦(0) = 0.5. 
Draw a few isoclines (𝑦′ = constant) for the DE and sketch the solution curve to the IVP. 
Solution: Step 1 is to draw the isoclines. We need to find the set of points where 𝑓(𝑥, 𝑦) = 
𝑚 for various constants 𝑚. We’ll draw isoclines for 𝑚 = 0.5, 1, 1.5, 2. 
𝑚 = 1: In our example, the isocline 𝑓(𝑥, 𝑦) = 1 = √𝑥2 + 𝑦2 is a circle of radius 1 in the 
𝑥𝑦-plane. We plot it by drawing the circle and then adding direction field elements of slope 
1 along the circle. (See first figure below.) 
Likewise for 𝑚 = 0.5 the isocline is a circle of radius 1/2. We draw the circle and add 
direction field elements of slope 1/2 along it. We repeat this for 𝑚 = 1.5 and 𝑚 = 2. (See 
second figure below.) 
Step 2 is to sketch the solution curve 𝑦 = 𝑦(𝑥) through the initial position (0,0.5). At each 

https://mathlets.org/mathlets/isoclines/
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isocline the slope of the curve, 𝑦′(𝑥), should be the same as the slope of the direction field 
element on the isocline. 
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Isoclines and solution curve 

Example 10.3. Redo the previous example using a computer to draw the slope elements 
at an array of points in the plane. 
Solution: We instructed the computer to systematically loop through a two dimensional 
array of points. At each point it computes the direction element slope 𝑓(𝑥, 𝑦) and draws 
the element. (The integral curve was drawn using numerical methods discussed in the next 
topic.) 
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Computer generated slope field 

10.4.1 Nullclines 

The nullcline for a first-order DE is the isocline corresponding to slope 𝑚 = 0. The next 
example shows how just drawing the isocline can give a sense of how the solutions behave. 
Example 10.4. Consider the DE 𝑦′ = 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦 + 1. First draw the nullcline. Then 
indicate regions where the slope field has positive slope and those with negative slope. Use 
this information to guess at some solution curves 𝑦 = 𝑦(𝑥). Describe in words how the 
solution curves behave. 
Solution: The nullcline is where 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦 + 1 = 0, i.e., 𝑦 = 𝑥 + 1. This happens to 
be a line. We show it with its slope elements in the figure below. The nullcline divides the 
plane into two regions: above the nullcline the slope field is negative and below it, the field 
is positive. 
With just this information, we can see that integral curves that start above the nullcline 
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must decrease until they pass through the nullcline (with 0 slope) and then turn upwards. 
Those that start below the nullcline are always increasing. 
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Nullcline and guessed integral curves for 𝑦′ = 𝑥 − 𝑦 + 1. 
Note. The existence and uniqueness theorem in the next section says that the solution 
curves can’t cross. This means that it is a good guess –though not guaranteed– that the 
solution curves approach each other asymptotically as shown. 

Example 10.5. Redo the previous example and include isoclines with 𝑚 = −2, −1, 0, 1, 2, 3. 
Use the direction field to sketch a few solutions. 
Solution: For any 𝑚 the isocline 𝑓(𝑥, 𝑦) = 𝑚 = 𝑥 − 𝑦 + 1 is a line 𝑦 = 𝑥 + 1 − 𝑚. The 
figure shows the requested isoclines with their slope elements 
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It so happens (this is unusual, don’t expect it in other problems) that the isocline for 
𝑚 = 1 is also an integral curve. All solutions go asymptotically to this curve 𝑦 = 𝑥 

Note. This example is a constant coefficient linear DE, so we could have found solutions 
analytically. This is certainly not the case for most first-order equations. 

10.5 Existence and Uniqueness 

Theorem. Existence and uniqueness for first-order differential equations. 
Consider the initial value problem 𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0. 
1. (Existence) If 𝑓(𝑥, 𝑦) is continuous then there is a solution. 
2. (Uniqueness) If 𝜕𝑓

𝜕𝑦 is also continuous then the solution is unique. 
The proof of this involves more analysis than we have time for in 1803. For those who are 
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interested, we’ve posted a note describing the Picard method of proof for this theorem. 
Notes 1. The theorem says that if you have two different solutions 𝑦1(𝑥) and 𝑦2(𝑥), then 
for any 𝑥0 the functions are not equal, i.e., 𝑦1(𝑥0) ≠ 𝑦2(𝑥0). 
2. Graphically this means that integral curves never cross. 
3. This theorem is important. It allows us to talk confidently about solutions without 
actually finding them. 

10.5.1 Examples and counterexamples 

As mathematicians it is important to remember that theorems have hypotheses and that 
we should check its hypotheses before using a theorem. The examples here show that the 
existence and uniqueness theorem can “fail” if its hypotheses are not met. 
Important. Before reading these examples, remember that our main interest is in the 
cases where existence and uniqueness is true. Our most common application of this will be 
to assert that integral curves don’t intersect. 
Example 10.6. (Our most important DE) The IVP 𝑦′ = 𝑦; 𝑦(𝑥0) = 𝑦0 satisfies the 
hypotheses of the existence and uniqueness theorem. Therefore, it has a solution and (for 
different initial conditions) the integral curves don’t cross. 
Example 10.7. (Non-existence and non-uniqueness) (See picture.) The DE 𝑦′ = 𝑦/𝑥 + 𝑥 
doesn’t satisfy the hypotheses for the existence and uniqueness theorem because 𝑓(𝑥, 𝑦) = 
𝑦/𝑥 + 𝑥 is not continuous at 𝑥 = 0. In fact, uniqueness fails because all solutions satisfy 
the same initial condition 𝑦(0) = 0. This is shown in the figure below. 
Proof. This is a linear equation, so, using the variation of parameters formula, we find that 
the general solution is 𝑦(𝑥) = 𝑥2 + 𝐶𝑥. All of these solutions satisfy the initial condition 
𝑦(0) = 0. 
Note, the existence part of the theorem can also fail because there are no solutions that 
satisfy the initial condition, e.g., 𝑦(0) = 1. 
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A case where uniqueness fails: 𝑦′ = 𝑦/𝑥 + 𝑥 

Note. Away from 𝑥 0 the function 𝑓(𝑥, 𝑦) is continuous, as is 𝜕𝑓 = 𝜕𝑦 , so existence and 
uniqueness holds, i.e., exactly one integral curve goes through any point (𝑥0, 𝑦0) as long as
𝑥0 ≠ 0. 

Example 10.8. Here is our standard example where a solution exists and is unique, but 



10 DIRECTION FIELDS, INTEGRAL CURVES, EXISTENCE OF SOLUTIONS 83 

it is only defined on an interval –not the entire number line. The IVP 𝑦′ = 𝑦2; 𝑦(0) = 1
1has solution 𝑦 = 1−𝑥 . 

The solution exists and is unique –and is only defined on the interval (−∞, 1). 
Very briefly, here’s an example where solutions always exist, but are not necessarily unique. 
Example 10.9. Consider the DE 𝑦′ = 2√|𝑦| = 𝑓(𝑥, 𝑦) 
Since 𝑓(𝑥, 𝑦) continuous, the theorem says that solutions exist. For example, 

𝜕𝑓 {⎧√1
𝑦 for 𝑦 > 0 

=𝜕𝑦 ⎨{− 1 for 𝑦 < 0 ⎩ √|𝑦| 

is not continuous when 𝑦 = 0. So the existence and uniqueness theorem doesn’t guarantee 
for 𝑥 ≥ 0 uniqueness. In fact, there are two solutions: 𝑦1(𝑥) = {𝑥2 

and 𝑦2(𝑥) = 0,−𝑥2 for 𝑥 ≤ 0 , 

which both have initial condition 𝑦(0) = 0, i.e., solutions are not unique. 

10.6 Squeezing: fences and funnels 

In this section, as usual, we are looking at the first-order equation 

𝑦′ = 𝑓(𝑥, 𝑦). 

To avoid problems we will assume that the existence and uniqueness theorem always holds, 
so that integral curves never intersect. Our goal is to see how we can use isoclines and 
known solutions to understand how unknown solutions will behave. 
Both isoclines and integral curves can act as fences which other solution curves can’t cross. 
Together they can form a funnel, which forces other solutions to stay between them and 
go asymptotically to some function. We explain this with some simple figures, which show 
isoclines and integral curves in several configurations. 
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Consider the upper isocline in the left hand figure. Since the slope field crosses from above 
to below this isocline, integral curves must do the same. That is, any solution that is above 
the isocline can cross to below, but any solution that is below the isocline must remain 
below it. We say, “integral curves can’t cross an isocline against the slope field”. 
Since a fence is something that stops you from crossing a boundary, we call the upper 
isocline an upper fence on solutions, i.e., from below it looks like a fence to any solution. 
(From above, a solution does not see a fence and happily crosses it.) 
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Likewise, the lower isocline is a lower fence on solutions. That is, any solution that starts 
above it must stay above it. 
Thus any solution, e.g., the blue dashed curve, that starts between the two fences must stay 
between them. 
In the middle figure, all three curves are integral curves. The existence and uniqueness 
theorem says that integral curves can’t intersect each other. This means that integral 
curves act as fences (both upper and lower) for other integral curves. This is illustrated 
in the middle figure, where the two solid blue integral curves constrain the blue dashed 
integral curve to stay between them. 
Notice, that in the middle figure, the two fences become asymptotically closer. This says 
that the blue dashed curve will be squeezed between the fences and become asymptotically 
closer to them. In this case we say that the two integral curves form a funnel and solutions 
that start between them are asymptotically the same. 
In the right hand figure we have an isocline acting as an upper fence and an integral curve 
as a lower fence. Together they form a funnel. Just like the funnel in the middle figure any 
solution that starts between them is funneled between them. 
Example 10.10. Look at the right hand figure. Suppose that 𝑦(𝑥) is the solution to the 
IVP 𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(0) = 0.5. Estimate 𝑦(100). 
Solution: Since the integral curve of 𝑦 starts inside the funnel, it must stay there and be 
squeezed down to 0. Looking at the scale on the 𝑥-axis, we see that 𝑥 = 100 is very far to 
the right, so 𝑦(100) ≈ 0. 

11 Numerical methods for first-order differential equations 

11.1 Goals 

1. Be able to compute approximate solutions by hand using Euler’s method. 

2. Be able to compute the concavity of a solution and say whether Euler’s method gives 
an over or under-estimate, 

3. Know some of the ways numerical methods can fail or give misleading results 

4. Know the broad outline of how other numerical methods work and understand that 
many of them are really fancier versions of Euler’s method. 

11.2 Introduction 

In this topic we will look at numerical methods for approximating solutions to differential 
equations. Just like numerical integration, this allows us to approximate the solution to any 
first-order DE. It is especially valuable for those equations that we can’t solve analytically. 
Using the computer we can then study as many solutions as we want for a given DE. 
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11.3 Generalities about numerical methods 

The basic framework is that we are given a first-order DE with initial condition 

𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0 

The goal is to estimate y(x) for other values of 𝑥. 
The estimate is done by approximating 𝑦(𝑥) at a discrete set of points using a series of 
steps: 

Start at (𝑥0, 𝑦0), step to (𝑥1, 𝑦1), step to (𝑥2, 𝑦2), step to (𝑥3, 𝑦3) … 

Different numerical methods have different ways of computing each step. But they all have 
the following picture in common. 
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The triangle shows the step from (𝑥𝑛, 𝑦𝑛) to (𝑥𝑛+1, 𝑦𝑛+1). The horizontal step is ℎ𝑛. The 
usual terminology is to call ℎ𝑛 the stepsize at step 𝑛. The vertical step is 𝑚𝑛ℎ𝑛, where 𝑚𝑛 
is the slope at step 𝑛. 
In the diagram to ’step’ from (𝑥𝑛, 𝑦𝑛) to (𝑥𝑛+1, 𝑦𝑛+1) we have 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ𝑛 

The job of a numerical method is to specify how to choose ℎ𝑛 and 𝑚𝑛 at each step. 

11.4 Euler’s Method of numerical approximation 

Our first method will be Euler’s method. Euler’s method is very simple to compute and is 
the only numerical method we will compute by hand. As an aside, it is analogous to using 
rectangles and Riemann sums to approximate an integral. 
Just as in numerical integration, there are fancier numerical methods for solving DEs. 
These methods require more computation than Euler’s and we will leave the computation 
to computers and existing software packages. 
To describe Euler’s method we need to say how to choose ℎ𝑛 and 𝑚𝑛 for each step. 
Euler’s method is a fixed stepsize method. This means we fix the stepsize ℎ at the beginning 
and use it for every step. That is, at each step ℎ𝑛 = ℎ. 
We know that the slope of the solution curve through (𝑥0, 𝑦0) is 𝑦′ = 𝑓(𝑥0, 𝑦0). Euler’s 
method uses this slope to choose 𝑚0, i.e., 𝑚0 = 𝑓(𝑥0, 𝑦0). Likewise, for every subsequent 
step, Euler’s method chooses 𝑚𝑛 to be the slope of the direction field at (𝑥𝑛, 𝑦𝑛), i.e. 

𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 
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The next example illustrates how to use Euler’s method. 
Example 11.1. Numerically solving an IVP using Euler’s method. Consider the IVP
𝑦′ = 𝑥2 + 𝑦2; 𝑦(0) = −1. Use Euler’s method to estimate 𝑦(1). 
Solution: We don’t know 𝑦(𝑥) (and it’s hard to find), but we can compute the direction 
field slope at each point. 
Pick a stepsize: To keep the computation short, let’s take ℎ = 0.25. This will take 4 steps 
to go from 𝑥0 = 0 to 𝑥 = 1 

Step 0 : 𝑥0 = 0 𝑦0 = −1 𝑚0 = 1 𝑚0ℎ = 0.25 
Step 1 : 𝑥1 = 0.25 𝑦1 = −0.75 𝑚1 = 0.63 𝑚1ℎ = 0.16 
Step 2 : 𝑥2 = 0.5 𝑦2 = −0.59 𝑚2 = 0.60 𝑚2ℎ = 0.15 
Step 3 : 𝑥3 = 0.75 𝑦3 = −0.44 𝑚3 = 0.76 𝑚3ℎ = 0.19 
Step 4 : 𝑥4 = 1.00 𝑦4 = −0.25 

So, 𝑦(1) ≈ 𝑦4 ≈ −0.25 
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Note: step 1 introduces error and
jumps to a different integral curve

Example of Euler’s method 

In the next example we introduce a simple tabular format for doing and presenting the 
computation. 
Example 11.2. Let 𝑦′ = 𝑦; 𝑦(0) = 1. Estimate 𝑦(1) 

(Note: we know the exact answer, 𝑦 = 𝑒𝑥, 𝑦(1) = 2.718 …) 
Let ℎ = 0.25, so there are 4 steps from 0 to 1. We organize the calculation in a table: 

𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1.0 1.0 0.25 1.0 0.0
1 0.25 1.25 1.25 0.31 1.28 0.03
2 0.5 1.56 1.56 0.39 1.65 0.09
3 0.75 1.95 1.95 0.49 2.12 0.17
4 1.0 2.44 2.7183 0.28 

Notes: 
1. Organize hand calculations like this. 
2. Error often accumulates. 

Example 11.3. (Example continued.) We now continue the previous example with differ-
ent stepsizes. In all cases we are trying to estimate 𝑦(1). 
Stepsize. ℎ = 1 (this is just to be a little silly). 

https://��0�=0.25


11 NUMERICAL METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS 87 

With ℎ = 1 it takes 1 step to go from 0 to 1.0 
𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1.0 1 1.0 1.0 0.0
1 1.0 2.0 2.7183 0.72 

Stepsize. ℎ = 0.1. 
With ℎ = 0.1 it takes 10 steps to go from 0 to 1.0. Here is the table with some of the 
numbers left out. 

𝑛 
0
1
2
3
4
5
6
7
8
9
10 

𝑥𝑛 𝑦𝑛 
0 1
0.1
0.2 1.21
0.3
0.4 1.4641
0.5
0.6 1.7716 
0.7
0.8 2.1436
0.9
1.0 2.5937 

𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 
… 

… 

… 

… 

… 

𝑚𝑛ℎ 
… 

… 

… 

… 

… 

actual
1 

1.2214 

1.4918 

1.8221 

2.2255 

2.7183 

error
0 

0.011 

0.028 

0.05 

0.082 

0.125 
Note. The error is smaller when ℎ = 0.1 than when ℎ = 0.25 

Rules of thumb: Using a smaller ℎ is more accurate but requires more computation. 
Mild warning. More computation means more risk of roundoff error. In this class, we 
never make ℎ so small that this is a problem. 

11.5 What can go wrong 

In this section we’ll see that numerical methods can sometimes give misleading results. We 
hasten to add that numerical methods provide an incredibly powerful tool which is used all 
the time with great success. But we do need to take some care to avoid certain pitfalls. 
We expect that decreasing the stepsize should give a more accurate estimate. The next 
example shows that we shouldn’t simply accept the result, no matter how small the stepsize 
used. 
Example 11.4. Consider the IVP 𝑦′ = 𝑦2; 𝑦(0) = 1. Use Euler’s method to approximate 
𝑦(1). 

1Solution: We know the exact solution is 𝑦 = 1−𝑥 , so 𝑦(1) = ∞. But Euler’s method will 
happily estimate 𝑦(1). We do this for several different stepsizes. 
Take ℎ = 0.2 

𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1 … … 1 0
1 0.2 1.2 … … 1.25 0.05
2 0.4 1.49 … … 1.67 0.18
3 0.6 1.93 … … 2.5 0.57
4 0.8 2.68 … … 5 2.32
5 1.0 4.11 ∞ ∞ 
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So, 𝑦(1) ≈ 𝑦5 = 4.11. 
For decreasing values of ℎ we get the following: 
For ℎ = 0.1, 𝑦(1) ≈ 𝑦10 = 37.6. 
For ℎ = 0.05, 𝑦(1) ≈ 𝑦20 = 91.25. 
For ℎ = 0.025, 𝑦(1) ≈ 𝑦40 = 238.21. 
Instead of settling down to a limiting value as we decrease ℎ, the estimate grows. This is a 
sign that something is wrong with our estimates. 

11.5.1 Lesson 

You should try smaller and smaller ℎ until the answer settles down. That is, run the 
estimate with stepsize ℎ. The rerun it with stepsize ℎ/2. If the estimates are very close 
then we have one good bit of evidence to accept the estimate as a good approximation. 
Otherwise, try ℎ/4 etc. If the estimate never settles down, then we will have to reject the 
estimates and use other methods. 
The computer doesn’t eliminate the need to think! 
Note. We could make the previous example even more extreme by asking to estimate 𝑦(2). 
The problem is that with the vertical asymptote at 𝑥 = 1 the solution is not even defined 
at 𝑥 = 2. Nonetheless, for any stepsize ℎ Euler’s method will produce an estimate of 𝑦(2). 

Example 11.5. Stepping across region boundaries. The following shows another risk in 
using numerical methods. Consider the IVP 𝑦′ = 𝑦2; 𝑦(−2.5) = −2.5. 
The blue curve is the exact solution to the IVP. It goes asymptotically to 𝑦 = 0 

The orange curve is the Euler approximation using stepsize ℎ = 0.5. It goes off to infinity. 
The problem is that the first step in the approximation goes past the separatrix 𝑦 = 0. 
After that, instead of going asymptotically to 0, the approximation continues to grow. 
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11.6 Other numerical techniques 

All the techniques that we’ll look at take steps of the form 

𝑥𝑛+1 = 𝑥𝑛 + ℎ; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ. 
where 𝑚𝑛 is some sort of average slope near (𝑥𝑛, 𝑦𝑛). The differences between the various 
methods are in how 𝑚𝑛 and possibly ℎ𝑛 is chosen at each step. We’ll only touch on this 
briefly. 
Improved Euler (also called RK2). This is a fixed stepsize algorithm, that is we fix 
the value of ℎ before using it. Here is the algorithm: 

1. Start at (𝑥𝑛, 𝑦𝑛) 

2. Compute the slope 𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛) and take a regular Euler step to a temporary point 
(𝑥𝑎, 𝑦𝑎). 

𝑥𝑎 = 𝑥𝑛 + ℎ; 𝑦𝑎 = 𝑦𝑛 + 𝑘1ℎ. 

3. Compute the slope at (𝑥𝑎, 𝑦𝑎): 𝑘2 = 𝑓(𝑥𝑎, 𝑦𝑎). 
4. Average the two slopes: 𝑚𝑛 = (𝑘1 + 𝑘2)/2. 
5. Use 𝑚𝑛 as the slope to take the Improved Euler step. 

𝑥𝑛+1 = 𝑥𝑛 + ℎ; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ. 

Runge-Kutta 4 (RK4). This is also a fixed stepsize algorithm. You can do a web search 
to get the details. In brief, the algorithm computes 4 different slopes 𝑘1, 𝑘2, 𝑘3, 𝑘4 and then 
takes a weighted average of these slopes to get 𝑚𝑛. There are different ways to choose the
𝑘s and the weights, one common scheme is 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛); 𝑘2 = 𝑓(𝑥𝑛 + ℎ/2, 𝑦𝑛 + 𝑘1ℎ/2);
𝑘3 = 𝑓(𝑥𝑛 + ℎ/2, 𝑦𝑛 + 𝑘2ℎ/2); 𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3ℎ) 

𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4𝑚𝑛 = .6 
Then as usual, 

𝑥𝑛+1 = 𝑥𝑛 + ℎ; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ. 

Variable step size methods. There is no reason we have to have a fixed stepsize. It is 
possible to adjust ℎ at each step. One way to do this is the following: 
Suppose we get to (𝑥𝑛, 𝑦𝑛) with current stepsize ℎ. 

1. Take one RK4 step with stepsize ℎ. 
2. Repeat with stepsize ℎ/2 and 2ℎ. 
3. If the 3 results are very close then change the current stepsize to 2ℎ and take the step. 

If they are not close then change the current stepsize to ℎ/2 and take the step. 

Thus sometimes the stepsize will get bigger and save computation. When needed to main-
tain accuracy it will get smaller. 
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11.7 More technical discussion on error size 

(This section is for enrichment only. You will not be asked it on exams.) 
For this discussion, we fix a first-order IVP: 𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0. We also fix the value 
𝑥𝑓 and ask to approximate 𝑦(𝑥𝑓). 
Euler’s method is linear in the error. This means that the error is roughly proportional 
to ℎ. So, if you halve the stepsize, then you approximately halve the error. Of course, you 
also double the amount of computation. 
Improved Euler is quadratic in the error. This means that the error is roughly 
proportional to ℎ2. So, if you halve the stepsize, then the error is approximately quartered. 
RK4 is a fourth order method. This means that the error is roughly proportional to
ℎ4. So, if you halve the stepsize, then the error is approximately multiplied by 1/16. 

11.8 Second derivative and concavity 

If we know 𝑦′ = 𝑓(𝑥, 𝑦), then we can find 𝑦″ . This can be used to determine the concavity 
of the integral curve and thus, whether the Euler estimate is an over or underestimate. 
Example 11.6. Assume 𝑦′ = 3𝑥𝑦 and 𝑦(1) = 2. Use Euler’s method to estimate 𝑦(1.1). Is 
the estimate too high or too low? 

Solution: First: 𝑦′(1) = 6. 
Now fix the stepsize ℎ = 0.1. 
The Euler estimate is 𝑦(1.1) ≈ 2 + 0.1 ⋅ 6 = 2.6. 
To find the concavity we compute the second derivative. (Note well that 𝑦 is a function of 
𝑥.) So, 

𝑦″ = (3𝑥𝑦)′ = 3𝑦 + 3𝑥𝑦′, so 𝑦″(1) = 𝑦(1) + 3 ⋅ 𝑦′(1) = 2 + 6 = 8 > 0. 

We see that 𝑦 is concave up at 𝑥 = 1 and therefore the Euler estimate is (probably) too 
low. (Generally speaking, we should be cautious in our statement, because it’s possible the 
graph of 𝑦 changes concavity between 𝑥 = 1 and 𝑥 = 1.1. In this case, since 𝑥, 𝑦, 𝑦′ are all 
positive, it is clear that 𝑦″ > 0 for any solution in the first quadrant.) 

11.9 Relation to numerical integration 

(This section is also just for your enjoyment and enrichment. We won’t discuss it in class 
or on psets or exams.) 

Even in 18.01 you were solving (simple) differential equations. A typical 18.01 integration 

question is to compute ∫
𝑏 

𝑓(𝑥) 𝑑𝑥. We can rephrase this as the following initial value 
𝑎 

problem: 
Let 𝑦(𝑥) be the solution to the IVP 𝑦′ = 𝑓(𝑥); 𝑦(𝑎) = 0. What is 𝑦(𝑏)? 

It is clear that this has solution 𝑦(𝑏) = ∫
𝑏

𝑓(𝑥) 𝑑𝑥. 
𝑎 
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Thus for this IVP estimating 𝑦(𝑏) with numerical methods amounts to estimating the defi-
nite integral using numerical methods. More precisely 

Euler’s method = numerical integration using left Riemann sums with rectangles. 
Improved Euler = numerical integration using the trapezoidal rule. 
RK4 = numerical integration using Simpson’s rule. 
Example 11.7. (Euler’s method = left Riemann sum.) For 𝑦′ = 𝑓(𝑥), 𝑦(𝑎) = 0 estimate
𝑦(𝑏) using Euler’s method and 𝑁 steps. 
Solution: 𝑁 steps implies the stepsize is ℎ = 𝑏−𝑎 . Thus Euler’s method gives 𝑁 

𝑦𝑛+1 = 𝑦𝑛 + 𝑓(𝑥𝑛) ℎ. 

This leads to the following table:
𝑛 𝑥𝑛 𝑦𝑛 
0 𝑎 0
1 𝑎 + ℎ 𝑓(𝑥0) ℎ 
2 𝑎 + 2 ℎ 𝑓(𝑥0) ℎ + 𝑓(𝑥1) ℎ 
3 𝑎 + 3 ℎ 𝑓(𝑥0) ℎ + 𝑓(𝑥1) ℎ + 𝑓(𝑥2) ℎ 

⋯
𝑁 𝑎 + 𝑁ℎ = 𝑏 𝑓(𝑥0) ℎ + (𝑓(𝑥1) + 𝑓(𝑥2) + … + 𝑓(𝑥𝑁−1)) ℎ 

Thus our approximation is 𝑦(𝑏) = ∑𝑁−1 In 18.01 you might have learned to use𝑗=0 𝑓(𝑥𝑗) ℎ. 
Δ𝑥

𝑏 
instead of ℎ. In either case, the approximation is the left Riemann sum approximating 

∫ 𝑓(𝑥) 𝑑𝑥. 
𝑎 

12 Autonomous equations and bifurcation diagrams 

12.1 Goals 

1. Know the standard form of an autonomous, first-order differential equation. 

2. Be able to use critical points to draw the phase line for an autonomous, first-order 
DE. 

3. Be able to draw the bifurcation diagram for an autonomous, first-order DE with a 
parameter. 

4. Be able to interpret phase lines and bifurcation diagrams in terms of population 
dynamanics and sustainability. 

12.2 Introduction 

In this topic we look at, so-called, autonomous equations. These are a special type of 
nonlinear first-order equations. In general, rather than solve these equations, we will try to 
understand the long-term behavior of the systems they model without finding the solution. 
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When the system includes a parameter, we will draw bifurcation diagrams which give us 
a system level view of the long-term behavior of the system for all possible values of the 
parameter. This is analagous to our use of gain curves, which tell us, in one graph, the 
behavior of the system for all possible input frequencies. 
The Phase Lines Mathlet https://mathlets.org/mathlets/phase-lines/ illustrates ev-
erything we will do in this topic. We encourage you to look at it! 

12.3 Autonomous differential equations 

Definition. An autonomous first-order differential equation has the form 

𝑥′(𝑡) = 𝑓(𝑥). 

(Compare this to the general first-order DE which has the form 𝑥′ = 𝑓(𝑥, 𝑡).) 
The word autonomous means self-governing. That is, 𝑥′ , the rate that 𝑥 changes, depends 
only on 𝑥 and not on 𝑡. 
Here are some important properties of autonomous equations: 
1. They are separable. 
2. They can be hard to integrate. 
3. We can say a lot about them without solving them. (More on this below.) 
4. They are time invariant: if 𝑥(𝑡) is a solution then so is 𝑥(𝑡 − 𝑡0). 

12.4 Direction fields and phase lines for autonomous equations 

Our most important DE, 𝑥′ = 𝑘𝑥, is autonomous. We will use it to introduce phase lines 
for such equations. First, we look at its direction field. 
Example 12.1. Use isoclines to draw the direction field for the DE 𝑥′ = −𝑥. Put the 
phase line (to be defined) next to it. 
Solution: The isocline for slope 𝑚 is 𝑓(𝑥) = −𝑥 = 𝑚. This is a horizontal line. we draw 
the direction field and a few solutions using isoclines for 𝑚 = 0, 1, 2, 3, −1, −2, −3. 
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𝑑𝑥 = −𝑥.Left: direction field for Right: phase line 𝑑𝑡 

https://mathlets.org/mathlets/phase-lines/
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As always the nullcline separates the plane into regions where 𝑥′ is positive and negative. 
These are marked with a big + and − on the direction field. 
The phase line is a simplified version of the direction field. Since the direction field is 
independent of 𝑡, we just throw away the 𝑡-axis. The phase line is the 𝑥-axis. On it we 
mark the 𝑥-value of each nullcline, i.e., 𝑥 = 0. Instead of slope field elements we put arrows 
indicating the direction of the slope field. These correspond to the big + and − in the 
direction field. In our example we have a down arrow in the region 𝑥 > 0 and an up arrow 
in the region 𝑥 < 0. 
This simple example shows two important properties of autonomous equations. 
1. For autonomous equations 𝑥′ = 𝑓(𝑥), the isoclines are always horizontal lines. This is 
because the equation 𝑓(𝑥) = 𝑚 is independent of 𝑡. 
2. Any integral curve can be translated left or right and it is still an integral curve. That 
is, if 𝑥(𝑡) is a solution then so is 𝑥(𝑡 − 𝑡0). This is easy to see because the direction field is 
the same if you translate it right or left. 

12.5 Equilibria, nullclines, constant solutions and critical points 

For autonomous equations we will use a number of different words to describe nullclines. 
We’ll introduce them through an example. 
Example 12.2. Let 𝑥′ = (1 − 𝑥)(2 − 𝑥). Draw a direction field consisting of just the 
nullclines and large + or − signs indicating regions where the direction field has positive 
or negative slope. Using just this, sketch some solutions, including the ones along the 
nullclines. 
Then use your direction field to draw the phase line for this system. 
Solution: We have 𝑥′ = 𝑓(𝑥) = (1 − 𝑥)(2 − 𝑥). The nullcline is where 𝑓(𝑥) = 0, i.e., 𝑥 = 1 
and 𝑥 = 2. These are horizontal lines in the 𝑡𝑥-plane. It’s easy to check that 𝑥′ > 0 when
𝑥 > 2 or 𝑥 < 1 and 𝑥′ < 0 when 1 < 𝑥 < 2. The sign of 𝑥′ in different regions is marked 
with a + or a −. 
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Direction field and phase line for 𝑥′ = 𝑓(𝑥) = (1 − 𝑥)(2 − 𝑥). 
Now for the main point of this example: The nullclines 𝑥 = 1 and 𝑥 = 2 are clearly solutions. 
We use the following terms to describe them. 
Because they are constants, they are called constant solutions. 
Because they are unchanging, they are called equilibrium solutions. 
Because 𝑥′ = 0 along them, we call 𝑥 = 1 and 𝑥 = 2 critical points for the DE. 
To finish the example we added solution curves. In regions where 𝑥′ > 0 the solution curves 
are increasing. Because the equilibrium solutions act as fences, these solutions can’t cross 
them. So we get the picture as shown. 
The phase line is drawn next to the direction field. The arrows on the phase line show the 
sign of 𝑥′ , i.e., the direction of the slope field, for different ranges of 𝑥. 

12.5.1 Lost solutions 

𝑑𝑥 Finally, nullclines correspond to lost solutions: The equation = 𝑓(𝑥) is separable. When 𝑑𝑡 𝑑𝑥 we separate variables we get So there are lost solutions where 𝑓(𝑥) = 0. These𝑓(𝑥) 
= 𝑑𝑡. 

are the nullclines (or constant solutions or equilibrium solutions). 

12.6 Stability of equilibria 

In general, we say an equilibrium is stable if nearby solutions go asymptotically to the 
equilibrium value. 
Example 12.3. Looking at Example 12.2, give each equilibrium and say whether it is 
stable or unstable. 
Solution: The equilibria are the same as the constant solutions. These are 𝑥 = 1 and
𝑥 = 2. Looking at the phase line, we see clearly that 𝑥 = 1 is stable and 𝑥 = 2 is unstable. 
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You can see the same thing in the direction field. 

12.7 Analyzing an autonomous DE 

We will use the following steps to analyze the autonomous DE 𝑥′ = 𝑓(𝑥). 
1. Find the critical points 𝑥′ = 𝑓(𝑥) = 0 and plot them on the phase line. 
2. Determine the sign of 𝑥′ for different values of 𝑥. Use these to put arrows on the phase 
line. This can be done algebraically or graphically. 
3. Determine the stability of the equilibrium solutions. 
4. If desired, sketch some solutions in the 𝑡𝑥-plane. 
We illustrate this with some examples. 
Example 12.4. Let 𝑥′ = −𝑘(𝑥 − 𝐴). This models Newton’s law of cooling for a body of 
temperature 𝑥 in an environment of temperature 𝐴. We assume that 𝑘 and 𝐴 are constants, 
with 𝑘 > 0. 
Plot the phase line. Be sure to indicate the stability of the equilibrium solutions. Also, give 
a rough sketch of solutions in the 𝑡𝑥-plane. 
Solution: First, note that this equation is simple enough that we actually know the general 
solution 

𝑥 = 𝐴 + 𝑐𝑒−𝑘𝑡. 
You should check that our answers agree with this! 
We follow the steps outlined above. 
1. Find the critical points: 𝑓(𝑥) = −𝑘(𝑥 − 𝐴) = 0 implies 𝑥 = 𝐴. This is indicated on the 
phase line below. Remember: For autonomous equations, critical points are the same as 
equilibrium solutions. 
2. Determine the sign of 𝑥′ for different 𝑥: This is the same algebra you used in 18.01 when 
graphing a function and looking for regions where it increases and decreases. 
It’s easy to see that when 𝑥 > 𝐴 we have 𝑥′ = −𝑘(𝑥 − 𝐴) < 0. Likewise, when 𝑥 < 𝐴 we 
have 𝑥′ > 0. We use this to add arrows to the phase line. For this example, we also label 
regions with a + or −. 
3. The arrows on the phase line show that the equilibrium 𝑥 = 𝐴 is stable. 
4. Directly from the phase line, we can sketch some solutions. Note: these are in the
𝑡𝑥-plane. The equilibrium solution is the horizontal line 𝑥 = 𝐴. The other solutions are 
strictly qualitative: they are drawn to show that all solutions go asymptotically to the 
(stable) equilibrium. 
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Example 12.5. (Logistic equation.) Consider the autonomous system 

𝑥′ = 𝑘(𝑀 − 𝑥)𝑥 = 𝑓(𝑥). 

We assume 𝑘 and 𝑀 are positive constants. This is called a logistic population model. For 
the population 𝑥 it models the growth rate as 𝑘(𝑀 − 𝑥). The growth rate depends on 𝑥, 
and decreases as 𝑥 increases. (Compare this with the exponential model 𝑥′ = 𝑎𝑥, where the 
growth rate is constant.) This model captures the notion that, as the population increases, 
the competition for scarce resources leads to a lower growth rate. If the population gets too 
large the growth rate will become negative. 
Plot the phase line for this system and sketch some solutions. 
Solution: We follow the standard steps 
1. Critical points: 𝑥′ = 𝑘(𝑀 − 𝑥)𝑥 = 0 gives critical points 𝑥 = 𝑀 or 𝑥 = 0. 
2. Looking at the 𝑥 axis, it is clear we have the following signs for 𝑥′ : 
when 𝑥 > 𝑀 , then 𝑥′ < 0, 
when 0 < 𝑥 < 𝑀 , then 𝑥′ > 0, 
when 𝑥 < 0, then 𝑥′ < 0, 
3. Using 1 and 2 we can draw the phase line. This shows that 𝑥 = 𝑀 is a stable equilibrium 
and 𝑥 = 0 is unstable. 
4. Finally, it is a simple matter to sketch solution curves: they can’t cross the equilibria 
and must go towards the stable equilibrium and away from the unstable equilibrium. As 
before, these are made up, but they capture the qualitative nature of the solutions. 

x

M

0

−

+

−

stable

unstable

Phaseline

t

x

−

+

−

Notes. 1. The S shaped curves between 0 and 𝑀 are called logistic curves. The Wikipedia 
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article https://en.wikipedia.org/wiki/Logistic_function gives a number of applica-
tions where the logistic function appears. 
2. Because the population stabilizes at 𝑀 and the growth rate becomes negative if 𝑥 > 𝑀 , 
we call 𝑀 the carrying capacity of the environment. 
3. It is difficult to find the reason for the name logistic. The term was coined around 1844 
by the French mathematician Pierre François Verhuist. (See the same Wikipedia article 
cited above.) 

12.7.1 Graphical method for determining the sign of 𝑥′ . 

In the examples above we found the sign on 𝑥′ by testing values in different ranges of 𝑥. 
Here we’ll show an alternative graphical method. The trick is to graph 𝑥′ vs. 𝑥. When 
doing this, we are viewing 𝑥′ as a variable. We illustrate by redoing some of the examples. 
Example 12.6. Find the phase line from Example 12.4 by graphing 𝑥′ vs. 𝑥 and putting 
the phase line on the 𝑥-axis. 
Solution: In the example we have 𝑥′ = −𝑘(𝑥 − 𝐴). The graph of this is the negatively 
sloped line shown below. It is now easy to see the sign of 𝑥′ as a function of 𝑥. When
𝑥 > 𝐴, the graph is below the 𝑥 axis, so 𝑥′ is negative. Likewise, when 𝑥 < 𝐴, the graph is 
above the 𝑥-axis, so 𝑥′ is positive. We mark these regions with − and +. The arrows on 
the 𝑥-axis correspond to these signs. Magically, the 𝑥-axis now shows the phase line for the 
system. 
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x′ = f(x)

A
+ −

𝑥′ vs. 𝑥. The 𝑥-axis shows the phase line. 
Example 12.7. Find the phase line from Example 12.5 by graphing 𝑥′ vs. 𝑥 and putting 
the phase line on the 𝑥-axis. (The DE is 𝑥′ = 𝑘(𝑀 − 𝑥)𝑥.) 
Solution: As in the previous example we plot 𝑥′ vs. 𝑥. Then we use the sign of 𝑥′ to 
add arrows to the 𝑥-axis. The plot is a downward pointing parabola. As before, the 𝑥-axis 
shows the phase line. 

x

x′

x′ = f(x)

M

+ −−

𝑥′ vs. 𝑥. The 𝑥-axis shows the phase line. 

https://en.wikipedia.org/wiki/Logistic_function
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Example 12.8. The following shows the graph of 𝑥′ = 𝑓(𝑥). Use the graph, to draw the 
phase line for this system. Indicate the critical points and their stability. 

x

x′

x′ = f(x)

Solution: We add arrows to the graph. The critical points are marked green for stable and 
orange for unstable. 

x

x′

x′ = f(x)
+−+−+

12.8 Parameters and bifurcation diagrams 

Bifurcation diagrams help us visualize how the system behaves at different settings of a 
given control parameter. This is similar to what we did when we graphed gain vs. input 
frequency. The input frequency is a parameter and the gain curve lets us see in one figure 
how the system responds to any frequency. 
We’ll get at this idea using examples. 

12.8.1 Logistic with harvesting population model 

Example 12.9. This example will not show a bifurcation diagram. Instead, we will try to 
show how we might be led to inventing bifurcation diagrams. 
Suppose you are growing irises. Left alone in your garden, the population of irises follows 
a logistic population model 

𝑥′ = (3 − 𝑥)𝑥, 
where 𝑥 is in units of 1000 irises and time is in units of months. 
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𝑥′ = 𝑓(𝑥) = 𝑥(3 − 𝑥) − 𝑎. (19) 

You know that if 𝑎 is too large then the iris population will crash and you’ll go out of 
business. So your first goal to understand what happens to the population for different 
values of 𝑎. 
For any value of 𝑎, we can draw the phase line and determine how the population will 
respond at that value. So your assignment for the population model in Equation 19 is to 
draw phase lines for every value of 𝑎! 
Okay, that is probably too hard, let’s just do it for each of the values 𝑎 = 0, 1, 2, 3, 4. 
Solution: It’s not hard to compute critical points for each of these 𝑎. We don’t show the 
calculation. Here are the phase lines 

x

a = 0

x

a = 1

x

a = 2

x

a = 3

x

a = 4

0

1

2

3

4

The phase lines for 𝑎 = 0, 1, 2 each have two critical points. The upper one is stable and 
the lower one is unstable. For 𝑎 = 3, 4, there are no critical points. 
Clearly, it’s a bad idea to harvest at the rates 𝑎 = 3 or 𝑎 = 4. In these cases the population 
will decrease to 0. So these rates are not sustainable. 
The rates 𝑎 = 0, 1, 2 each have a positive stable critical point. In all three cases, if we wait 
to start harvesting until the population is about 1.5, then the population will go to the 
stable critical value. This is sustainable. 
Our conclusion is that it is possible to harvest at the rate 𝑎 = 2 without ruining our 
business. 

© Dlanglois on Wikimedia. License CC BY-SA. Some rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

Your plan is to harvest and sell the flowers at a constant rate of 𝑎 units/month. With this level
of harvesting, the population model becomes

https://ocw.mit.edu/help/faq-fair-use
https://commons.wikimedia.org/wiki/User:Dlanglois
https://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg
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12.8.2 Sustainability 

Definition. If the population model has a positive stable critical point we say the popula-
tion is sustainable. 
Note. Sustainability doesn’t mean you can’t mess it up. For instance, in Example 12.9, 
if 𝑎 = 2 and we start harvesting when 𝑥 = 0.5, then the population will crash to 0. This 
would be a bad idea, but we still say that 𝑎 = 2 is a sustainable harvesting rate. That is, 
as long as you do it right and start harvesting when the population is large enough, then 
the population will stabilize at the stable critical point. 

12.8.3 Bifurcation diagrams 

In the previous example we were unable to draw phase lines for every value of 𝑎, so we drew 
a small number of them to help choose a harvesting rate. We saw that we could sustainably 
harvest when 𝑎 = 2, but not at 𝑎 = 3. What about other values of 𝑎? This is the motivation 
behind bifurcation diagrams, they’ll show us how the system behaves for all values of 𝑎 in 
one simple graph. 
Definition. Suppose we have a population 𝑥(𝑡) with a model which depends on a parameter 
𝑎. The bifurcation diagram for this model is the plot of all the points (𝑎, 𝑥) in the 𝑎𝑥-plane 
where the model has a critical point. We always indicate on the diagram whether the critical 
points represent stable or unstable equilibria. 
We illustrate bifurcation diagrams by redoing Example 12.9. 
Example 12.10. Draw the bifurcation diagram for the logistic with harvesting model 

𝑥′ = 𝑥(3 − 𝑥) − 𝑎 

For which values of 𝑎 is the population sustainable? 

Solution: We use the following steps. 
Step 1. Draw the 𝑎𝑥-axes. Be sure to label them! 
Step 2. Compute and plot all the critical points. In this case we have 

𝑥(3 − 𝑥) − 𝑎 = 0 ⇒ 𝑎 = 𝑥(3 − 𝑥). 
Since 𝑎 is the horizontal axis, the graph of this is a sideways parabola: 

a

x

3

Step 3. The plot divides the plane into 2 regions (inside and outside the parabola). Since 
the plot is the set of points where 𝑥′ = 0, the sign of 𝑥′ is the same throughout each region. 
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We can find those signs by testing points in each region. For example, at the point (𝑎, 𝑥) = 
(0, 1), we have 𝑥′ = 2 > 0. So, inside the parabola, we have 𝑥′ > 0. Likewise, at (0, 4),
𝑥′ = −4 < 0. So, outside the parabola, we have 𝑥′ < 0. 
Another method, which amounts to the same thing, is to use phase lines. Below, the phase 
line for 𝑎 = 0 is shown on the left and also on the bifurcation diagram. On the bifurcation 
diagram it is the vertical line at 𝑎 = 0. 

x

3

0

−

+

−
stable

unstable

Phaseline: a = 0

a

x

3

0

−

+

−

2.25

unstable

stable

Bifurcation diagram

The arrows tell us the sign of 𝑥′ at points on the phase line. Which, just like testing points, 
allows us to give the sign of 𝑥′ in the two regions determined by the critical points. 
These signs then tell us the stability of the critical points. In this example, the upper branch 
of the parabola consists of stable critical points and the lower branch consists of unstable 
critical points. 
It is a simple matter to use the signs to add a few more phase lines to our picture. We add 
one through the vertex of the parabola and also ones to the left and right of the vertex. 
The phase line through the vertex of the parabola shows it is semistable. The vertex is 
at the maximum value of 𝑎 as a function of 𝑥. In this case, it’s easy use calculus, or the 
geometry of parabolas, to find these coordinates: 𝑎 = 2.25, 𝑥 = 1.5. 
Finally we can say when the population is sustainable: Since there is a positive stable 
critical point for 𝑎 < 2.25, the population is sustainable in this region. It is not sustainable 
for 𝑎 ≥ 2.25. 
Definition. A bifurcation point is any value of 𝑎 where there is a qualitative change in the 
critical points. 
In the previous example, the value 𝑎 = 2.25 is the point where the critical points change 
–there are two critical points for 𝑎 < 2.2.5 and none for 𝑎 > 2.25. Therefore, 𝑎 = 2.25 is 
called a bifurcation point. 
Example 12.11. Suppose a population is modeled by the DE 𝑥′ = −𝑎𝑥 + 1, which is a 
constant birth-and-death rate, modified to include a constant rate of replenishment. 
(i) Sketch the bifurcation diagram and list any bifurcation points (i.e., special values of 𝑎). 
(ii) The bifurcation point(s) divide the 𝑎-axis into intervals. Illustrate one case for each 
interval by giving the phase line diagram. For each of these phase lines give (rough) sketches 
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of solutions in the 𝑡𝑥-plane. 
(iii) For what values of 𝑎 is the population sustainable. What happens for other values of 
𝑎. 
Note the MIT Mathlet The Phase Lines Mathlet https://mathlets.org/mathlets/phase-lines/ 
can show this system. 
Solution: We answer (i) and (ii) together. The critical points are 𝑥′ = −𝑎𝑥 + 1 = 0. So,
𝑥 = 1/𝑎. We graph this in the 𝑎𝑥-plane –it’s a hyperbola with two branches. Here is the 
finished bifurcation diagram with two phase lines. These are explained below. 

x

x = 1stable

−

+

a = 1

x

x = −1unstable

−

+

a = −1

x

a
1−1

−

+

+

−

Bifurcation diagram for x′ = 1− ax

unstable

stable

After plotting the critical points we see that the graph divides the 𝑎𝑥-plane into 3 regions. 
In order to determine the sign of 𝑥′ in each region we found phase lines for 𝑎 = 1 and 𝑎 = −1. 
These are shown at the left. Determining the direction of the arrows was straightforward 
and we leave it for the reader to supply the details. 
We place the phase lines on the bifurcation diagram at 𝑎 = 1 and 𝑎 = −1. The arrows on 
the phase lines then tell us the sign of 𝑥′ in all 3 regions. 
Once we know the sign on 𝑥′ , it’s a simple matter to decide the stability of each part of the 
diagram. The stable branch is drawn in green and labeled ‘stable’. Likewise the unstable 
branch is drawn in orange and labeled ‘unstable’. 
There is one bifurcation point at 𝑎 = 0. This is a bifurcation point because the bifurcation 
diagram is different on either side of 𝑎 = 0. 
(iii) When 𝑎 > 0 there is a positive stable equilibrium, so the population is sustainable. 
When 𝑎 ≤ 0 the population is not sustainable. In fact, it blows up to infinity. 
Finally, we do our duty and sketch some solution curves based on the phase lines. 

https://mathlets.org/mathlets/phase-lines/
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x

x = 1stable

−

+

a = 1

t

x

x = 1

x

x = −1unstable

−

+

a = −1

t

x

x = −1

You can look at this example and the logistic with harvesting example in the Phase Lines 
Mathlet https://mathlets.org/mathlets/phase-lines/ phase lines applet: 

12.9 Appendix: solution to logistic equation 

Just for kicks, we compute the exact solution to the logistic population model 

𝑥′ = 𝑘𝑥(𝑀 − 𝑥) 

This is separable. We need to use partial fractions to integrate the 𝑥 side. 

𝑑𝑥 
𝑥(𝑀 − 𝑥) 

= 𝑘 𝑑𝑡. 

𝑑𝑥 So, ∫ 𝑥(𝑀 − 𝑥) 
= 𝑘𝑡 + 𝐶. 

1 1/𝑀 + 
1/𝑀 Partial fractions: 𝑥(𝑀 − 𝑥) 

= 𝑥 𝑀 − 𝑥. 

𝑑𝑥 ln(|𝑥|) − 
ln |𝑀 − 𝑥| 1 |𝑥|So, ∫ = 𝑀 

ln (𝑥(𝑀 − 𝑥) 
= 𝑀 𝑀 |𝑀 − 𝑥|) . 

|𝑥|So, ln (|𝑀 − 𝑥|) = 𝑀𝑘𝑡 + 𝐶. 
𝑥 Exponentiating and changing 𝑒𝑀𝐶 to 𝐶 gives: 𝑀 − 𝑥 

= 𝐶𝑒𝑀𝑘𝑡. 

𝑀𝐶𝑒𝑀𝑘𝑡 
Solving for 𝑥: 𝑥(𝑡) = 1 + 𝐶𝑒𝑀𝑘𝑡 . 

𝑀𝐶 We can also rewrite this as 𝑥(𝑡) = 𝑒−𝑀𝑘𝑡 + 𝐶 
. 

We were a little sloppy with the absolute values, but more care would give the same results. 
Note: If 𝐶 > 0 then the solution 𝑥(𝑡) has 0 < 𝑥 < 𝑀 . If 𝐶 is negative, then these solutions 
blow up when 𝑒−𝑀𝑘𝑡 + 𝐶 = 0. 

https://mathlets.org/mathlets/phase-lines/
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13 Linear algebra: vector spaces, matrices and linearity 

13.1 Goals 

1. Know the definition of a vector space and how to show that a given set is a vector 
space. 

2. Know the meaning of the phrase closed under addition and scalar multiplication. 

3. Know how to convert a higher order DE into the companion system of first-order DEs. 

4. Know how to organize matrix multiplication as a linear combination of the columns 
of the matrix. 

5. Know how to organize matrix multiplication in block form and recognize when block 
multiplication is valid. 

13.2 Introduction 

Up to now we have spent most of our time in 18.03 considering linear differential equations. 
For these, one of our main tools was linearity, or, equivalently, the superposition principle. 
There are many other domains where linearity is important. For example, systems of linear 
algebraic equations and matrices. In this next unit on linear algebra we will study the 
common features of linear systems. 
To do this we will introduce the somewhat abstract language of vector spaces. This will 
allow us to view the plane and space vectors you encountered in 18.02 and the general 
solutions to a differential equation through the same lens. In 18.02 vectors had both an 
algebraic and a geometric interpretation. In 18.03 we will focus primarily on the algebraic 
side of vectors, though we will sometimes use our geometric intuition as a guide. 

13.3 Matlab (and alternatives) 

We will use Matlab for computation and visualization. It will allow us to work with larger 
matrices where we wouldn’t want to do computations by hand. We will only use a tiny 
subset of Matlab’s enormous set of functions. I’ll post some simple (and short) tutorials on 
its use. 
Matlab is available for free to MIT students. 
A free substitute for Matlab is Octave. It has the advantage that it loads much faster and 
doesn’t spread digital rights management files all around your computer. The disadvantage 
is that it can be a little harder to install, especially on the Mac. Look at https://www. 
gnu.org/software/octave/download.html. I can help you get it installed if you want to 
try. 
Another excellent and free substitute is Julia. The syntax is similar, but not identical, to 
Matlab. Downloads and documentation are available at https://julialang.org. 

https://www.gnu.org/software/octave/download.html
https://www.gnu.org/software/octave/download.html
https://julialang.org
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13.4 Linearity and vector spaces 

We’ve seen before the importance of linearity when solving differential equations 𝑃 (𝐷)𝑥 = 
𝑓(𝑡). To remind you: the operator 𝑃 (𝐷) is linear means that 

𝑃 (𝐷)(𝑐1𝑓 + 𝑐2𝑔) = 𝑐1𝑃 (𝐷)𝑓 + 𝑐2𝑃 (𝐷)𝑔 

for all functions 𝑓 , 𝑔 and constants 𝑐1, 𝑐2. 
Matrix multiplication is also linear. If 𝐴 is a matrix and v1, v2 are vectors, then 

𝐴 ⋅ (𝑐1v1 + 𝑐2v2) = 𝑐1𝐴 ⋅ v1 + 𝑐2𝐴 ⋅ v2 

Example 13.1. In this example we will write an matrix multiplication in a way that 
emphasizes the linearity. 

[6 5 
7 + 8] = [6(3 + 4) + 5(7 + 8) 

2] [3 + 4 
1 (3 + 4) + 2(7 + 8) ] 

= [6 ⋅ 3 + 5 ⋅ 7 + 6 ⋅ 4 + 5 ⋅ 8
1 ⋅ 3 + 2 ⋅ 7 + 1 ⋅ 4 + 2 ⋅ 8] 

= [6 5
2] [7

3] + [6 5
2] [4

1 1 8] 

Linearity/Superposition 
Exactly like solving linear differential equations, solving linear systems of algebraic equations 
involves finding a particular solution and superpositioning with the homogeneous solution. 

1 3 2
⎤ [𝑥1 ⎤Example 13.2. Solve ⎡⎢4 12⎥ 𝑥2

] = ⎡⎢8⎥
⎣3 9 ⎦ ⎣6⎦ 

Solution: For this example we’ll use ad hoc methods to find particular and homogeneous 
solutions. Later, we will learn systematic methods. The main point here is that the solutions 
can be superpositioned. 

By inspection we can see one solution is xp = [2
0]. Just as valid would be to take 

= [−1 = [ 5 xp 1 ] or xp −1]. 

Next we have to solve the associated homogeneous equation: 
1 3 0

⎡ ⎤ [𝑥1] = ⎡ ⎤⎢4 12⎥ ⎢0⎥𝑥2⎣3 9 ⎦ ⎣0⎦ 
This expands to three equations in two unknowns. You can easily check that the general 

solution is xh = 𝑐 [ 3−1]. 

By superposition, the solution to the original equation is 

= [−1 x = xp + xh 1 ] + 𝑐 [−1
3 ] . 

If this is unclear, you should check the solution by substitution. 
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13.5 Vector spaces 

The word space is used in mathematics to describe a set with extra properities. Math has 
all kinds of spaces. Here we will be concerned with vector spaces. 
In order to have the notions of linearity and superposition, we need to have the notions of 
adding and scaling. This leads to the definition of vectors, whose key property is that they 
can be added and scaled. 
Definition. A vector space is any set 𝑉 with the following properties. 
1. The set 𝑉 has the arithmetic operations of addition and scalar multiplication. 
2. Closure under addition: The sum of any two elements in 𝑉 is another member 𝑉 . That 
is, if v, w ∈ 𝑉 , then v + w ∈ 𝑉 . 
3. Closure under scalar multiplication: Scaling an element of 𝑉 results in another member 
of 𝑉 . That is, if v ∈ 𝑉 and 𝑐 is a scalar, then 𝑐v ∈ 𝑉 . 
4. Distributive law: If v, w ∈ 𝑉 and 𝑐 is a scalar, then 𝑐(v + w) = 𝑐v + 𝑐w. 

• An element v in 𝑉 is called a vector. 

• The formal definition of a vector space requires some more technical properties, but 
this definition will suffice for 18.03. 

• If the scalars are required to be real numbers, we say we have a real vector space. If 
we allow them to be complex numbers, then we have a complex vector space. 

The next few examples will introduce some important vector spaces and show how to check 
whether or not a given set is a vector space. 
Key point. Checking whether or not a given set is a vector space is always easy. This is 
similar to checking whether a given operator is linear. 
Example 13.3. Show that the set of ordered pairs (𝑥, 𝑦), under the usual rules of addition 
and scalar multiplication, is a vector space. 
Solution: We have to show the set satisfies the four properties in the definition of vector 
space. As we said, this is straightforward. 
1. Multiplication and scalar multiplication: By definition we have these operations. 
2. Closure under addition: Take any two ordered pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2). Their sum,
(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) is also an ordered pair. 
3. Closure under scalar multiplication: Take any ordered pair (𝑥, 𝑦) and scalar 𝑐, then
𝑐(𝑥, 𝑦) = (𝑐𝑥, 𝑐𝑦) is also an ordered pair. 
4. Distributive law: We show this without any commentary: 

𝑐 ((𝑥1, 𝑦1) + (𝑥2, 𝑦2)) = 𝑐(𝑥1 + 𝑥2, 𝑦2 + 𝑦2) = … = 𝑐(𝑥1, 𝑦1) + 𝑐(𝑥2, 𝑦2). 

Since the set satisfies the four properties, it is a vector space. 
Example 13.4. (Vector spaces.) The following are all examples of vector spaces. You 
should be able to check this exactly as we did in the previous example. 
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• We denote the plane by R2. It is the set of all ordered pairs (𝑥, 𝑦). 

• We denote space by R3. It is the set of all ordered triples (𝑥, 𝑦, 𝑧). 

• The powers indicate the dimension of each space. Likewise we can work with high 
dimensional vector spaces like R1000 which consists of all lists of 1000 numbers. 

• In 18.03 we have used the fact that functions can be added and scaled. The set of 
solutions to the homogeneous DE 

𝑥″ + 8𝑥′ + 7𝑥 = 0 

is a vector space. That is, the set {𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡} satisfies the above requirements 
1-4 for a vector space. 

Example 13.5. (Non-vector spaces.) The following are not vector spaces. 
1. The set of plane vectors in the first quadrant. This fails to be closed under scalar 
multiplication. For example, (1, 1) is in the first quadrant, but −2 ⋅ (1, 1) = (−2, −2) is not. 

𝑦 

𝑥 

(1, 1) 

−2 ⋅ (1, 1) 

2. The set of functions of the form cos(6𝑡) + 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡. This fails to be closed under 
addition. For example, 

(cos(6𝑡) + 2𝑒−𝑡 + 3𝑒−7𝑡) + (cos(6𝑡) + 𝑒−𝑡 + 4𝑒−7𝑡) = 2 cos(6𝑡) + 3𝑒−𝑡 + 7𝑒−7𝑡 

The sum is not in the set because of the factor of 2 in front of cos(6𝑡). 

13.6 Connection to DEs 

We will give two examples showing directly how matrices arise in differential equations. 
Example 13.6. The companion matrix -converting a higher order DE to a first-order 
system. Here we are going to convert a higher order differential equation into a system of 
first-order equations. Later we will see how this technique allows us to understand DEs in 
a new way and also how it allows us to use numerical techniques on higher order equations. 
Consider the second-order linear differential equation 

𝑥 + 8̈ ̇𝑥 + 7𝑥 = 0. 

We’ve worked this example many times. The general solution is 𝑥 = 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡. 
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To convert the DE to a matrix system, we introduce a new variable: 𝑦 = 𝑥.̇ Now, substi-
tuting 𝑦 for 𝑥̇ in the original DE we get the equation 𝑦 + 8𝑦 + 7𝑥 = 0. Altogether we have ̇ 
the system of two first-order linear DEs: 

𝑥̇ = 𝑦 
𝑦 ̇ = −7𝑥 − 8𝑦 

This can be rewritten in matrix form: 

𝑥̇ 1[ −8] [𝑥 
𝑦]̇ = [−7

0 
𝑦] 

Notice two things: 

[𝑥 [ 0 11. If we write this abstractly with x = 𝑦] and 𝐴 = −8], it looks like ẋ = 𝐴x.−7 
Ignoring the fact that x is a vector and 𝐴 is a matrix, this looks like our most important 
DE: 𝑥̇ = 𝑎𝑥. 
2. Solving the system is equivalent to solving the original equation. That is, if we solve the 
original equation, we’ll have found 𝑥 and hence 𝑦 = 𝑥.̇ Conversely, if we solve the matrix 
system, we’ll have found 𝑥 (the solution to the orginal DE) and 𝑦 = 𝑥.̇ 
In this case we already know the solution to the DE, so the solution to the system is 

[𝑥 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡 

𝑦] = [𝑥
𝑥]̇ = [−𝑐1𝑒−𝑡 + −7𝑐2𝑒−7𝑡] = 𝑐1𝑒−𝑡 [−1

1 ] + 𝑐2𝑒−7𝑡 [−7
1 ] 

Notice that the basic solutions are of the form 𝑒𝑟𝑡v, where v is a constant vector. Later, 
we will use the method of optimism to guess solutions of this form. 
Definition. The matrix 𝐴 of coefficients that arises from this technique will be called the 
companion matrix to the original DE. 

Example 13.7. Heat Flow. In this example we will set up a model for heat flow. We 
won’t solve it for a few days. 
Suppose we have a metal rod where different parts are at different temperatures. We divide 
it into 3 regions and imagine that each region exchanges heat with the adjacent regions. 
The regions on either end also exchange heat with the environment. We assume that the 
top and bottom of the rod are insulated, so that heat can only flow out of the bar at the 
ends. We also assume that the heat transfer follows Newton’s law and the rate constant is 
𝑘 at each interface. 
The figure below shows the metal bar divided into 3 regions and insulated above and below. 
The temperature of each region and the temperature of the environment on the left and 
right ends are indicated in the figure. 

T1 T2 T3EL ER
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Using Newton’s law we can write a DE for the temperature of each region. 

𝑇1̇ = −𝑘(𝑇1 − 𝐸𝐿) − 𝑘(𝑇1 − 𝑇2) = −2𝑘𝑇1 + 𝑘𝑇2 + 𝑘𝐸𝐿 
𝑇2̇ = −𝑘(𝑇2 − 𝑇1) − 𝑘(𝑇2 − 𝑇3) = 𝑘𝑇1 − 2𝑘𝑇2 + 𝑘𝑇3
𝑇3̇ = −𝑘(𝑇3 − 𝑇2) − 𝑘(𝑇3 − 𝐸𝑅) = 𝑘𝑇2 − 2𝑘𝑇3 + 𝑘𝐸𝑅 

We can write this in matrix form 

𝑇1̇ −2𝑘 𝑘 0 𝑇1 𝑘𝐸𝐿 ⎡ ̇ ⎤ = ⎡ ⎤ ⎡ ⎤ + ⎡ ⎤⎢𝑇2⎥ ⎢ 𝑘 −2𝑘 𝑘 ⎥ ⎢𝑇2⎥ ⎢ 0 ⎥
⎣𝑇3̇ ⎦ ⎣ 0 𝑘 −2𝑘⎦ ⎣𝑇3⎦ ⎣𝑘𝐸𝑅⎦ 

Remark: This particular coefficient matrix occurs quite often in applications. You should 
make sure you know how to modify the equation if we use 𝑛 divisions of the rod instead of 
3. 

13.7 Matrix Multiplication 

Here we will assume that you are comfortable with matrices and matrix multiplication. For 
completeness, we’ve added a quick review of some of the basics below. 
Combination of columns 
We can view the result of multiplying a matrix times a vector as a linear combination of 
the columns of the matrix. We will use this again and again, so you should internalize 
it now! We illustrate with an example: 
Example 13.8. Consider the following product 

5 ⋅ 3 + 5 ⋅ 4[6 
2] ⋅ [3

4] = [6 
4] = 3 [6

1] + 4 [2
5]1 1 ⋅ 3 + 2 ⋅ 

Notice that the result is a linear combination of the columns of the matrix. 
To express this abstractly we write a matrix as 

⎡ ⎤
⎢ ⎥𝐴 = ⎢v1 v2 v3 v4 v5⎥
⎢ ⎥ 
⎣ ⎦ 

Here each vj is a vector representing a column of 𝐴. We then have 

𝑐1⎡ ⎤ ⎡ ⎤𝑐2⎢ ⎥ ⎢ ⎥
⎢v1 v2 v3 v4 v5⎥ ⋅ ⎢𝑐3⎥ = 𝑐1v1 + 𝑐2v2 + 𝑐3v3 + 𝑐4v4 + 𝑐5v5
⎢ ⎥ ⎢𝑐4⎥ 
⎣ ⎦ ⎣𝑐5⎦ 

That is, the product is a linear combination of the columns of 𝐴. 
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Block matrices and multiplication
0 0 1 0

⎡ ⎤0 0 0 1Consider the following matrix 𝐴 = ⎢ ⎥. We can divide this into blocks ⎢6 5 0 0⎥ 
⎣1 2 0 0⎦ 

0 0 1 0
⎡ ⎤0 0 0 1 ⎥ = [ 0 𝐼

0 ]𝐴 = ⎢⎢ 6 5 0 0 ⎥ 𝐵 
⎣ 1 2 0 0 ⎦ 

As long as the sizes of the blocks are compatible, block matrices multiply just like matrices: 

[ 𝐴 𝐵 [ 𝐸
𝐹 ] = [ 𝐴𝐸 + 𝐵𝐹 

𝐶 𝐷 ] ⋅ 𝐶𝐸 + 𝐷𝐹 ] 

To convince yourself of this look at the following product and see that the blocks in the 
first column on the left only touch the top block on the right etc. 

0 0 1 0 𝑎 𝑏 
⎡ ⎤ ⎡ ⎤0 0 0 1 𝑐 𝑑 ⎢ ⎥ ⋅ ⎢ ⎥⎢ 6 5 0 0 ⎥ ⎢ 𝑒 𝑓 ⎥ 
⎣ 1 2 0 0 ⎦ ⎣ 𝑔 ℎ ⎦ 

13.7.1 Review: matrix notation 

For a matrix 𝐴, we give its size as rows × columns. So a 2 × 3 matrix has 2 rows and 3 
columns. We write 𝐴𝑖,𝑗 for the entry in the 𝑖th row and 𝑗th column. 

3 5Example 13.9. For the 2 × 3 matrix 𝐴 = [1 
11], the 1, 2 entry is 𝐴1,2 = 3. Likewise, 7 9 

the 2, 3 entry is 𝐴2,3 = 11. 

13.7.2 Review: matrix multiplication 

Written out formally the 𝑖, 𝑗-entry of 𝐴𝐵 is given by the dot product of the 𝑖th row of 𝐴 
dotted with the 𝑗th column of 𝐵. That is 

𝑖, 𝑗-entry of 𝐴𝐵 = ⟨𝑖th row of 𝐴⟩ ⋅ ⟨𝑗th column of 𝐵⟩ 

This is illustrated in the following example. 
Example 13.10. In the matrix product below, we’ve put a line through the 3rd row of first 
matrix and the 2nd column of the second matrix. The dot product of this row and column 
is 3, 2-entry of the product, in this case it’s 51. 

3 4 ∗ ∗ 
⎡ ⎤
⎢5 6⎥ ⋅ [6 5 ∗ ∗ 
⎢7 8⎥ 1 2] = ⎢⎢

⎡
∗ 51⎥⎥

⎤ 

⎣0 1⎦ ⎣∗ ∗ ⎦ 
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Example 13.11. 
[6 5 [3 ⋅ 3 + 5 ⋅

4
4] = [38

1 2] ⋅ 4] = [1
6

⋅ 3 + 2 ⋅ 11] . 

Only compatibly sized matrices can be multiplied. For matrices 𝐴 and 𝐵: the 
product 𝐴𝐵 only makes sense if the number of columns of 𝐴 equals the number of rows of
𝐵. 
That is, the product 𝐴𝐵 only makes sense if the 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝 
matrix. The product 𝐴𝐵 is an 𝑚 × 𝑝 matrix. 
Example 13.12. (i) A 4 × 2 times a 2 × 3 gives a 4 × 3 matrix: 

6 5 41 40 38
⎡ ⎤ ⎡ ⎤1 2 5 3 8 9 11⎢ ⎥ ⋅ [6 

4] = ⎢ ⎥⎢7 8⎥ 1 2 ⎢50 51 53⎥ 
⎣0 1⎦ ⎣ 1 2 4 ⎦ 

(ii) A 2 × 2 times a 2 × 3 gives a 2 × 3 matrix: 

5 3 
6
5] = [16 38 60[6

1 2] ⋅ [1
2 4 5 11 17] 

(iii) A 2 × 3 times a 3 × 1 gives a 2 × 1 matrix: 

[1 2 3 ⋅ ⎡
7
8⎤ = [ 50

4 5 6] ⎢ ⎥ 122]
⎣9⎦ 

(iv) A 2 × 2 times a 3 × 2 is not okay. 

[6
1 

5
2] ⋅ ⎡⎢5

3 
6
4
⎤⎥ NOT A VALID EXPRESSION 

⎣7 8⎦ 

Matrix multiplication is NOT commutative. That is, except in rare cases, 𝐴𝐵 ≠ 𝐵𝐴. 
Indeed, sometimes the matrices are only compatible for one order of multiplication. 

5Example 13.13. Let 𝐴 = [6 
2] and 𝐵 = [2

3] then the product 𝐴𝐵 is legitimate, but the 1 
product 𝐵𝐴 does not make sense. 

Even, if the product is legitimate in either order, the products can be different. 
5 2Example 13.14. Let 𝐴 = [6 
2] and 𝐵 = [1 

3] then the following multiplications show 1 0 
that 𝐴𝐵 ≠ 𝐵𝐴 

[6 5 2 27 2 5 9
1 2] [0

1 
3] = [1

6 
8 ] but [0

1 
3] [1

6 
2] = [3

8 
6] 
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Lesson: You need to be careful and precise when doing matrix algebra. Make sure you 
multiply in the correct order. 

2. Identity: The following matrices are called identity matrices: 

1 0 0 01 0 0 ⎡ ⎤
𝐼2 = [1 

1
0] , 𝐼3 = ⎡0 1 0⎤ , 𝐼4 = ⎢0 1 0 0⎥⎢ ⎥0 ⎢0 0 1 0⎥⎣0 0 1⎦ ⎣0 0 0 1⎦ 

They are called the identity for the same reason the scalar 1 is called the multiplicitave 
identity. That is if you multiply the identity times anything you get back that anything. 
For example 

1 0 0 5 5
[1 0

1] [3
4] = [3

4] , ⎡0 1 0⎤ ⎡6⎤ = ⎡6⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 
⎣0 0 1⎦ ⎣7⎦ ⎣7⎦ 

Identity matrices are always square matrices. That is they have the same number of rows 
and columns. We use the subscripts in 𝐼2, 𝐼3 etc. to indicate the size of the identity. If the 
size is clear from the context we drop the subscript and just write 𝐼 for the identity matrix. 

14 Row reduction and subspaces 

14.1 Goals 

1. Be able to put a matrix into row reduced echelon form (RREF) using elementary row 
operations. 

2. Know the definitions of null and column space of a matrix. 

3. Be able to use RREF to find bases and describe the null and column spaces of a 
matrix. 

4. Know the definitions of span and independence for vectors. 

5. Know the definitions of basis and dimension for a vector space. 

6. Know that the column space = {b} for which the equation 𝐴x = b has a solution. 

7. Be able to solve 𝐴x = b by superpositioning a particular solution and the general 
homogeneous solution. 

8. Be able to describe the geometric effects transforming vectors using matrix multipli-
cation. 
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14.2 Introduction 

Row reduction is a systematic computational method of simplifying a matrix while retaining 
some of its key properties. This will give us a systematic method of solving systems of linear 
equations by finding a particular solution and the general homogeneous solution. 
The computational goal of row reduction is to simplify the matrix to the so called row 
reduced echelon form (RREF). Once in this form, we can easily read off some important 
properties of the original matrix. 
Among these properties are the notions of null space and column space, which are two of the 
fundamental vector subspaces associated to a matrix. In order to discuss these spaces, we 
will need to learn the general concepts of independence of vectors, and basis and dimension 
of a vector space. 
You will see that we have already seen all of these things, using different terms, in 18.03. 
We’ll illustrate with our standard example: The homogenous equation 

𝑥″ + 8𝑥′ + 7𝑥 = 0 

has two independent solutions 𝑥1 = 𝑒−𝑡 and 𝑥2 = 𝑒−7𝑡. Thus the equation has a two 
dimensional vector space of solutions with basis {𝑥1, 𝑥2}. That is, every solution is a linear 
combination 𝑐1𝑥1 + 𝑐2𝑥2 of the two basis functions. We say that the space of homogeneous 
solutions is a two dimensional subspace of the vector space of all functions. 
The last section in this topic will introduce the idea that matrix multiplication can be 
viewed as a transformation or mapping of vectors. At base, this is just the idea that a 
matrix times a vector is another vector. Looked at geometrically, we will see that matrix 
multiplication transforms a square to a parallelogram and a circle to an ellipse. 

14.3 Row reduction 

Row reduction is a computational technique for systematically simplifying a matrix or 
system of equations. It involves stringing together the elementary row operations listed 
below. We will see that it is exactly the same as using elimination to solve a system of 
equations. 
We will explain its use through a series of examples. 
Elementary row operations 

1. Subtract a multiple of one row from another. 

2. Scale a row by a non-zero number. 

3. Swap two rows. 

Example 14.1. Applying row operations to a matrix 𝐴. 

Start with 𝐴 = ⎡⎢2
1 

6
3

⎥⎤ . Perform the following row operations. 
⎣4 12⎦ 
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Subtract 2⋅Row1 from Row2: ∼ ⎡⎢0
1 

0
3 

⎥⎤ . 
⎣4 12⎦ 

Subtract 4⋅Row1 from Row3: ∼ ⎡⎢0
1 

0
3
⎥⎤ . 

⎣0 0⎦ 
Example 14.2. Use elimination to solve the following system of equations 

𝑥 + 2𝑧 = 4
2𝑥 + 𝑦 + 7𝑧 = 14 
𝑥 + 3𝑧 = 5 

Solution: We use elimination: subtract 2⋅Equation1 from Equation2 and at the same time 
subtract Equation1 from Equation3. 

𝑥 + 2𝑧 = 4
𝑦 + 3𝑧 = 6

𝑧 = 1 

Now solve the system from the bottom up: 𝑧 = 1 ⇒ 𝑦 = 3 ⇒ 𝑥 = 2. 
Let’s redo the previous example writing out just the augmented coefficient matrix 

1 0 2 4
⎡ ⎤⎢2 1 7 14⎥
⎣1 0 3 5 ⎦ 

Follow the same operations in the example: subtract 2⋅ Row1 from Row2 and subtract Row1 
from Row3. 

1 0 2 4
⎡ ⎤⎢0 1 3 6⎥
⎣0 0 1 1⎦ 

This represents the same system of equations and row operations as in the previous exam-
ple. 

14.4 Echelon Form 

The final matrix in the previous example is in echelon form. By definition, this means the 
first non-zero element in each row is farther to the right than the one in the row above. 
Said differently, below the staircase is all zeros and in the corner of each stair is a nonzero 
number. 
The word echelon seems to have military origins and means a step like arrangement. Here 
are two examples of matrices in echelon form with the staircase shown. The matrix on the 
left is the same as the one just above. 
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⎡
⎢
⎢
⎢
⎢ 
⎣ 

1 0 2 

0 1 3 

0 0 1 

− − −

⎡ 1 

1 

1

2 2 4 5 ⎤
⎢ ⎥4 ⎤

⎥ ⎢ 0 0 6 0 ⎥
⎢ ⎥ 

6 ⎥ ⎢ ⎥⎥ ⎢ 0 0 0 2 ⎥⎥ ⎢ ⎥1 ⎦ ⎣ 0 0 0 0 0 ⎦ 

The first non-zero element in each row is called a pivot. 
just above. 

They are circled in the matrices 

14.4.1 Reduced row echelon form (RREF) 

A matrix is in reduced row echelon form (RREF) if 
1. Each pivot is 1. 
2. Each pivot column is all zeros except for the pivot. 
3. The rows with all zeros are all at the bottom. 

1 2 0 5 
⎤Example 14.3. Use the elementary row operations to put the matrix ⎡2 4 1 13 in⎢ ⎥

⎣1 2 1 8 ⎦ 
RREF. 
Solution: Here are the row operations. 𝑅2 means Row 2 etc. The notation 𝑅2 = 𝑅2 −2⋅𝑅1 
means change 𝑅2 by subtracting 2𝑅1 from it (like computer code). 

1
⎡2⎢
⎣1 

2
4
2 

0
1
1 

5 𝑅2 = 𝑅2 − 2𝑅1 1
⎤13 −−−−−−−−→ ⎡0⎥ ⎢

8 ⎦ ⎣1 

2
0
2 

0
1
1 

5 𝑅3 = 𝑅3 − 𝑅1 1
⎤3 −−−−−−−−→ ⎡0⎥ ⎢

8⎦ ⎣0 

2
0
0 

0
1
1 

5 𝑅3 = 𝑅3 − 𝑅2⎤3 −−−−−−−−→ ⎡⎥ ⎢ 0
3⎦ ⎣ 0 

2 
0
0 

0 5⎤3⎥
0⎦ 

The last matrix is in RREF. Again we rewrite it to emphasize the pivots and the echelon. 

1 
1
0 

1 2 0 5 

0 0 1 3 

0 0 0 0 

⎡
⎢
⎢
⎢ 
⎣ 

⎤
⎥
⎥
⎥ 
⎦ 

The pivots of 𝑅 are circled. The columns with pivots are called pivot columns the other 
columns are called free columns. We have 

𝑅 pivot columns: ⎡⎢0
1
⎥⎤ , ⎢⎡1

0
⎥⎤ 𝑅 free columns: ⎡⎢0

2
⎥⎤ , ⎢⎡3

5
⎥⎤ 

⎣0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦ 

We use these to name the same columns in 𝐴: 

𝐴 pivot columns: ⎡⎢2
1
⎥⎤ , ⎢⎡1

0
⎥⎤ 𝐴 free columns: ⎡⎢4

2
⎥⎤ , ⎢⎡13

5 
⎥⎤ 

⎣1⎦ ⎣1⎦ ⎣2⎦ ⎣ 8 ⎦ 
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14.4.2 Pivot and free variables 

Recall that matrix multiplication results in a linear combination of columns. Using the 
RREF in Example 14.3 we have 

𝑥11 2 0 5 ⎡ ⎤ 1 2 0 5⎡ ⎤ ⎢𝑥2⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ 0 0 1 3⎥ = 𝑥1 ⎢0⎥ + 𝑥2 ⎢0⎥ + 𝑥3 ⎢1⎥ + 𝑥4 ⎢3⎥ +⎢𝑥3⎥
⎣ 0 0 0 0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦⎣𝑥4⎦ 

𝑥1 and 𝑥3 multiply pivot columns, so they are called pivot variables. 𝑥2 and 𝑥4 multiply 
free columns, so they are called free variables. 

14.5 Column Space of a Matrix 

The column space of a matrix is the set of all linear combinations of the columns. 
To shorten the phrase ’all linear combinations’, we will say it is the span of the columns. 
In general we have the following definition. 
Definition. The span of the vectors v1, … , vn is defined as the set of all linear combinations 
of the vectors. That is, 

The span of v1, … , vn = {𝑐1v1 + 𝑐2v2 + … + 𝑐𝑛vn, where 𝑐1, 𝑐2, … , 𝑐𝑛 are scalars} 

Important but not hard: make sure you understand why the span of vectors is always 
a vector space. 

1 2 0 5 
Example 14.4. Consider 𝑅 = ⎡⎢0 0 1 3⎥⎤ . 

⎣0 0 0 0⎦ 
The column space of 𝑅 is the set of all vectors of the form 

1 2 0 5
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤𝑥1 ⎢0⎥ + 𝑥2 ⎢0⎥ + 𝑥3 ⎢1⎥ + 𝑥4 ⎢3⎥
⎣0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦ 

Notice that there is some redundancy here: the free columns are clearly linear combinations 
of the pivot columns. That is 

Column2 = 2 ⋅ Column1 

Column4 = 5 ⋅ Column1 + 3 ⋅ Column3 

So the free columns are redundant and the column space is given by the span of just the 
pivot columns: 

⎧ 1 0 ⎫{ ⎡ ⎤ ⎡ ⎤}
Column space of 𝑅 = Col(𝑅) = 𝑥1 ⎢0⎥ + 𝑥3 ⎢1⎥⎨ ⎬{ 0 0 }⎩ ⎣ ⎦ ⎣ ⎦⎭ 

Our conclusion is that the pivot columns of 𝑅 span the column space of 𝑅. 
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Example 14.5. In this example, we’ll see that row reduction does not change the relations 
between the columns. So the pivot columns of 𝐴 span the column space of 𝐴. 

The matrix 𝐴 = ⎡ 13
5

8
⎢
⎣ 

0
1

2
4

1
2 in Example 14.3 has RREF 

Columns 1 and 3 are the pivot columns of 𝑅. Note that for both 𝐴 and 𝑅 we have the same 
relations between the columns, i.e., row reduction did not change these relations: 

Column2 = 2 ⋅ Column1 

Column4 = 5 ⋅ Column1 + 3 ⋅ Column3 

Therefore, just as with 𝑅, the pivot columns in 𝐴 span its column space. That is, 

Column space of 𝐴 = span 𝑐1 + 𝑐2 

14.6 Rank, basis, dimension, independence 

This section is going to throw a lot of vocabulary at you. You need to practice it to make 
it second nature. You should try to see how most of the new words capture ideas we have 
been using since the beginning of 18.03 

First up is the notion of independence. In Examples 14.4 and 14.5 we saw that the free 
columns were linear combinations of the pivot columns. This meant they were redundant 
and not needed to generate the column space. We describe this by saying that the free 
columns are dependent on the pivot columns. 
After getting rid of the free columns it is clear that we need all the pivot columns to make 
the column space. We describe this by saying that the pivot columns are an independent 
set of vectors. 
The formal definition of independence is the following: 
Independence. We say that the vectors v1, v2, … , vn are independent if none of them can 
be written as a linear combination of the others 

Example 14.6. (a) Show that vectors are not independent. 

⎫}
⎬}⎭ 

⎤⎥
⎦ 

0
1
1 

⎡⎢
⎣ 

⎤⎥
⎦ 

1
2
1 

⎡⎢
⎣ 

= 

.𝑅 = ⎡ ⎤⎥
⎦ 

5
3
0 

0
1
0 

2
0
0 

1
0
0

⎢
⎣ 

⎧{
⎨ 

⎫}
⎬ {⎩}⎭ 

⎤⎥
⎦ 

7
8
9 

⎤⎥
⎦ 

0
1
1 

⎡⎢,
⎣

⎥
⎦ 

1
⎤2

1 

⎡⎢
⎣ 

⎤⎥
⎦
, 

4
5
6

, 

⎡
⎩

⎧{
⎨ 

⎡⎢
⎣ 

⎤⎥
⎦

⎢
⎣ 

1
2
3 

⎡⎢
⎣

{ 

0
0
1 

0
1
0 

1
0
0 

⎤⎥
⎦121 

⎤⎥
⎦ 

⎡⎢
⎣ 

⎤⎥
⎦
, ⎡⎢

⎣ 

⎤⎥
⎦
, ⎡⎢

⎣
(b) Show that vectors are independent. 



14 ROW REDUCTION AND SUBSPACES 118 

Solution: (a) Note that 

⎡ ⎤ ⎤ + ⎡ ⎤ = ⎡ ⎤⎢
1
2⎥ − 2 ⎡⎢

4
5⎥ ⎢

7
8⎥ ⎢

0
0⎥

⎣3⎦ ⎣6⎦ ⎣9⎦ ⎣0⎦ 
This shows that any one of these 3 vectors is a linear combination of the other two. For 
example 

⎡ ⎤ ⎤ ⎤⎢2
1
⎥ = 2 ⎢⎡5

4
⎥ − ⎢⎡8

7
⎥

⎣3⎦ ⎣6⎦ ⎣9⎦ 
Thus the three vectors are not independent. 
(b) One standard way to show independence is to show that the equation 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎤𝑐1 ⎢0
1
⎥ + 𝑐2 ⎢1

0
⎥ + 𝑐3 ⎢0

0
⎥ = ⎢⎡0

0
⎥

⎣0⎦ ⎣0⎦ ⎣1⎦ ⎣0⎦ 

has only the trivial solution 𝑐1 = 𝑐2 = 𝑐3 = 0. For Part (b) this is quite obvious since, 
summing the left hand side, the equation becomes 

𝑐1 0
⎡𝑐2

⎤ = ⎡0⎤ .⎢ ⎥ ⎢ ⎥
⎣𝑐3⎦ ⎣0⎦ 

Returning to pivot columns, we have the following vocabulary: 

• The pivot columns are independent. 

• The pivot columns span the column space. 

• We combine independence and span into one word and say the pivot columns are a 
basis for the column space. 

• The number of pivot columns is called the dimension of the column space. 

• We also call the number of pivots the rank of the matrix. This is the same as the 
dimension of the column space. It is also the same as the number of non-zero rows in 
the reduced row echelon form. 

Let’s restate all our definitions in mathematical terms. 

• Independence: The vectors v1, … , vn are independent if none can be written as a 
linear combination of the others. Equivalently, they are independent if the equation 
(with unknowns 𝑐1, 𝑐2, … , 𝑐𝑛) 

𝑐1v1 + 𝑐2v2 + … + 𝑐𝑛vn = 0 

has only the trivial solution 𝑐1 = 𝑐2 = … = 𝑐𝑛 = 0. 

• Span: The set of all linear combinations of v1, … , vn is called the span of these 
vectors. It is a vector space, i.e., closed under addition and scalar multiplication. 
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• Basis: A basis for a vector space is a set of vectors that is both independent and 
spans the vector space. That is, it gets you the entire space with no redundancy. 

• Dimension: The dimension of a vector space is the number of vectors in a basis of 
the space. 

Example 14.7. 
(a) [1

0], [0
1] clearly span R2. Since they are also independent, they form a basis of R2. 

This particular basis is called the standard basis of R2. 

(b) [1
0], [1

0], [1
1] span R2. Since they are not independent, e.g., [1

1] is a linear combination 

of the other two vectors, they do not form a basis of R2. 
(c) Since R2 has a basis with two vectors it has dimension 2. 

(d) [−1
1 ], [1

1] also form a basis of R2. 

To see this we must show that the two vectors are independent and span R2. It is clear 
that they are not multiples of each other so they are independent. To see they span R2 

we need to show that any vector [𝑏
𝑏

1
2
] can be written as a linear combination of our two 

vectors. That is, we must always be able solve 

𝑥1 [−1
1 ] + 𝑥2 [

1
1] = [𝑏1]𝑏2 

for 𝑥1 and 𝑥2. This is just a matrix equation (linear combination of columns) 

[ 1 1 ] = [𝑏1
−1 1] [𝑥

𝑥
2
1 

𝑏2
] 

We can easily solve this by elimination or using the matrix inverse. so we have verified that 

[−1
1 ], [1

1] is a basis of R2. 

14.7 The meaning of the column space 

Consider the matrix equation 

[1
1 0

2 
1
3] ⎡⎢𝑥

𝑥

𝑥
2
3

1⎤⎥ = [𝑏
𝑏

2
1]

⎣ ⎦ 

An important problem is to find those vectors [𝑏1] for which this equation has a solution.𝑏2 
To answer this, remember that matrix multiplication gives a linear combination of the 
columns. That is, the above matrix equation can be written as 

𝑥1 [
1
1] + 𝑥2 [

2
0] + 𝑥3 [

3
1] = [𝑏

𝑏
2
1] 
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We see that the solution to our problem is that the equation has a solution precisely when 

[𝑏1] is in the column space of the coefficient matrix.𝑏2 

14.8 Null Space 

The null space of a matrix 𝐴 is the set of all solutions to the homogeneous equation 

𝐴x = 0 

This is exactly the same as what we have often called the homogeneous solution. Mathe-
maticians also use the term kernel as a synonym for null space. 
Note. If 𝐴 has 𝑛 columns then the null space is a subspace of R𝑛. 
Example 14.8. Find the null space of 

2 1 3𝐴 = [1 
2]2 1 0 

Solution: The answer will take a lot of space to display all the vectors and matrices. 
However, you will see when you work problems on your own that this type of problem does 
not take a long time to work out. 
Also, to make a point, we use the augmented matrix and solve 𝐴x = 0 by bringing the 
augmented matrix to reduced row echelon form. 

𝑅2 = − 3
1 ⋅ 𝑅2𝑅2 = 𝑅2 − 2𝑅1

[1 2 1 3 0 2 1 3 0 2 1 3 0
0] −−−−−−−−→ [1 

0] −−−−−−−−→ [1 
0]2 1 0 2 0 −3 −2 −4 0 1 2/3 4/3 

𝑅1 = 𝑅1 − 2𝑅2 −1/3 1/3 0−−−−−−−−→ [ 1 
0]2/3 4/3 

The pivots are circled. The first two columns are pivot columns and the last two are free 
columns. This last augmented matrix represents a system of equations 

0 
0 1 

0 −1/3 1/3 ⎡𝑥2
⎤

[1
0 1 2/3 4/3] ⎢⎢𝑥

𝑥

3

1

⎥⎥ = [0
0] . (20) 

⎣𝑥4⎦ 

We will finish finding the null space by writing these equations out explicitly. (Below, we’ll 
show a more efficient way of presenting the computation.) 
Written out as a system of equations, Equation 20 is 

𝑥1 − 3
1𝑥3 + 

1
3𝑥4 = 0 

𝑥2 + 
2
3𝑥3 + 3

4𝑥4 = 0 (21) 
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We can solve for the pivot variables 𝑥1, 𝑥2 in terms of the free variables 𝑥3, 𝑥4: 
1𝑥1 = 3𝑥3 − 

1
3𝑥4 

𝑥2 = −2
3𝑥3 − 

4
3𝑥4 

These equations make it clear that we can set the free variables, 𝑥3, 𝑥4, to any values we 
choose, i.e., they can be set freely. Once they are set, the pivot variables, 𝑥1, 𝑥2, are fully 
determined. 
So let’s set the free variables: 𝑥3 = 𝑎, 𝑥4 = 𝑏. With these choices the solution to our 
equations is 

𝑥1 3
1𝑎 − 1

3𝑏 
⎡𝑥2

⎤ ⎡−3
2𝑎 − 4

3𝑏⎤
⎢ ⎥ = ⎢ ⎥ .⎢𝑥3⎥ ⎢ 𝑎 ⎥ 
⎣𝑥4⎦ ⎣ 𝑏 ⎦ 

This can be written naturally as a linear combination 

𝑥1⎡𝑥2
⎤ 1/3 −1/3⎢ ⎥⎢𝑥3⎥ ⎡2/3⎤ ⎡−4/3⎤ 

⎢ ⎥ = 𝑎 ⎢ ⎥ + 𝑏 ⎢ ⎥ ,𝑥4 ⎢ 1 ⎥ ⎢ 0 ⎥⎢ ⎥⎢𝑥5⎥ ⎣ 0 ⎦ ⎣ 1 ⎦
⎣𝑥6⎦ 

This shows that Null(𝐴) is 2 dimensional with a basis 

⎧ 1/3 −1/3 ⎫
{⎡2/3⎤ ⎡−4/3⎤}⎢ ⎥ , ⎢ ⎥ (22)⎨⎢ 1 ⎥ ⎢ 0 ⎥⎬
{ }⎩⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

Notice that the first basis vector has 𝑥3 = 1, 𝑥4 = 0. Likewise, the second has 𝑥3 = 0, 𝑥4 = 
1. 
In the calculation we just did, 𝑥1, 𝑥2 are pivot variables and 𝑥3, 𝑥4 are free variables. They 
are called free variables because we could choose their values freely. After that, the pivot 
variables’ values were determined by the Equations 21. 
Now, we will show a somewhat more efficient way to present this. The key is to view matrix 
multiplication as a linear combination of the columns 

[1 0 −1/3 1/3 ⎢𝑥
𝑥

2
1

⎥ 0] + 𝑥2 [
0 

2/3 ] + 𝑥4 [
1/3= 𝑥1 [

1 
1] + 𝑥3 [

−1/3
0 1 2/3 4/3] 

⎡
⎢𝑥3

⎤
⎥ 4/3] = 0 

⎣𝑥4⎦ 

We rewrite this by putting the variables below the columns they multiply: 

1 0 −1/3 1/3[ ]0 1 2/3 4/3
𝑥1 𝑥2 𝑥3 𝑥4 
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Then, we find a basis of the null space as follows. 
1. Set one free variable to 1 and the other free variables to 0, i.e., write a 1 below one free 
column and 0s below the other free columns. 
2. By inspection choose the values of the pivot variables that make the linear combination 
of the columns add to 0. Write these values below the pivot columns. 

1 0 −1/3 1/3[ ]0 1 2/3 4/3
𝑥1 𝑥2 𝑥3 𝑥4
1/3 −2/3 1 0

−1/3 −4/3 0 1 

So a basis of Null(𝐴) contains the two vectors 

1/3 −1/3
⎡−2/3⎤ ⎡−4/3⎤ 

v1 = ⎢ ⎥ , v2 = ⎢ ⎥ .⎢ 1 ⎥ ⎢ 0 ⎥ 
⎣ 0 ⎦ ⎣ 1 ⎦ 

Now we get the null space of 𝐴 (all homogeneous solutions) by taking linear combinations 
of our two basic solutions. 

⎧ 1/3 −1/3 ⎫
{ ⎡−2/3⎤ ⎡−4/3⎤}

Null(𝐴) = {𝑐1v1 + 𝑐2v2} = 𝑐1 ⎢ ⎥ + 𝑐2 ⎢ ⎥⎨ ⎢ 1 ⎥ ⎢ 0 ⎥⎬
{ }⎩ ⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

Of course, this is the same answer we got before. 
Remarks. 1. The dimension of the null space equals the number of free variables. 
2. We didn’t really need to augment the matrix with a column of zeros, since these zeros 
never changed. 
3. For the equation 𝐴x = b, our general approach will be to find a particular solution and 
the general homogeneous solution. Then we’ll use superposition to get the general solution. 
This should be very familiar based on what we did with constant coefficient homogeneous 
DEs. 
4. There are of course many other bases of the null space, this is the one we are lead to by 
our algorithm. 

Example 14.9. Consider the matrix 

1 2 0 3 0 4
𝑅 = ⎡⎢0 0 1 5 0 6⎥⎤ . 

⎣0 0 0 0 1 7⎦ 

This is in row echelon form. Find its null space two ways. 
(i) Using our algorithm of setting each free variable, in turn, to 1, find a basis of Null(𝑅). 
Write the computation below the matrix. 
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(ii) Explicitly write out the 3 equations in 6 unknowns and solve them. 
Finally, note that they produce exactly the same results and convince yourself that they 
are really identical methods. 
Solution: (i) The algorithm to produce a basis of Null(𝑅) says to set, in turn, each free 
variable to 1 while setting the others to 0. We start by writing the variables below their 
respective columns. (This reflects the fact that 𝑅x is a linear combination of the columns 
of 𝑅.) So 𝑅x is represented by 

1 2 0 3 0 4
[ 0 0 1 5 0 6 ]

0 0 0 0 1 7
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 

There are 3 free variables, so the null space has dimension 3. We can compute the basis 
vectors by first setting the free variables and then computing the pivot variables that make 
the linear combination 0. Here is the computation: 

1 2 0 3 0 4
[ 0 0 1 5 0 6 ]

0 0 0 0 1 7
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
−2 1 0 0 0 0
−3 0 −5 1 0 0
−4 0 −6 0 −7 1 

In the first row below the variables, we set 𝑥2 = 1, 𝑥4 = 0, 𝑥6 = 0. Then, by inspection we 
found the values of 𝑥1, 𝑥3, 𝑥5 that made the linear combination of the columns equal 0. In 
this case, the 1 times Column 2 had to be canceled by -2 times Column 1. 
Likewise, in the second row below the variables, we set 𝑥2 = 0, 𝑥4 = 1, 𝑥6 = 0. Then, by 
inspection, we saw that the 3 and 5 in Column 4, had to be canceled by -3 times Column 
1 plus -5 times Column 3. 
The three rows below the variables represent a basis of Null(𝑅): 

⎧ −2 −3 −4 ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤1 0 0⎢ ⎥ ⎢ ⎥ ⎢ ⎥{⎢ 0 ⎥ ⎢−5⎥ ⎢−6⎥}
⎢ ⎥ , ⎢ ⎥ , ⎢ ⎥ (23)⎨ 0 1 0 ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ 0 ⎥ ⎢ 0 ⎥ ⎢−7⎥{ }⎩⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

(ii) The matrix equation we want to solve is 

𝑥1 0
⎡ ⎤ ⎡ ⎤𝑥2 01 2 0 3 0 4 ⎢ ⎥ ⎢ ⎥

⎤ ⎢𝑥3⎥ ⎢0⎥𝑅x = 0 ⇔ ⎢⎡0 0 1 5 0 6⎥ ⎢ ⎥ = ⎢ ⎥ .𝑥4 0
⎣0 0 0 0 1 7⎦ ⎢ ⎥ ⎢ ⎥⎢𝑥5⎥ ⎢0⎥ 

⎣𝑥6⎦ ⎣0⎦ 
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Writing these out explicitly as a system of equations: 

𝑥1 + 2𝑥2 + 3𝑥4 + 4𝑥6 = 0
𝑥3 + 5𝑥4 + + 6𝑥6 = 0

𝑥5 + 7𝑥6 = 0 

Next, solve for the pivot variables 𝑥1, 𝑥3 and 𝑥5 in terms of the free variables 𝑥2, 𝑥4, 𝑥6: 

𝑥1 = −2𝑥2 − 3𝑥4 − 4𝑥6 

𝑥3 = −5𝑥4 − 6𝑥6 

𝑥5 = −7𝑥6 

Set the free variables freely: 𝑥2 = 𝑎, 𝑥4 = 𝑏, 𝑥6 = 𝑐. With these choices, the solution to our 
equation 𝑅x = 0 is 

𝑥1 −2𝑎 − 3𝑏 − 4𝑐 
⎡ ⎤ ⎡ ⎤𝑥2 𝑎 ⎢ ⎥ ⎢ ⎥⎢𝑥3⎥ ⎢ −5𝑏 − 6𝑐 ⎥⎢𝑥4

⎥ = ⎢ 𝑏 ⎥ .
⎢ ⎥ ⎢ ⎥⎢𝑥5⎥ ⎢ −7𝑐 ⎥ 
⎣𝑥6⎦ ⎣ 𝑐 ⎦ 

This can be written naturally as a linear combination 

𝑥1 −2 −3 −4
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤𝑥2 1 0 0⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢𝑥3⎥ ⎢ 0 ⎥ ⎢−5⎥ ⎢−6⎥⎢ ⎥ = 𝑎 ⎢ ⎥ + 𝑏 ⎢ ⎥ + 𝑐 ⎢ ⎥ .𝑥4 0 1 0⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢𝑥5⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢−7⎥ 
⎣𝑥6⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 1 ⎦ 

These vectors are exactly the same as our basis vectors in (23). 
The two methods produce exactly the same basis because both involve setting the free 
variables freely and then computing the pivot variables. In (i), we started by setting one 
free variable to 1 and the others to 0 to get a basis vector. In (ii), we first found the general 
solution. Then, the basis vectors were found by setting one free variable to 1 and the others 
to 0, e.g., setting 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 gives the second basis vector in (23). 

14.8.1 Connecting the RREF and the original matrix 

The last piece of the puzzle is to connect the null space and column space of a matrix with 
those of its reduced row echelon form. Let’s look again at Example 14.8 and place 𝐴 and 
its RREF one above the other 

2 1 3𝐴 = [1
2 1 0 2] 

0 −1/3 1/3𝑅 = [1
0 1 2/3 4/3] 

Here are the rules. 
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1. The null space of 𝐴 is the same as that of 𝑅. 
2. The column space of 𝑅 has a basis given by the pivot columns of 𝑅. The corresponding 
columns in 𝐴 are a basis for the column space of 𝐴. 
Rule 1 follows because row reduction of the augmented matrix does not alter the solutions 
to an equation. 
Rule 2 follows because row reduction does not change the relationships between the columns. 

14.9 Summary of 𝐴x = b 

We are now very good at analyzing the equation 

𝐴x = b 

1. It has a solution if b is in the column space of 𝐴. 

2. We can find a solution by elimination (aka row reduction) 

3. The full solution is x = xp + xh, where xp is any particular solution and xh is the 
general homogeneous solution. That is xh is the null space of 𝐴. 

4. We can use reduced row echelon form (RREF) to find a basis and the dimension of 
both the null space and the column space. 

14.10 Matrix multiplication as a linear transformation 

It can be very useful to think of matrix multiplication as a function. We’ll also say map or 
linear transform. 

2 1 3Example 14.10. Let 𝐴 = [1 
2]. 𝐴 is a 2 × 4 matrix so we can multiply it times 2 1 0 

a 4-vector and get a 2-vector 

[1 2 1 3 ⎡𝑥
𝑥

2
1⎤ 

= [𝑦1⎢ ⎥ ] . 2 1 0 2] ⎢𝑥3⎥ 𝑦2
⎣𝑥4⎦ 

This is a function from R4 to R2. We will write 

𝐴 ∶ R4 ⟶ R2 

2 1 3 x ⟼ [1 
2] x2 1 0 

and say 𝐴 maps R4 to R2. (More precisely, multiplication by 𝐴 maps R4 to R2.) This is 
a simple statement, but it is a fruitful way to think about matrix multiplication and will 
help us understand many things. 
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14.10.1 Depicting linear transformations with a domain-codomain diagram 

Example 14.11. To visualize the function 𝑓(𝑥) = 3𝑥, we can draw its graph in R2, i.e., 
the line 𝑦 = 3𝑥. 
But there is another way: Draw the domain and codomain (two copies of the real line) and 
show where certain features in the domain get mapped (or transformed) to: 

0 1 2
domain R

0 3 6
codomain R

f

For example, 𝑓(𝑥) = 3𝑥 maps the point 2 to the point 6 and the interval [1, 2] to the interval 
[3, 6]. The diagram shows how 𝑓 expands everything by a factor of 3. 

0Example 14.12. Now consider the matrix [2 
1] and the associated linear transformation 0 

f ∶ R2 ⟶ R2 

[𝑥 0 
𝑦] = [2𝑥 

𝑦] ⟼ [2 
1] [𝑥 

𝑦 ] . 0 

Drawing a graph of f would require 4 dimensions (2 for the input and 2 for the output), so 
let’s draw a domain-codomain diagram instead. How does f transform Poonen’s van Gogh 
unit smile? [

2 0
0 1

]

For example, the ear at [−1
0 ] is mapped to [−2

0 ]. Notice how the linear transformation f 
stretches the smiley in the horizontal direction only. 

Example 14.13. Let 𝐴 = [3 2 For a square matrix, we can save space by putting the 1 2]. 
domain and codomain in the same plane. For multiplication by 𝐴, we have: 

𝐴 [1
0] = [3

1] and 𝐴 [0
1] = [2

2] 

We say [1
0] is mapped to [1

3] and [0
1] is mapped to [2

2]. The figures below display the input 

vectors in blue and the output vectors in orange. They show that the effect of multiplying 
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a vector by 𝐴 is to both rotate and scale the input vector. Geometrically the effect of 
multiplying a square by 𝐴 is a parallelogram. 

1

1

2

2

3

3

[
3 2
1 2

] [
1
0

]
=

[
3
1

]

1

1

2

2

3

3

[
3 2
1 2

] [
0
1

]
=

[
2
2

]

1 2 3 4 5

1

2

3

[
3 2
1 2

]
· square = parallelogram

Matrix multiplication rotates and scales vectors 

As a quick look ahead, we note that most vectors are rotated and scaled, however there are 
some special vectors that are scaled but not rotated: 

2 2[3 
2] [ 1 and [3 

2] [2
1] = [4

8] = 4 [2
1] . 1 −1] = [−1

1 ] 1 

1 2 3 4 5 6 7 8

1

2

3

4

Special vectors that are not rotated when multiplied by 𝐴. 
We’ll spend a lot time with these special vectors soon. For now let’s note the following 

2consequence of linearity: For 𝐴 = [3 
2].1 

𝐴 (𝑐1 [−1
1 ] + 𝑐2 [1

2]) = 𝑐1 [−1
1 ] + 4𝑐2 [1

2] . 

That’s pretty simple! 

Example 14.14. Rotation matrices 

= [cos 𝜃 − sin 𝜃 In this example we’ll show that the matrix 𝑅𝜃 cos 𝜃 ] rotates vectors by an angle sin 𝜃 
𝜃. To see this we take a unit vector at angle 𝛼 and see what multiplication by 𝑅𝜃 does to 
it. 
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(cosα, sinα)

(cos(α+ θ), sin(α+ θ))

θ
α

θ

𝑅𝜃 [
cos 𝛼 − sin 𝜃 

sin 𝛼] = [cos 𝜃 cos 𝛼 − sin 𝜃 sin 𝛼 
sin 𝛼] = [cos 𝜃 

cos 𝜃 ] [cos 𝛼 
sin 𝜃 sin 𝜃 cos 𝛼 + cos 𝜃 sin 𝛼] 

= [cos(𝛼 + 𝜃) (trig addition formula!)sin(𝛼 + 𝜃)] 

The result is a unit vector at angle 𝛼 + 𝜃, which is what we claimed would happen. 
𝑅𝜃 is called a rotation matrix. We will also use the name orthogonal matrix. 

The mathlet https://mathlets.org/mathlets/matrix-vector/ illustrates matrix multi-
plication as a mapping of . 

15 Transpose, inverse, determinant 

15.1 Goals 

1. Know the definition and be able to compute the inverse of any square matrix using 
row operations. 

2. Know the properties of inverses. In particular, that det(𝐴) ≠ 0 is equivalent to the 
existence of 𝐴−1. 

3. Know the definition and be able to compute the determinnant of any square matrix. 

4. Know the properties of determinant. 

5. Know the definition and be able to compute the transpose of any matrix. 

6. Understand how elementary row operations affect the determinant and be able to use 
this to simplify computing determinants. 

7. Know the definition of diagonal and triangular matrices and be able to easily compute 
their determinants and, for diagonal matrices, inverses. 

8. Recall from 18.02 the method of Laplace expansion for computing inverses and deter-
minants. 

https://mathlets.org/mathlets/matrix-vector/
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15.2 Introduction 

The main point of this topic is to learn how to compute determinants (of square matrices). 
The main application is that the determinant is 0 exactly when the matrix has a nontrivial 
null space. This will be key when we learn about eigenvalues and eigenvectors. 
You learned how to compute determinants in 18.02. We’ll recall the methods learned there 
and add another method based on row reduction. This will simplify the sometimes tedious 
calculations. We will do something similar with inverses. 

15.3 Inverses of square matrices 

You saw matrix inverses in 18.02, so we will assume they are somewhat familiar. 
Definition: A square matrix 𝐴 has an inverse if there is another matrix, denoted 𝐴−1, 
such that 𝐴−1𝐴 = 𝐴𝐴−1 = 𝐼 . 
Property. (𝐴𝐵)−1 = 𝐵−1𝐴−1. 
Proof: It’s easy to check that (𝐵−1𝐴−1)(𝐴𝐵) = 𝐵−1(𝐴−1𝐴)𝐵 = 𝐵−1𝐼𝐵 = 𝐼 . 
Story. If you put on your sweater and then your jacket, to reverse it you have to first 
take off your jacket and then your sweater. 

Let 𝐴 be an 𝑛 × 𝑛 matrix. Two important questions are 
Q1. Is 𝐴 invertible? That is, does 𝐴 have an inverse? 

Q2. How do you compute 𝐴−1? 

We can often answer Question 1 using the following list of equivalent statements. 

1. 𝐴 has an inverse. 
2. det(𝐴) ≠ 0. 
3. 𝐴 has a trivial null space,i.e., the null space = {0}. 
4. 𝐴 has rank 𝑛 (we say 𝐴 has full rank). 
5. The columns of 𝐴 are independent. 
6. The echelon form of 𝐴 has 𝑛 pivots. 
7. The reduced row echelon form of 𝐴 is the identity. 
8. For every choice of b, the equation 𝐴x = b has a unique solution. That solution is 

x = 𝐴−1b. 

Proofs: We’ll give brief arguments why numbers 2-8 follow from 1. The proof of the 
converses, i.e., that number 1 follows from each of 2-8 are similar. So assume that 𝐴 has 
an inverse 𝐴−1. 
2. We’ll see below (and you saw in 18.02) that in computing 𝐴−1 we divide by det(𝐴). 
Since we can’t divide by 0, we must have det(𝐴) ≠ 0. 
3. Suppose v is in the null space of 𝐴, so 𝐴v = 0. Then, since 𝐴 has an inverse, we know 
v = 𝐴−10 = 0. This shows that the only vector in the null space is 0. 
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4. We just showed that 1 implies 𝐴 has a trivial null space. Thus it has no free variables. 
This implies it has 𝑛 pivot variables, i.e., it has rank 𝑛. 
5,6,7. These are just different ways of saying 𝐴 has rank 𝑛. 
8. This is obvious. 

It’s also worth recording these equivalences in inverse form. The following are equivalent 
for 𝐴 

1. 𝐴 does not have an inverse. (We say 𝐴 is singular or non-invertible.) 
2. det(𝐴) = 0. 
3. 𝐴 has a nontrivial null space,i.e., the null space contains non-zero vectors. 
4. 𝐴 has rank less than 𝑛. 
5. The columns of 𝐴 have some dependencies 
6. The echelon form of 𝐴 has fewer than 𝑛 pivots. 
7. The RREF of 𝐴 has some all 0 rows 
8. For every choice of b, the equation 𝐴x = b has either no solutions or infinitely many 

solutions. 

15.3.1 Matlab 

Matlab makes it easy to compute the inverse of a matrix 𝐴. The function inv(A) returns
𝐴−1. For example, to solve 𝐴x = b in Matlab you would give the command: x = inv(A)∗b. 

15.3.2 Computing inverses. 

There are a number of methods for computing the inverse of a matrix. First we remind you 
of the inverse of a 2 by 2 matrix: 

−1 

[𝑎 𝑏 1 −𝑏 =𝑐 𝑑] 𝑎𝑑 − 𝑏𝑐 
[−𝑐

𝑑 
𝑎 ] 

In words, swap the main diagonal elements, change the sign (without swapping) of the off 
diagonal elements, and divide by the determinant. You should memorize this. We will use 
it often and you won’t want to waste time deducing it in each case. 
Next, we will show how to find and inverse using elimination. A few examples will illustrate 
how to do this. The reason it works is straightforward, but we will relegate the explanation 
to an optional appendix at the end of these notes. 

Example 15.1. Find the inverse of 𝐴 = [6
1 2

5]. 

Solution: We augment 𝐴 by the identity and then use row reduction to bring the left-hand 
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side to the identity. 
swap 𝑅1 and 𝑅2

[6 5 1 0 2
1] −−−−−−−−→ [1

1 2 0 6 5 

𝑅2 = (−1/7) ⋅ 𝑅2 2 0 1 2/7−−−−−−−−→ [0
1 

1 −1/7 6/7] −−−−−−−−→ [0
1 

1
0 

−1/7 

The right half of the last augmented matrix is the inverse 
−1 

[6 5 = [ 2/7 −5/7
1 2] −1/7 6/7 ] 

1 5 4 
Example 15.2. Find the inverse of 𝐴 = ⎡⎢2 1 3⎥⎤ 

⎣0 0 1⎦ 
Solution: We augment 𝐴 by the identity and use row reduction as in the previous example. 

𝑅1 = 𝑅1 − 4 ⋅ 𝑅31 5 4 11 0 0 𝑅2 = 𝑅2 − 3 ⋅ 𝑅3 1 5 0
⎡⎢2 1 3 0 1 0⎤⎥ −−−−−−−−→ ⎢⎡2 1 0 0 
⎣0 0 1 0 0 1⎦ 

𝑅1 = (−1/9) ⋅ 𝑅1 1 0
−−−−−−−−→ ⎡⎢2 1 

⎣0 0 

−1 51 ⎡So, 𝐴−1 = ⎢ 2 −19 ⎣ 0 0 

⎣0 0 1 0 
0 −1/9 5/9 −11/9

⎤0 0 1 −3 ⎥
1 0 0 1 ⎦ 

−11
⎤ 

𝑅2 = 𝑅2 − 6 ⋅ 𝑅10 1 2
0] −−−−−−−−→ [1

1 0 −7 

𝑅1 = 𝑅1 − 2 ⋅ 𝑅2 

−5 ⎥, as you can easily verify.
9 ⎦ 

1 −5 110 −4 𝑅1 = 𝑅1 − 5 ⋅ 𝑅2 −9 0 0 
⎤1 −3⎥⎤ −−−−−−−−→ ⎡⎢ 2 1 0 0 1 −3⎥

0 1 ⎦ 
𝑅2 = 𝑅2 − 2 ⋅ 𝑅1 1
−−−−−−−−→ ⎡⎢0 

⎣0 

0 1
1 −6] 

−5/7
6/7 ] 

⎣ 0 0 1 0 0 1 ⎦ 
0 0 −1/9 5/9 −11/9

⎤1 0 2/9 −1/9 −5/9 ⎥
0 1 0 0 1 ⎦ 

Example 15.3. Let’s see what happens if we try this on a matrix that doesn’t have an
1 2 3

⎤inverse. Try to find the inverse of 𝐴 = ⎡4 5 6 :⎢ ⎥
⎣7 8 9⎦ 

𝑅2 = 𝑅2 − 4 ⋅ 𝑅11 2 3 1 0 0 𝑅3 = 𝑅3 − 7 ⋅ 𝑅1 1 2 3 1 0 0 𝑅3 = 𝑅3 − 2 ⋅ 𝑅2 1 2 3 1
⎡ ⎤ ⎤4 5 6 0 1 0 −−−−−−−−→ ⎡0 −3 −6 −4 1 0 −−−−−−−−→ ⎡0 −3 −6 −4⎢ ⎥ ⎢ ⎥ ⎢
⎣7 8 9 0 0 1⎦ ⎣0 −6 −12 −7 0 1⎦ ⎣0 0 0 1 

We’ve reached an impasse. The matrix 𝐴 only has 2 pivots, so it cannot be row reduced to 
the identity, i.e., it has no inverse. 
Question: What is the det(𝐴)? 

0
1

−2 

0
⎤0⎥

1⎦ 

15.3.3 Diagonal and triangular matrices 

It is simple to find the inverse of a diagonal matrix. Here are some examples. 
−1

−1 1 0 0 1 0 00 = [1/3 0[3 ⎡ ⎤ ⎤= ⎡0 2 0 0 1/2 05] ⎢ ⎥ ⎢ ⎥0 0 1/5] 
⎣0 0 3⎦ ⎣0 0 1/3⎦ 



− −

− −
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−1𝑎 0 0 0 𝑎−1 0 0 0
⎡0 𝑏 0 0⎤ ⎡ 0 𝑏−1 0 0 ⎤
⎢ ⎥ = ⎢ ⎥⎢0 0 𝑐 0⎥ ⎢ 0 0 𝑐−1 0 ⎥ 
⎣0 0 0 𝑑⎦ ⎣ 0 0 0 𝑑−1⎦ 

Triangular matrices require more work, but at least we only have to do elimination in one 
direction. 

1 0 0 
Example 15.4. Find the inverse of 𝐴 = ⎡⎢2 3 0⎥⎤ 

⎣4 5 6⎦ 
Solution: We augment and row reduce from the top down: 

𝑅2 = 𝑅2 − 2 ⋅ 𝑅11 0 0 1 0 01 0 0 𝑅3 = 𝑅3 − 4 ⋅ 𝑅1 1 0 0 1 0 0 𝑅2 = (1/3) ⋅ 𝑅2 1 0 0
⎡ ⎤⎢2 3 0 0 1 0⎤⎥ −−−−−−−−→ ⎡⎢0 3 0 −2 1 0⎤⎥ −−−−−−−−→ ⎡⎢0 1 0 −2/3 1/3 0⎥
⎣4 5 6 0 0 1⎦ ⎣0 5 6 −4 0 1⎦ ⎣0 5 6 −4 0 1⎦ 

1 0 0𝑅3 = 𝑅3 − 5 ⋅ 𝑅2 1 0 0 1 0 0 𝑅3 = (1/6) ⋅ 𝑅3 1 0 0 
⎤−−−−−−−−→ ⎡⎢0 1 0 −2/3 1/3 0⎤⎥ −−−−−−−−→ ⎡⎢0 1 0 −2/3 1/3 0 ⎥

⎣0 0 6 −2/3 −5/3 1⎦ ⎣0 0 1 −1/9 −5/18 1/6⎦ 

1 0 0 
So, 𝐴−1 = ⎡⎢−2/3 1/3 0 ⎥⎤ . 

⎣−1/9 −5/18 1/6⎦ 

15.3.4 Laplace expansion using cofactors 

In 18.02 you learned how to find the inverse using cofactors (also called the adjoint method). 
For completeness, we review this method in the appendix at the end of these notes. Unless 
we specify a method for finding an inverse, e.g., by row reduction, you may use any method 
you want, including Laplace expansion. 

15.4 Determinants 

We can take the determinant of a square matrix 𝐴. We will write det(𝐴) or |𝐴| for the 
determinant of 𝐴. Since this is part of 18.02, we will assume you have seen determinants 
before. For us, the most important use of determinants is to check if a matrix has a trivial 
null space. These were Properties 2 and 3 in Section 15.3: 

Null(𝐴) is trivial if and only if det(𝐴) ≠ 0. 
Null(𝐴) is nontrivial if and only if det(𝐴) = 0. 

Properties of determinants: 
1. The determinant is linear in each column and linear in each row. 
2. det(𝐼) = 1. 
3. Swapping rows changes the sign of the determinant. 
4. Scaling a row scales the determinant. 
5. Adding a multiple of one row to another doesn’t change the determinant. 
6. det(𝐴𝐵) = det(𝐴) det(𝐵). 
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15.4.1 Laplace expansion using minors 

In 18.02 you learned how to find the determinant using minors. We give a review of that 
method in the appendix at the end of the notes for this topic. Unless we specify a method 
for finding the determinant, e.g., by row reduction, you may use any method you want 
including Laplace expansion. 

15.4.2 The 2 by 2 case 

You should know the determinant of a 2 × 2 matrix 

𝑏 det [𝑎 
𝑑] = 𝑎𝑑 − 𝑏𝑐. 𝑐 

15.4.3 Easy determinants 

The easiest determinants to compute are for diagonal and triangular matrices. In these 
cases the determinant is just the product of the diagonal entries. 

𝑎 0 0 0
⎡ ⎤0 𝑏 0 0Diagonal: det ⎢ ⎥ = 𝑎𝑏𝑐𝑑. ⎢0 0 𝑐 0⎥ 
⎣0 0 0 𝑑⎦ 

𝑎 𝑒 𝑓 𝑔 
⎡ ⎤0 𝑏 ℎ 𝑖 Upper triangular: det ⎢ ⎥ = 𝑎𝑏𝑐𝑑 ⎢0 0 𝑐 𝑗⎥ 
⎣0 0 0 𝑑⎦ 

𝑎 0 0 0
⎡ ⎤𝑏 𝑐 0 0Lower triangular: det ⎢ ⎥ = 𝑎𝑐𝑓𝑗. ⎢𝑑 𝑒 𝑓 0⎥ 
⎣𝑔 ℎ 𝑖 𝑗⎦ 

Identical rows: If 𝐴 has two identical rows then det 𝐴 = 0. 
Proof: Swapping the rows leaves 𝐴 and therefore, det(𝐴) unchanged. But (property 3), 
it also changes the sign of the determinant. Only 0 stays the same when you change sign. 
Therefore, det(𝐴) = 0. 

15.4.4 Matlab 

Matlab makes it easy to compute the determinant of a matrix 𝐴. The function det(A) 
returns det(𝐴). 

15.4.5 Finding the determinant using row reduction 

Since we know how the elementary row operations affect the determinant we can use row 
reduction to compute the determinant of a matrix. We’ll illustrate with an example. 



− −

− −

15 TRANSPOSE, INVERSE, DETERMINANT 134 

0 4 1 
Example 15.5. Find the determinant of 𝐴 = ⎡⎢1 2 2⎥⎤ 

⎣3 1 2⎦ 
Solution: We use row reduction until 𝐴 is in triangular form. At each step we keep track 
of the effect on the determinant. 

0 4 1 swap rows; det ×(−1) 1 2 2 𝑅3 = 𝑅3 − 3 ⋅ 𝑅1; det unchanged 1 2 2
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢1 2 2⎥ −−−−−−−−→ ⎢0 4 1⎥ −−−−−−−−→ ⎢0 4 1 ⎥
⎣3 1 2⎦ ⎣3 1 2⎦ ⎣0 −5 −4⎦ 

𝑅2 = (1/4) ⋅ 𝑅2; det ×(1/4) 1 2 2 𝑅3 = 𝑅3 + 5 ⋅ 𝑅2; det unchanged 1 2 2
⎡ ⎤ ⎡ ⎤−−−−−−−−→ ⎢0 1 1/4⎥ −−−−−−−−→ ⎢0 1 1/4 ⎥
⎣0 −5 −4⎦ ⎣0 0 −11/4⎦ 

The last matrix is triangular, so its determinant is the product of its diagonal entries, i.e.,
−11/4. Following the changes in the determinant caused by the row operations, we have 

1 2 2 −11(−1) ⋅ (4
1) det(𝐴) = det ⎢⎡0 1 1/4 ⎥⎤ = ⇒ det(𝐴) = 11.4⎣0 0 −11/4⎦ 

15.5 Transpose 

For us, the transpose will be a convenient tool for calculation and presenting matrices. For 
example, in Matlab we can use the transpose and matrix multiplication to compute dot 
(inner) products. There is a lot more to transposes than we will see. You should take 18.06 
to learn more. 
To take the transpose of a matrix you change rows into columns. We’ll use the notation
𝐴𝑇 for the transpose of 𝐴. 

1 2 
Example 15.6. If 𝐴 = ⎡3 4⎤ then 𝐴𝑇 = [1 3 5

6].⎢ ⎥ 2 4
⎣5 6⎦ 

Note. Transpose turns a 3 × 2 matrix into a 2 × 3 matrix. In general, it turns an 𝑛 × 𝑚 
matrix into an 𝑚 × 𝑛 matrix. 
In terms of entries, the 𝑖, 𝑗 entry of 𝐴𝑇 equals the 𝑗, 𝑖 entry of 𝐴. In symbols: (𝐴𝑇 )𝑖,𝑗 = 𝐴𝑗,𝑖. 

You can check that the dimensions make sense: If 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝 then 𝐴𝐵 is
𝑚 × 𝑝, so (𝐴𝐵)𝑇 is 𝑝 × 𝑚. Likewise, we can show that 𝐵𝑇 𝐴𝑇 is 𝑝 × 𝑚. 
Of course we can prove this property, but in 18.03 we are not particularly concerned with 
the proof, so, for anyone who is interested, we’ll put it in the appendix at the end of the 
notes for this topic. 
Symmetric matrices. A square matrix 𝐴 is symmetric if 𝐴 = 𝐴𝑇 . 
Example 15.7. The following matrices are symmetric 

1 2 3 𝑎 𝑏 𝑐 𝑎 0 0
[2 

5
3] ⎢⎡2 4 5⎥⎤ ⎢⎡𝑏 𝑑 𝑒⎥⎤ ⎢⎡0 𝑏 0⎥⎤ .3 

⎣3 5 6⎦ ⎣𝑐 𝑒 𝑓⎦ ⎣0 0 𝑐⎦ 
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Notes: 1. Symmetric means symmetric around the main diagonal. 
2. Diagonal matrices are always symmetric. 
3. It doesn’t make sense to ask if a non-square matrix is symmetric. 
4. Matlab uses a prime to mean transpose, e.g., [1,2; 3,4; 5,6] ′ . 
Symmetric matrices are an extremely important class of matrices, which arise in many 
applications. Unfortunately, we won’t have time to do much with them in 18.03. 

15.5.1 Inner products and transposes 

In 18.02 you learned about the dot product of two vectors, e.g., 

(1, 2, 3) ⋅ (2, −1, 4) = 2 − 2 + 12 = 12. 

Since the dot is also used for multiplication, we are going to (mostly) quit using the dot 
notation and also rename the dot product as the inner product. Here is our new terminology 
and notation. 
Definition: The inner product of two vectors v and w is denoted ⟨v, w⟩. If v and w are 
column vectors in R3 then 

𝑣1 𝑤1
⟨v, w⟩ = ⟨⎡⎢𝑣2⎥⎤ , ⎢⎡𝑤2⎥⎤⟩ = 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3. 

⎣𝑣3⎦ ⎣𝑤3⎦ 

This is not restricted to vectors in R3, we can define the inner product between vectors in 
R𝑛 for any 𝑛. 
The inner product of two column vectors can be computed as a matrix multiplication using 
the transpose. 

𝑤1
⟨v, w⟩ = v𝑇 w = [𝑣1 𝑣2 𝑣3] ⎢⎡𝑤2⎥⎤ = 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3. 

⎣𝑤3⎦ 

We will not do very much with inner product for now, though it will come up again later. 
For now, the most important thing to remember is that two vectors are orthogonal if their 
inner product is 0. 

⟨v, w⟩ = 0 ⇔ v and w are orthogonal. 

15.5.2 Saving space 

Now that we have the transpose, we can use it to save space on the page. Instead of always 
writing column vectors vertically, we can use the transpose to write them horizontally, e.g., 

1
⎡ ⎤
⎢2⎥ 5]𝑇 
⎢3⎥ = [1 2 3 4
⎢4⎥ 
⎣5⎦ 
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15.6 Appendix 

This appendix contains some review and some more technical material. The technical 
material is just for your reading pleasure. You will not be asked to reproduce it for ES.1803. 

15.6.1 Review: Determinants by Laplace expansion along a row or column 

The 𝑖, 𝑗 minor of a matrix is the determinant after removing the 𝑖th row and 𝑗th column, 
i.e., the row and column intersecting at the 𝑖, 𝑗 entry. 

1 2 3 
Example 15.8. Let 𝐴 = ⎡⎢4 5 6⎥⎤ . Find all the minors that go with the second column. 

⎣7 8 9⎦ 
Solution: The second column has the (1,2), (2,2) and (3,2) entries. The (1,2) minor is the 
2 × 2 determinant of the matrix after crossing out the row and columns through the (1,2) 
entry 

1 2 3 4 6(1,2) minor = ∣4 5 6∣ = ∣ ∣ = −67 97 8 9 

Likewise, for the other two entries in the second column. 

1 2 3 1 2 31 3 1 3(2,2) minor = ∣4 5 6∣ = ∣ ∣ = −12, (3,2) minor = ∣4 5 6∣ = ∣ ∣ = −67 9 4 67 8 9 7 8 9 

We can compute the determinant of the 𝑛 × 𝑛 matrix 𝐴 by expanding along any row or 
column. 

det 𝐴 = sum along the row of (checkerboard sign) ⋅ (entry) ⋅ (minor) 
As a formula, expanding along the 𝑖th row we have 

𝑛 

det 𝐴 = ∑(−1)𝑖+𝑗 ⋅ 𝐴𝑖,𝑗 ⋅ (𝑖, 𝑗) minor. 
𝑗=1 

To expand along a column, you fix 𝑗 and sum over 𝑖. 

1 2 3 
Example 15.9. Expand ∣4 5 6∣ along the middle column. 

7 8 9 

Solution: (Long, drawn out version.) First we draw a line through the second column: 
1 2 3

⎡ ⎤⎢4 5 6⎥
⎣7 8 9⎦ 

+ − +
⎡ ⎤Now we use the sign checkerboard ⎢− + −⎥ to compute the determinant using the 
⎣+ − +⎦ 

entries and minors along the second column. 
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(1,2)minor
1 2 3 ⏞4 6 1 3 1 3∣4 5 −26∣ = ∣ ∣ +5 ∣ ∣ − 8 ∣ ∣ = −2(−6) + 5(−12) − 8(−6) = 07 9 7 9 4 67 8 9 

(1,2) matrix entry 
(1,2) checkerboard sign 

Here, the sign in front of each term comes from the checkerboard, e.g., the (1,2) checkerboard 
entry is a minus sign, so that term gets a minus sign. 
The same process works expanding along any row or column. 

1 2 3 
Example 15.10. Compute ∣4 5 6∣ along the top row 

7 8 9 

5 6 4 6 4 5Solution: (Short, concise version.) Determinant = 1 ⋅ ∣ ∣ − 2 ⋅ ∣ ∣ + 3 ∣ ∣ = 08 9 7 9 7 8 

1 2 3 
Example 15.11. Compute ∣5 0 7∣

8 0 9 

5 7Solution: Use second column: det = −2 ⋅ ∣ ∣+0 ⋅ ∗−0 ⋅ ∗ = 22. (To save time, we didn’t 8 9 
bother computing the minors that were multiplied by 0.) 

15.6.2 Using row reduction on the augmented matrix to find the inverse 

Here we will explain why this technique works. The key fact here is that every elementary 
row operation corresponds to multiplication by a matrix on the left. We illustrate by row 
reducing our favorite matrix to the identity. 

5Original matrix: 𝐴 = [6 
2]1 

[0 1 5 2Swapping 𝑅1 and 𝑅3: 0] [6 
2] = [1 

5]1 1 6 

[ 1 0 2 2𝑅2 = 𝑅2 − 6𝑅1 ∶ −6 1] [1
6 5] = [1

0 −7] 

0 2 2𝑅2 = (−1/7) ⋅ 𝑅2 ∶ [1
0 −1/7] [0

1 
−7] = [0

1 
1] 

𝑅1 = 𝑅1 − 2 ⋅ 𝑅2 [1 −2
1 ] [1 

1
2] = [1 

1
0]0 0 0 

If you put all the matrix multiplications together we get 

−2 0 0 1 5 0[1
0 1 ] [1

0 −1/7] [−6
1 

1] [0
1 0] [6

1 2] = [1
0 1] 

That is 
−1−2 0 0 1 5[1

0 1 ] [1
0 −1/7] [−6

1 
1] [0

1 0] = [6
1 2] 
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This product is exactly what we get by applying the same sequence of elementary row 
operations to the identity matrix on the right side of the augmented matrix (𝐴|𝐼). 

15.6.3 Finding inverses using cofactors (the Laplace or adjoint method) 

We have a simple formula for finding the inverse of a 2 × 2 matrix: 
−1 

[𝑎 𝑏 1 −𝑏 = 𝑎 ] . 𝑐 𝑑] 𝑎𝑑 − 𝑏𝑐 
[−𝑐

𝑑 

For bigger (square) matrices finding inverses is more involved. One algorithm for doing this 
is called the adjoint or Laplace method. 
The step-by-step algorithm is the following: 

1. Start with 𝐴. 

2. Find the matrix of minors. 

3. Find the matrix of cofactors. 

4. Find the adjoint. 

5. Divide by det(𝐴). 

Of course, we have to explain what each of these things is. We will over the next four 
examples, explaining one item at a time. 

1 2 3 
For these examples let 𝐴 = ⎡⎢4 5 6⎤⎥. 

⎣1 2 0⎦ 
Matrix of minors. We definied the 𝑖, 𝑗 minor of a matrix in Section 15.6.1. The matrix 
of minors of 𝐴 is just the matrix made up of all the minors. The 𝑖, 𝑗-entry of the matrix of 
minors is the 𝑖, 𝑗-minor of 𝐴. 

Example 15.12. Find the matrix of minors of 𝐴. 
Solution: 𝐴 is a 3 × 3 matrix so its matrix of minors is also 3 × 3. Here is the computation 
for each minor: 

1 2 3 −12 ∗ ∗ 
⎤ 5 6 ⎡ ⎤⎡1, 1 minor: ⎢4 5 6⎥; 1, 1-minor = ∣ ∣ = −12; matrix of minors = ⎢ ∗ ∗ ∗⎥2 0

⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 

1 2 3 −12 −6 ∗ 
⎤ 4 6 ⎡ ⎤⎡1, 2 minor: ⎢4 5 6⎥; 1, 2-minor = ∣ ∣ = −6; matrix of minors = ⎢ ∗ ∗ ∗⎥1 0

⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 

1 2 3 −12 −6 3
⎡ ⎤ 4 5 ⎡ ⎤1, 3 minor: ⎢4 5 6⎥; 1, 3-minor = ∣ ∣ = 3; matrix of minors = ⎢ ∗ ∗ ∗⎥1 2
⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 



139 15 TRANSPOSE, INVERSE, DETERMINANT 

1 2 3 −12 −6 3
⎤ 2 3 ⎡ ⎤⎡2, 1 minor: ⎢4 5 6⎥; 2, 1-minor = ∣ ∣ = −6; matrix of minors = ⎢ −6 ∗ ∗⎥2 0

⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 

There are 5 more minors to compute. We show each of them, but without labels. You 
should practice by naming them and computing their value. 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢4 5 6⎥; ⎢4 5 6⎥; ⎢4 5 6⎥; ⎢4 5 6⎥; ⎢4 5 6⎥;
⎣1 2 0⎦ ⎣1 2 0⎦ ⎣1 2 0⎦ ⎣1 2 0⎦ ⎣1 2 0⎦ 

−12 −6 3
⎡ ⎤The entire matrix of minors is therefore: ⎢ −6 −3 0 ⎥. 
⎣ −3 −6 −3⎦ 

Matrix of cofactors. Recall the checkerboard of signs we used for computing the deter-
+ − + 

minant: ⎡⎢− + −⎥⎤ . To compute the matrix of cofactors of 𝐴, you change the signs in 
⎣+ − +⎦ 

the matrix of minors according to the checkerboard. 

Example 15.13. Find the matrix of cofactors for the matrix 𝐴 in the previous example. 
−12 −6 3 −12 6

⎤Solution: The matrix of minors is ⎢⎡ −6 −3 0 ⎥ So the matrix of cofactors is ⎢⎡ 6 −3 
⎣ −3 −6 −3⎦ ⎣ −3 6 

(Look carefully at how we changed signs to go from minors to cofactors.) 

Adjoint. To make the adjoint matrix you take the transpose of the cofactors matrix, i.e., 
switch the rows and columns of the cofactors matrix. 

Example 15.14. Find the adjoint matrix for the matrix 𝐴 in the previous examples. 
−12 6 3 −12 6 −3 

Solution: The matrix of cofactors is ⎡⎢ 6 −3 0 ⎤⎥. So the adjoint is ⎡⎢ 6 −3 6 ⎤⎥. 
⎣ −3 6 −3⎦ ⎣ 3 0 −3⎦ 

Example 15.15. Find the inverse for the matrix 𝐴 in the previous examples. 
Solution: We can find det 𝐴 = 9 using the minors for the first row computed in Example 

−12 6 −3 
15.12. The matrix of cofactors is ⎡⎢ 6 −3 6 ⎤⎥, so the inverse is 

⎣ 3 0 −3⎦ 

−12 6 −31 ⎡ ⎤𝐴−1 = ⎢ 6 −3 6 ⎥ .9 ⎣ 3 0 −3⎦ 

Finding the inverse. Divide the matrix of cofactors by det 𝐴. 
The next example will show a good way to organize the computation. 

3 
⎤0 ⎥.

−3⎦ 
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1 2 3 
Example 15.16. Compute the inverse of the matrix 𝐴 = ⎡⎢2 1 2⎥⎤ . 

⎣1 2 0⎦ 
Solution: In order to have an inverse we need det(𝐴) ≠ 0. So our first step is to compute 
the determinant. We do this by expansion along the first row: 

1 2 3 1 2 2 2 2 1det(𝐴) = ∣2 1 2∣ = 1 ∣ ∣ − 2 ∣ ∣ + 3 ∣ ∣ = 1(−4) − 2(−2) + 3(3) = 9.2 0 1 0 1 21 2 0 

Since det(𝐴) ≠ 0, the inverse exists and we can proceed with the algorithm to compute
𝐴−1. Only the first step requires any real computation. 
The algorithm says to first compute the matrix of minors. Notice that we found the minors 
for the first row when we computed the determinant. We can reuse those and only need to 
compute the other 6. (Actually we’ll just use the answers from the previous examples.) 

−4 −2 3
⎡ ⎤1. Matrix of minors = ⎢−6 −3 0 ⎥ (compute each minor). 
⎣ 1 −4 −3⎦ 

−4 2 3
⎡ ⎤2. Matrix of cofactors = ⎢ 6 −3 0 ⎥ (apply checkerboard). 
⎣ 1 4 −3⎦ 

−4 6 1
⎡ ⎤3. Adjoint = ⎢ 2 −3 4 ⎥ (swap rows and columns). 
⎣ 3 0 −3⎦ 

4. Inverse: 
−4 6 1

𝐴−1 = 1 ⎡ ⎤2 −3 49 ⎢ ⎥
⎣ 3 0 −3⎦ 

(divide by det(𝐴). 

We can check this by multiplying by multiplying 𝐴−1 ⋅ 𝐴 and seeing that we get 𝐼 . (You’ll 
have to do the actual computation.) 

−4 6 1 1 2 3
𝐴−1 1 ⎡ ⎤ ⎡ ⎤⋅ 𝐴 = ⎢ 2 −3 4 ⎥ ⎢2 1 2⎥ = 𝐼. 9 ⎣ 3 0 −3⎦ ⎣1 2 0⎦ 

Fun note: This algorithm works for the 2 × 2 case as well. You should try it out, it’s very 
fast. 

15.6.4 Proof that (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 

We’ll use the following notation involving indices. Let the (𝑖, 𝑗) entry of 𝐴 be 𝐴𝑖,𝑗. By the 
definition of transpose we have (𝐴𝑇 )𝑗,𝑖 = 𝐴𝑖,𝑗. Likewise for other matrices. In order to 
show that (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 we have to show that ((𝐴𝐵)𝑇 )𝑘,𝑖 = (𝐵𝑇 𝐴𝑇 )𝑘,𝑖. We do this by 
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keeping track of indices while multiplying matrices. Since (𝐴𝐵)𝑖,𝑘 = ∑ 
𝑗 

𝐴𝑖,𝑗𝐵𝑗,𝑘 we have 

((𝐴𝐵)𝑇 )𝑘,𝑖 = (𝐴𝐵)𝑖,𝑘 = ∑ 𝐴𝑖,𝑗𝐵𝑗,𝑘 = ∑ 𝐵𝑗,𝑘𝐴𝑖,𝑗 = ∑(𝐵𝑇 )𝑘,𝑗(𝐴𝑇 )𝑗,𝑖 = (𝐵𝑇 𝐴𝑇 )𝑘,𝑖 QED 
𝑗 𝑗 𝑗 

15.6.5 Left and right inverses 

A left inverse for a matrix 𝐴 is a matrix 𝐿 such that left-multiplication by 𝐿 gives the 
identity, e.g., 

𝐿 ⋅ 𝐴 = 𝐼 

The definition of a right inverse is similar. 

Non-square matrices can have one-sided inverses. For example the matrix 𝐴 = [6 5 2
1 2 4] 

has a right inverse (in fact many of them). For example, 

2/7 −5/75 2 0[6
1 2 4] ⎡⎢−1/7 6/7 ⎤⎥ = [1

0 1]
⎣ 0 0 ⎦ 

But 𝐴 has no left inverse. Likewise, there are matrices with left inverses but no right 
inverses. 
Here are some facts about these one-sided inverses. We won’t give details, but you do have 
all the tools to understand the details: ask if you’re interested. 

1. A square matrix either has a single two-sided inverse, i.e., both a left and a right 
inverse, or it has no inverses of any kind. 

2. If 𝑛 < 𝑚 then an 𝑛 × 𝑚 matrix 𝐴 cannot have a left inverse. If the rank of 𝐴 is 𝑛 then 
it has a right inverse. The example just above, illustrates this for 𝐴 a 2 × 3 matrix of 
rank 2. 

3. If 𝑛 > 𝑚 then an 𝑛 × 𝑚 matrix 𝐴 cannot have a right inverse. If the rank of 𝐴 is 𝑚 
then it has a left inverse. 

16 Eigenvalues, diagonalization, decoupling 

This note covers topics that will take us several classes to get through. While we we will 
look at 𝑛 × 𝑛 matrices, most of our computational examples will use 2 × 2 matrices. These 
have almost all the features of bigger square matrices and they are computationally much 
easier. 
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16.1 Etymology: 

This is from a Wikipedia discussion page: The word eigen in German or Dutch translates 
as ’inherent’, ’characteristic’, ’private’. So an eigenvector of a matrix is characteristic or 
inherent to the matrix. The word eigen is also translated as ’own’ with the same sense as 
the meanings above. That is the eigenvector of a matrix is the matrix’s ’own vector’. 
In English you sometimes see eigenvalues called special or characteristic values. 

16.2 Definition 

For a square matrix 𝑀 , an eigenvalue is a number (scalar) � that satisfies the equation 

𝑀 v = 𝜆 v for some non-zero vector v. (24) 

The vector v is called a non-zero eigenvector corresponding to 𝜆. We will call Equation 
16.1 the eigenvector equation. 
Comments: 
1. Using the symbol 𝜆 for the eigenvalue is a fairly common practice when looking at generic 
matrices. If the eigenvalue has a physical interpretation, we’ll often use a corresponding 
letter. For example, in population matrices the eigenvalues are growth rates, so we’ll often 
denote them using 𝑟 or 𝑘. 
2. Eigenvectors are not unique. That is, if v is an eigenvector with eigenvalue 𝜆 then so is 
any multiple of v. Indeed, the set of all eigenvectors with eigenvalue 𝜆 is clearly a vector 
space. (You should convince yourself of this!) 

16.3 Why eigenvectors are special 

[6 5Example 16.1. Let 𝐴 = We will explore how 𝐴 transforms vectors and what 1 2]. 
makes an eigenvector special. We will see that 𝐴 scales and rotates most vectors, but only 
scales eigenvectors. That is, eigenvectors lie on lines that are unmoved by 𝐴. 

Take u1 = [1
0] ⇒ 𝐴u1 = [1

6]; Take u2 = [1
0] ⇒ 𝐴u2 = [2

5]. 

We see that 𝐴 scales and turns most vectors. 

= [5 = [35Now take v1 1] ⇒ 𝐴v1 7 ] = 7v1. By the definition in Equation 24, this shows 

that v1 is an eigenvector with eigenvalue 7. The eigenvector is special since 𝐴 scales it by 
7, but does not rotate it. 

Likewise, v2 = [−1
1 ] then 𝐴v2 = v2. So v2 is an eigenvector with eigenvalue 1. The 

eigenvector v2 is really special, it is unmoved by 𝐴. 
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x

y

u1

Au1

u2

Au2

v2 = Av2

v1

to Av1 = (35, 7)

2 4 6

-1

2

Example 16.1: Action of the matrix 𝐴 on vectors 

The following example shows how knowing eigenvalues and eigenvectors simplifies calcu-
lations with a matrix. In fact, you don’t even need the matrix once you know all of its 
eigenvalues and eigenvectors. 

Example 16.2. Suppose 𝐴 is a 2 × 2 matrix that has eigenvectors [1
2] and [3

1] with 

eigenvalues 2 and 4 respectively. 

(a) Compute 𝐴 [1
2]. 

Solution: Since [1
2] is an eigenvector, this follows directly from the definition of eigenvec-

tors: 𝐴 [1
2] = 2 [1

2] = [2
4]. 

(b) Compute 𝐴 ([1
2] + [1

3]). 

Solution: This uses the definition of eigenvector plus linearity: 

𝐴 ([1
2] + [1

3]) = 𝐴 [2
1] + 𝐴 [1

3] = 2 [2
1] + 4 [3

1] = [16
6 ] . 

(c) Compute 𝐴 (3 [1
2] + 5 [1

3]). 

Solution: Again this uses the definition of eigenvector plus linearity: 

3] = [26𝐴 (3 [1
2] + 5 [3

1]) = 3𝐴 [1
2] + 5𝐴 [3

1] = 6 [1
2] + 20 [1 

72] . 

(d) Compute 𝐴 [0
1]. 
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Solution: We first decompose [0
1] into eigenvectors: 

[0
1] = [1

3] − [1
2] . 

Now we can once again use the definition of eigenvector plus linearity: 

𝐴 [0
1] = 𝐴 ([3

1] − [1
2]) = 𝐴 [3

1] − 𝐴 [1
2] = 4 [3

1] + 2 [1
2] = [8

2] . 

Example 16.3. Any rotation in three dimensions is around some axis. The vector along 
this axis is fixed by the rotation, i.e., it is an eigenvector with eigenvalue 1. 

16.4 Computational algorithm 

We start by summarizing the method. We will justify it and give examples below. 
Computational method: 
1. The eigenvalues of 𝐴 are the roots of the characteristic equation 

det(𝐴 − 𝜆𝐼) = 0 (25) 

2. The corresponding eigenspace of 𝐴 is Null(𝐴 − 𝜆𝐼). 
Notes. 1. Again, we call Equation 25 the characteristic equation. (Eigenvalues are some-
times called characteristic values.) It allows us to find the eigenvalues and eigenvectors 
separately in a two step process. 
2. The eigenspace is so-called, because it is the vector subspace which consists of all eigen-
vectors corresponding to 𝜆. 
3. Notation: For simplicity we will sometimes use the notation |𝐴| = det(𝐴). So the 
characteristic equation can be written |𝐴 − 𝜆𝐼| = 0. 

16.4.1 Justification of the computational algorithm 

First we recall the following basic fact about square matrices from Topic 15. 
Fact: The null space of 𝐴 is nontrivial exactly when det(𝐴) = 0. 
Next, we manipulate the eigenvalue equation (Equation 24) so that finding eigenvectors 
becomes finding null vectors. Suppose, 𝜆 is an eigenvalue and v is a corresponding nonzero 
eigenvector. Then, starting with the eigenequation we have: 

𝐴 v = 𝜆 v ⇔ 𝐴 v = 𝜆 𝐼v ⇔ 𝐴 v − 𝜆 𝐼v = 0 ⇔ (𝐴 − 𝜆 𝐼)v = 0. 

Since v ≠ 0, the last equation just above says 𝐴 − 𝜆 𝐼 has a nontrivial null space. So 
our fact about determinants and null spaces tells us that 𝜆 is an eigenvalue if and only if 
det(𝐴 − 𝜆 𝐼) = 0, i.e., if and only if 𝜆 is a root of the characteristic equation. This justifies 
Step 1 in the algorithm. 
Likewise, the equation (𝐴 − 𝜆 𝐼)v = 0 says that v is an eigenvector corresponding to 𝜆 if 
and only if v is in Null(𝐴 − 𝜆𝐼). This justifies Step 2 in the algorithm. 
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16.4.2 Examples 

5Example 16.4. Find the eigenvalues of the matrix 𝐴 = [6 
2] . For each eigenvalue find 1 

a basis of the corresponding eigenspace. 
Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

5 
𝜆
0] = [6 − 𝜆 5𝐴 − 𝜆𝐼 = [6

1 2] − [𝜆
0 1 2 − 𝜆] . 

Taking the determinant and setting it to 0 gives 

det(𝐴 − 𝜆𝐼) = (6 − 𝜆)(2 − 𝜆) − 5 = 𝜆2 − 8𝜆 + 7 = 0. 

The roots of this are 𝜆 = 7, 1. 
Step 2. For each eigenvalue, find basis vectors for the eigenspace, i.e., find a basis of 
Null(𝐴 − 𝜆𝐼). 

[−1 5 [1 −5𝜆1 = 7: 𝐴 − 𝜆𝐼 = This has RREF 𝑅 = 0 ] . The null space is 11 −5]. 0 

dimensional, a basis is v1 = [1
5]. 

5 1𝜆1 = 1: 𝐴 − 𝜆𝐼 = [5 
1]. This has RREF 𝑅 = [1 

0] . The null space is 1 dimensional, 1 0 

= [−1 a basis is v2 1 ]. 

Remember, any scalar multiple of these eigenvectors is also an eigenvector with the same 
eigenvalue. 
Let’s reemphasize a key point: 
Example 16.5. Eigenspaces are null spaces. Consider the matrix 

4 8 −2 2
⎡ ⎤0 0 0 0𝐴 = ⎢ ⎥⎢0 0 1 1⎥ 
⎣0 0 1 1⎦ 

Find the eigenvalues and eigenspaces of 𝐴. 
Solution: This is a 4 × 4 matrix, but the characteristic equation is not hard to find. 

4 − 𝜆 8 −2 2∣ ∣0 −𝜆 0 0|𝐴 − 𝜆 𝐼| = ∣ ∣ = (4 − 𝜆)(−𝜆)(𝜆2 − 2𝜆) = −𝜆2(4 − 𝜆)(𝜆 − 2). 
∣ 0 0 1 − 𝜆 1 ∣
∣ 0 0 1 1 − 𝜆∣ 

So the eigenvalues are 𝜆 = 0, 0, 4, 2. 
Eigenspace for 𝜆 = 0: 
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1 2 0 1
⎡ ⎤0 0 1 1We must find Null(𝐴): The RREF of 𝐴 is 𝑅 = ⎢ ⎥ .⎢0 0 0 0⎥ 
⎣0 0 0 0⎦ 

Using this we see that Null(𝐴) (eigenspace for 𝜆 = 0) is 2 dimensional and has basis 

⎧ −2 −1 ⎫
{⎡ 1 ⎤ ⎡ 0 ⎤}⎢ ⎥ , ⎢ ⎥⎨⎢ 0 ⎥ ⎢−1⎥⎬
{ }⎩⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

Let’s highlight that Null(𝐴) is nontrivial means 𝜆 = 0 is an eigenvalue. 
For the other two eigenvalues we must find Null(𝐴 − 4𝐼) and Null(𝐴 − 2𝐼). This is not hard 
and you should do it as an exercise. We get: 

⎧ 1 ⎫ ⎧ 0 ⎫
{⎡0⎤} {⎡0⎤}

The eigenspace for 𝜆 = 4 has basis ⎢ ⎥ . The eigenspace for 𝜆 = 2 has basis ⎢ ⎥ .⎨⎢0⎥⎬ ⎨⎢1⎥⎬
{ } { }⎩⎣0⎦⎭ ⎩⎣1⎦⎭ 

Notes. 
Trick. In the 2 × 2 case we don’t have to write out the RREF to find the eigenvector. 
Notice that the entries in our eigenvectors come from the entries in one row of the matrix. 
The eigenvector is the column vector with entries: right entry of the row, minus the left 

entry. For example, if 𝐴 − 𝜆 𝐼 = [−1
1 −5

5 ], then, using the top row, we see that v = [5
1] is 

a basis vector for Null(𝐴 − 𝜆 𝐼). If you think about this a moment, you’ll see why it must 
be the case. 
Matlab: In Matlab the function eig(A) returns the eigenvectors and eigenvalues of a 
matrix. 

16.5 Complex eigenvalues 

If the eigenvalues are complex, then the eigenvectors are complex. Otherwise there is no 
difference in the algebra. 

4Example 16.6. Find the eigenvalues and basic eigenvectors of the matrix 𝐴 = [ 3 
3] .−4 

Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

4 0 3 − 𝜆 4det ([−4
3 

3] − [𝜆
0 𝜆]) = ∣ −4 3 − 𝜆∣ = (3 − 𝜆)2 + 16 = 0. 

So the eigenvalues are 𝜆 = 3 ± 4𝑖. 
Step 2. Find corresponding basic eigenvectors. That is, find a basis of Null(𝐴 − 𝜆𝐼). (In 
the 2 × 2 case, we can do that without doing row reduction.) 

v1 = [1𝜆1 = 3 + 4𝑖: (𝐴 − 𝜆 𝐼) = [−4𝑖 4 Take−4 −4𝑖]. 𝑖] . 
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4 v2 = [ 1𝜆2 = 3 − 4𝑖: (𝐴 − 𝜆 𝐼) = [ 4𝑖 
4𝑖] . Take −4 −𝑖] . 

Time saver: Notice that the eigenvalues and eigenvectors come in complex conjugate pairs. 
Knowing this, there is no need to do a computation to find the second member of each pair. 

−4Example 16.7. Find the eigenvalues and basic eigenvectors of the matrix 𝐴 = [1 
5 ] . 5 

Solution: Step 1. Find 𝜆 (eigenvalues): |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

1 − 𝜆 −4∣ ∣ = 𝜆2 − 6𝜆 + 25 = 0 ⇒ 𝜆 = 3 ± 4𝑖. 5 5 − 𝜆 

Step 2. Find corresponding basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
4𝜆1 = 3 + 4𝑖: (𝐴 − 𝜆 𝐼) = [−2 − 4𝑖 −4 Take v1 = [5 2 − 4𝑖]. −2 − 4𝑖] . 

4𝜆2 = 3 − 4𝑖: Take v2 = v1 = [−2 + 4𝑖] . 

16.6 Repeated eigenvalues 

When a matrix has repeated eigenvalues the eigenvectors are not as well behaved as when 
the eigenvalues are distinct. There are two main examples 
Example 16.8. (Defective case) Find the eigenvalues and basic eigenvectors of the matrix 

1𝐴 = [3 
3] . 0 

Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

3 − 𝜆 1∣ ∣ = (𝜆 − 3)2 = 0 ⇒ 𝜆 = 3, 3. 0 3 − 𝜆 

Step 2. Find the basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 

𝜆1 = 3: [0
0 

1
0] v1. This is already in RREF. It has one free variable, so the null space 

v1 = [1
0] .is 1 dimensional. We can take a basis vector: 

We have two eigenvalues but only one independent eigenvector, so we call this case defective 
or incomplete. In linear algebra, there is a lot to explore with defective matrices. In 18.03, 
we will not go into a lot of detail about them. 

Example 16.9. (Complete case) Find the eigenvalues and basic eigenvectors of the matrix 
0𝐴 = [3 
3] . 0 
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Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

3 − 𝜆 0∣ ∣ = (𝜆 − 3)2 = 0 ⇒ 𝜆 = 3, 3. 0 3 − 𝜆 

Step 2. Find corresponding basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
0𝜆1 = 3: 𝐴 − 𝜆𝐼 = [0 
0].0 

This equation shows that every vector in R2 is an eigenvector. That is, the eigenvalue 𝜆 = 3 
has a two dimensional eigenspace. We can pick any two independent vectors as a basis, e.g., 

v1 = [0
1] and v2 = [1

0]. (These are the simplest choices, but any two independent vectors 

would work!) 
Because we have as many independent eigenvectors as eigenvalues, we call this case com-
plete. 

16.7 Diagonal matrices 

In this section we will see how easy it is to work with diagonal matrices. In later sections 
we will see how working with eigenvalues and eigenvectors of a matrix is like turning it into 
a diagonal matrix. 

Example 16.10. Consider the diagonal matrix 𝐵 = [2
0 3

0] 

𝑣] = [2𝑢 Convince yourself that 𝐵 [𝑢 That is 𝐵 scales the first coordinate by 2 and the 3𝑣]. 
second coordinate by 3. 
We can write this as 

𝐵 [1
0] = 2 [0

1] and 𝐵 [0
1] = 3 [1

0] 

This is exactly the definition of eigenvectors. That is, [1
0] and [0

1] are eigenvectors with 

eigenvalues 2 and 3 respectively. We state this an an important fact. 
Important fact. For a diagonal matrix, the diagonal entries are the eigenvalues and the 
eigenvectors are the standard basis vectors. 

2 0 0
⎡ ⎤Example 16.11. The matrix 𝐴 = ⎢0 3 0⎥ has eigenvalues and corresponding basic 
⎣0 0 4⎦ 

eigenvectors 
𝜆 = 2, 3, 4 

⎤ ⎡ ⎤ ⎡ ⎤v = ⎡⎢0
1
⎥ , ⎢1

0
⎥ , ⎢0

0
⎥

⎣0⎦ ⎣0⎦ ⎣1⎦ 
You can check this by multiplying 𝐴 times each eigenvector. 

Example 16.12. For the matrix 𝐴 in the previous example, compute det 𝐴, 𝐴2, 𝐴5. 
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Solution: det(𝐴) = product of diagonal entries = 24. 
22 0 0 25 0 0

𝐴2 = ⎢⎡ 0 32 0 ⎥⎤ . Likewise, 𝐴5 = ⎡⎢ 0 35 0 ⎥⎤ 

⎣ 0 0 42⎦ ⎣ 0 0 45⎦ 

16.8 Diagonalization 

Diagonalization is a way to make a matrix almost as easy to work with as a diagonal matrix. 
Theorem. Diagonalization theorem. Suppose the 𝑛 × 𝑛 matrix 𝐴 has 𝑛 independent 
eigenvectors. Then, we can write 

𝐴 = 𝑆Λ𝑆−1, 
where 𝑆 is a matrix whose columns are the 𝑛 independent eigenvectors and Λ is the diagonal 
matrix whose diagonal entries are the corresponding eigenvalues. 
The proof is below. We illustrate this first with our standard example. 

[6 5Example 16.13. We know the matrix 𝐴 = 2] has eigenvalues 7 and 1 with corre-1 
sponding basic eigenvectors v1 = [5 1]𝑇 and v2 = [−1 1]𝑇 

We put the eigenvectors as the columns of a matrix 𝑆 and the eigenvalues as the entries of 
a diagonal matrix Λ. 

1 
−1 

0 
0
1]𝑆 = [v1 v2] = [5 

1 ] , Λ = [7 

The diagonalization theorem says that 

𝐴 = 𝑆Λ𝑆−1 = [5 −1
1 ] [7 

1
0] [ 1/6 1/6

1 0 −1/6 5/6] . 

This is called the diagonalization of 𝐴. Note the form: a diagonal matrix Λ surrounded by 
𝑆 and 𝑆−1. 

Proof of the diagonalization theorem. We will do this for the matrix in the example 
above. It should be clear that this proof carries over to any 𝑛×𝑛 matrix with 𝑛 independent 
eigenvectors. 
The equation 𝐴 = 𝑆Λ𝑆−1 can be rewritten as 𝐴𝑆 = 𝑆Λ. We will show this is true by 
showing that both sides have the same effect when multiplying any vector. That is, 

𝐴𝑆v = 𝑆Λv 

for any vector v 

First, let e1 = [0
1] , e2 = [0

1] be the standard basis vectors of R2. Since every vector is a 

linear combination of the basis vectors, it is enough to show 

𝐴𝑆e1 = 𝑆Λe1 and 𝐴𝑆e2 = 𝑆Λe2. 
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Recall that multiplying a matrix times a column vector results in a linear combination of 
the columns. In our case, 

𝑆e1 = [v1 v2] [1
0] = v1, and 𝑆e2 = [v1 v2] [0

1] = v2. 

Now we can check that 𝐴𝑆e1 = 𝑆Λe1: 

0𝐴𝑆e1 = 𝐴v1 = 7v1 and 𝑆Λe1 = 𝑆 [7 
1] [1

0] = 𝑆 [7
0] = 7v1.0 

The equation 𝐴v1 = 7v1 follows because v1 is an eigenvector of 𝐴 with eigenvalue 7. 
Thus we have shown that 𝐴𝑆e1 = 𝑆Λe1. In exactly the same way, we can show that
𝐴𝑆e2 = 𝑆Λe2. 
Thus we can conclude that 𝐴𝑆 = 𝑆Λ. So, 𝐴 = 𝑆Λ𝑆−1. 

In general, the steps for diagonalizing an 𝑛 × 𝑛 matrix 𝐴 are: 
1. Find the eigenvalues 𝜆1, … , 𝜆𝑛 and corresponding basic eigenvectors v1, … , vn. 
2. Make the matrix of eigenvectors 𝑆 = [v1 v2 ⋯ vn] 

𝜆1 0 0 ⋯ 0
⎡ ⎤0 𝜆2 0 ⋯ 03. Make the diagonal matrix of eigenvalues Λ = ⎢ ⎥⎢ ⋮ ⋮ ⋮ ⋱ 0 ⎥ 
⎣ 0 0 0 ⋯ 𝜆𝑛⎦ 

The diagonalization is: 𝐴 = 𝑆Λ𝑆−1. 
Note: Diagonalization requires that 𝐴 have a full complement of eigenvectors. If 𝐴 is 
defective, it can’t be diagonalized. 

We have the following important formula 

det(A) = product of its eigenvalues. 

This follows easily from the diagonalization formula 

det(𝐴) = det(𝑆Λ𝑆−1) = det(𝑆) det(Λ) det(𝑆−1) = det(Λ) = product of diagonal entries. 

−1−1 0 −1Example 16.14. Consider the matrix 𝐴 = [5
1 1 ] [7

0 1] [5
1 1 ] . 

(a) What are the eigenvalues and eigenvectors of 𝐴. 
(b) Compute det 𝐴, 𝐴2, 𝐴5. 

−1 0Solution: For ease of writing, let 𝑆 = [5 
1 ] and Λ = [7 

1]. So, 𝐴 = 𝑆Λ𝑆−1.1 0 

(a) The columns of 𝑆 are eigenvectors and the diagonal entries of Λ are the corresponding 
eigenvalues. We have eigenpairs 

𝜆 = 7, v = [5
1] and 𝜆 = 1, v = [−1

1 ] . 
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(b) We have det 𝐴 = det Λ = 7. We also have 

0𝐴2 = 𝑆Λ𝑆−1 ⋅ 𝑆Λ𝑆−1 = 𝑆Λ2𝑆−1 = 𝑆 [72 

12] 𝑆−1.0 

0Likewise 𝐴5 = 𝑆Λ5𝑆−1 = 𝑆 [75 

15] 𝑆−1.0 

16.9 Diagonal matrices and uncoupled algebraic systems 

Example 16.15. (An uncoupled algebraic system) Consider the system 

7𝑢 = 1
𝑣 = 3 

The variables 𝑢 and 𝑣 are uncoupled. That is, they never occur in the same equation. We 
can solve the system by finding each variable separately: 𝑢 = 1/7, 𝑣 = 3. 

Example 16.16. Now consider the system 
6𝑥 + 5𝑦 = 2 

𝑥 + 2𝑦 = 4. 
In matrix form this is 

[6 5
2] [𝑥 

4] (26)1 𝑦] = [2 

5The matrix 𝐴 = [6 
2] is the same matrix as in Examples 16.1 and 16.4 above. In this 1 

system the variables 𝑥 and 𝑦 are coupled. We will explain the logic of decoupling later. 
For this example, we will decouple the equations using some magical choices involving 
eigenvectors. 

The examples above showed that the eigenvalues of 𝐴 are 7 and 1 with eigenvectors [5
1] and 

[−1
1 ]. We write all vectors in terms of the eigenvectors by making the change of variables 

[𝑥
𝑦] = 𝑢 [5

1] + 𝑣 [−1
1 ] ⇔ 𝑥 = 5𝑢 − 𝑣; 𝑦 = 𝑢 + 𝑣. 

For the future, we note: [2
4] = [5

1] + 3 [−1
1 ]. 

Converting our equation from 𝑥 and 𝑦 to 𝑢 and 𝑣 we get 
5 5[1

6 
2] [𝑥

𝑦] = [6
1 2] (𝑢 [5

1] + 𝑣 [−1
1 ]) = 7𝑢 [5

1] + 𝑣 [−1
1 ] 

Thus, 

[6 5
1 2] [𝑥

𝑦] = [2
4] ⇔ 7𝑢 [5

1] + 𝑣 [−1
1 ] = [5

1] + 3 [−1
1 ] 

It is easy to see that the last system is the same as the equations 
7𝑢 = 1 𝑣 = 3. 

In 𝑢, 𝑣 coordinates the system is diagonal and easy to solve. 
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16.10 Introduction to matrix methods for solving systems of DEs 

In this section we will solve linear, homogeneous, constant coefficient systems of differential 
equations using the matrix methods we have developed. For now we will just consider 
matrices with real, distinct eigenvalues. In the next topic we will look at complex and 
repeated eigenvalues. 
As with constant coefficient DEs, we will use the method of optimism to discover a sys-
tematic technique for solving systems of DEs. We start by giving the general 2 × 2 linear, 
homogeneous, constant coefficient system of DEs. It has the form 

𝑥′ = 𝑎𝑥 + 𝑏𝑦 (27)𝑦′ = 𝑐𝑥 + 𝑑𝑦. 
Here 𝑎, 𝑏, 𝑐, 𝑑 are constants and 𝑥(𝑡), 𝑦(𝑡) are the unknown functions we need to solve for. 
There are a number of important things to note. 
1. We can write Equation 27 in matrix form 

[𝑥
𝑦′

′
] = [𝑎

𝑐 𝑑
𝑏] [𝑥

𝑦] ⇔ x ′ = 𝐴x (28) 

where 𝐴 = [𝑎 
𝑑] and x = [𝑥 

𝑐 
𝑏 

𝑦]. 

2. The system is homogeneous. You can see this by taking Equation 27 and putting all the 
𝑥 and 𝑦 on the left side so that the right side becomes all zeros. 
3. The system is linear. You should be able to check directly that a linear combination of 
solutions to Equation 28 is also a solution. 
We illustrate the method of optimism for solving Equation 28 with an example. 
Example 16.17. Solve the linear, homogeneous, constant coefficient system 

x ′ x = [𝑥 5= 𝐴x, where 𝑦] and 𝐴 = [6
1 2] . 

Solution: Using the method of optimism we try a solution 

x = 𝑒𝜆𝑡v, 
where 𝜆 is a constant and v is a constant vector. Substituting the trial solution into both 
sides of the DE we get 

𝜆𝑒𝜆𝑡v = 𝑒𝜆𝑡𝐴v ⇔ 𝐴v = 𝜆v. 

This is none other than the eigenvalue/eigenvector equation. So solving the system amounts 
to finding eigenvalues and eigenvectors. From our previous examples we know the eigenval-
ues and eigenvectors of 𝐴. We get two solutions. 

x1 = 𝑒𝑡 [−1
1 ] , x2 = 𝑒7𝑡 [1

5] . 

The general solution is the span of these solutions: 

x = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒𝑡 [−1
1 ] + 𝑐2𝑒7𝑡 [5

1] 
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The solutions x1 and x2 are called modal or basic solutions. 
Now that we know where the method of optimism leads, we can do a second example 
starting directly with finding eigenvalues and eigenvectors 
Example 16.18. Find the general solution to the system 

[𝑥′ 4
𝑦′] = [3

1 3] [𝑥
𝑦] 

Solution: First find eigenvalues and basic eigenvectors. 
3 − 𝜆 4Characteristic equation: ∣ ∣ = 𝜆2 − 6𝜆 + 5 = 0 ⇒ 𝜆 = 1, 5.1 3 − 𝜆 

Basic eigenvectors: (basis of Null(𝐴 − 𝜆𝐼)): 
4𝜆 = 1: (𝐴 − 𝜆𝐼) = [2

1 2]. Take v1 = [−2
1 ]. 

4𝜆 = 5: (𝐴 − 𝜆𝐼) = [−2 
−]. Take v2 = [2

1].1 

We have two modal solutions: x1 = 𝑒𝑡v1 and x2 = 𝑒5𝑡v2. 

The general solution is x = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒𝑡 [−2
1 ] + 𝑐2𝑒5𝑡 [1

2] . 

16.11 Decoupling systems of DEs 

Example 16.19. (An uncoupled system) Consider the system 

𝑢′(𝑡) = 7𝑢(𝑡) 
𝑣′(𝑡) = 𝑣(𝑡) 

Since 𝑢 and 𝑣 don’t have any effect on each other, we say that 𝑢 and 𝑣 are uncoupled. It’s 
easy to see the solution to this system is 

𝑢(𝑡) = 𝑐1𝑒7𝑡 

𝑣(𝑡) = 𝑐2𝑒𝑡 

In matrix form we have 
[𝑢′ 0

1] [𝑢
𝑣] . 𝑣′] = [7

0 

The coefficient matrix has eigenvalues 7 and 1, with basic eigenvectors [1
0] and [0

1]. The 

general solution to the system of DEs is 

[𝑢
𝑣] = 𝑐1𝑒7𝑡 [1

0] + 𝑐2𝑒𝑡 [0
1] . 

We see an uncoupled system has a diagonal coefficient matrix and the basic eigenvectors 
are the standard basis vectors. All in all, it’s simple and easy to work with. 
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The following example shows how to decouple a coupled system. After seeing this example, 
we will redo it, in a cleaner, more memorable way. 
Example 16.20. Consider once again the system from Example 16.17 

𝑥′ = 6𝑥 + 5𝑦 ⇔ x ′ = 𝐴x, where x = [𝑥
𝑦] , 𝐴 = [6 5 (29)𝑦′ = 𝑥 + 2𝑦. 1 2] 

In this system the variables 𝑥 and 𝑦 are coupled. Make a change of variable that converts 
this to a decoupled system. 
Solution: From Example 16.17 we know the eigenvalues are 7 and 1, basic eigenvectors 

are [5
1] and [−1

1 ], and the general solution is [𝑥
𝑦] = 𝑐1𝑒7𝑡 [1

5] + 𝑐2𝑒𝑡 [−1
1 ]. 

Notice that 𝑐1𝑒7𝑡 and 𝑐2𝑒𝑡 in the above solution are just 𝑢 and 𝑣 from the previous example. 
So we can write 

[𝑥(𝑡)
𝑦(𝑡)] = 𝑢(𝑡) [5

1] + 𝑣(𝑡) [−1
1 ] . (30) 

This is a change of variables. 
Let’s rewrite the system in Equation 29 in terms of 𝑢, 𝑣. Using Equation 30, we get 

x ′ = [𝑥
𝑦′

′
] = 𝑢′ [1

5] + 𝑣′ [−1
1 ] and 𝐴 [𝑥

𝑦] = 𝐴 (𝑢 [5
1] + 𝑣 [−1

1 ]) = 7𝑢 [1
5] + 𝑣 [−1

1 ] 

The last equality follows because [5 1]𝑇 and [−1 1]𝑇 are eigenvectors of 𝐴. 
Equating the two sides we get 

𝑢′ [5
1] + 𝑣′ [−1

1 ] = 7𝑢 [5
1] + 𝑣 [−1

1 ] . 

Comparing the coefficients of the eigenvectors we get 

𝑢′ = 7𝑢 0⇔ [𝑢′ 

1] [𝑢 
𝑣′ = 𝑣 𝑣′] = [7

0 𝑣] 

That is, in terms of 𝑢 and 𝑣 the system is uncoupled. Note that the eigenvalues of 𝐴 are 
precisely the diagonal entries of the uncoupled system. 

16.11.1 Decoupling in general 

Though it’s somewhat disguised, the key to the previous example was diagonalization. 
Bringing this to the forefront makes the example cleaner and less complicated. 
Suppose 𝐴 is written in diagonalized form: 𝐴 = 𝑆Λ𝑆−1, where, as usual, 𝑆 is a matrix 
with the eigenvectors of 𝐴 as columns and Λ is the diagonal matrix with the corresponding 
eigenvalues as entries. 
Decoupling: Suppose we have the system x ′ = 𝐴x, then the change of variables 

u = 𝑆−1x 
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′ converts the coupled system into an uncoupled system u = Λu. 
Proof. The key is diagonalization: the system x ′ = 𝐴x can be written 

x ′ = 𝑆Λ𝑆−1x ⇔ 𝑆−1x ′ = Λ𝑆−1x. 

Now, letting u = 𝑆−1x converts this to the uncoupled system 

u ′ = Λu. 

Since this is an uncoupled equation, making the change of variables u = 𝑆−1x is called 
decoupling the system. 

To end this section, we’ll walk through the previous example, being more explicit about the 
use of diagonalization. 
Example 16.21. Decouple the system in Example 16.20 using the diagonalized form of 𝐴. 
Solution: The system in Example 16.20 is x ′ = 𝐴x. 

−1Let 𝑆 = [5 
1 ] = the matrix with eigenvectors of 𝐴 as columns.1 

0Let Λ = [7 
1] = the diagonal matrix with the eigenvalues of 𝐴 as diagonal entries. 0 

Diagonalization says that 𝐴 = 𝑆Λ𝑆−1. 
The decoupling change of variables is u = 𝑆−1x. We can write this as 

x = 𝑆u or [𝑥 −1
1 ] [𝑢

𝑣] = 𝑢 [1
5] + 𝑣 [−1

1 ] . 𝑦] = [5
1 

This is exactly the change of variables used in Example 16.20. 
The decoupled system is 

u ′ = Λu or [𝑢′ 

1
0] [𝑢

𝑣] , 𝑣′] = [7
0 

which is exactly the decoupled system found in Example 16.20. 

16.12 Appendix: symmetric matrices 

This section is optional. We won’t ask about it on psets or tests. The first 
example in this section is a nice exercise in thinking about matrix multiplication 
as a way to transform vectors. 

Example 16.22. Geometry of symmetric matrices. This is a fairly complex example 

[𝑎 0showing how we can use the diagonal matrix Λ = 𝑏] and the rotation matrix 𝑅 =0 

[ cos 𝜃 − sin(𝜃) 
cos(𝜃) ] to convert a circle to an ellipse as shown in the figures below. sin(𝜃) 

To do this, we think of matrix multiplication as a linear transformation. The diagonal 
matrix Λ transforms the circle by scaling the 𝑥 and 𝑦 directions by 𝑎 and 𝑏 respectively. 
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This creates the ellipse in Figure (b), which is oriented with the axes. The rotation matrix 
𝑅 then rotates this ellipse to the general ellipse in Figure (c). 

u

v

i

j

(a) Unit circle 

Λi = ai

Λj = bj

(b) Ellipse made by scaling the axes by 𝑎 and 𝑏 respectively 

x

y

−→v1 = RΛi

−→v2 = RΛj
θ

(c) Ellipse in (b) rotated by 𝜃 

In coordinates 𝑅Λ maps the unit circle 𝑢2 + 𝑣2 = 1 to the ellipse shown in (c). That is, 

𝑅Λ [𝑢
𝑣] = [𝑥 or [𝑢

𝑣] = Λ−1𝑅−1 [𝑥 
𝑦] 𝑦] 

Example 16.23. Spectral theorem. The previous example transforms the unit circle in 
𝑢𝑣-coordinates into an ellipse in 𝑥𝑦-coordinates. In terms of inner products and transposes 
this becomes 

1 = ⟨[𝑢
𝑣] , [𝑢

𝑣]⟩ 

= ⟨Λ−1𝑅−1 [𝑥
𝑦] , Λ−1𝑅−1 [𝑥

𝑦]⟩ 

𝑇 

= [𝑥 (Λ−1𝑅−1)𝑇 Λ−1𝑅−1 [𝑥 
𝑦] 𝑦] 

𝑇 

= [𝑥 𝑅Λ−2𝑅−1 [𝑥 
𝑦] 𝑦] 

The last equality uses the facts that for a rotation matrix 𝑅𝑇 = 𝑅−1 and for a diagonal 
matrix Λ𝑇 = Λ. 
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Call the matrix occurring in the last two lines above 𝐴. That is, 

𝐴 = 𝑅Λ−2𝑅−1 = (Λ−1𝑅−1)𝑇 Λ−1𝑅−1. 

We then have the equation of the ellipse is 
𝑇 

1 = [𝑥
𝑦] 𝐴 [𝑥

𝑦] . 

The matrix 𝐴 has the following properties 
1. It is symmetric 

2. Its eigenvalues are 𝑎−2 and 𝑏−2 

3. Its eigenvectors are the the vectors v⃗⃗⃗⃗⃗1⃗⃗⃗ and v⃗⃗⃗⃗⃗2⃗⃗⃗ along the axes of the ellipse (see figure (c) 
above). 
4. Its eigenvectors are orthogonal. 
Proof. 
1. This is clear from the formula 𝐴 = 𝐵𝑇 𝐵 where 𝐵 = Λ−1𝑅−1. 
2. This is clear from the diagonalization 𝐴 = 𝑅Λ−2𝑅−1. (Remember the eigenvalues are in 
the diagonal matrix Λ−2. 
3. We need to show that 𝐴 transforms v⃗⃗⃗⃗⃗1⃗⃗⃗ to a multiple of itself. This also follows by 
considering the action of each term in the diagonalization in turn (see the figures): 𝑅−1 

moves v⃗⃗⃗⃗⃗1⃗⃗⃗ to the 𝑥-axis; then Λ−2 scales the 𝑥-axis by 𝑎−2; and finally 𝑅 rotates the 𝑥-axis 
back the line along v⃗⃗⃗⃗⃗1⃗⃗⃗. Using symbols 

𝐴v⃗⃗⃗⃗⃗1⃗⃗⃗ = 𝑅Λ−2𝑅−1 v⃗⃗⃗⃗⃗1⃗⃗⃗ = 𝑅Λ−2𝑎i = 𝑅(𝑎−2𝑎i) = 𝑎−2 v⃗⃗⃗⃗⃗1⃗⃗⃗ 

The properties of 𝐴 are general properties of symmetric matrices. 
Spectral theorem. A symmetric matrix 𝐴 has the following properties. 
1. It has real eigenvalues. 
2. Its eigenvectors are mutually orthogonal. 
Because of the connection to the axes of ellipses this is also called the principal axis theorem. 

17 Matrix methods for solving systems of DEs 

17.1 Goals 

1. Be able to solve constant coefficient linear systems using eigenvalues and eigenvectors. 
Do this when there are real or complex eigenvalues. 

2. Understand and appreciate the abstraction of matrix notation. 
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3. Be able to convert a higher order linear DE equation into a companion system of 
coupled first-order equations. 

4. See some physical settings modeled by systems of equations. 

17.2 Introduction 

In this topic we will look in detail at solving linear constant coefficient systems of differential 
equations using eigenvalues and eigenvectors. We will need to consider cases of real, complex 
and repeated eigenvalues. (We will only touch on the case of repeated eigenvalues.). 
An important idea is that any higher order differential equation can be converted into a 
system of first-order equations. This means that our old friend 𝑃 (𝐷)𝑥 = 0 can be converted 
into a system and solved with these methods. This is useful because it is more natural to 
formulate numerical algorithms for first-order systems than for higher order equations. This 
is partly explained by the first section below, which looks at the utility of matrix notation. 

17.3 Matrix notation and why we like it 

We have been using matrix notation for algebraic systems and systems of differential equa-
tions. Let’s remind ourselves why it’s helpful in organizing our thinking. 
One of the simplest algebraic equations is 

𝑎𝑥 = 𝑏, where 𝑎 and 𝑏 are constants and 𝑥 is the unknown. (31) 

We easily solve this for 𝑥: 𝑥 = 𝑎−1𝑏 (provided 𝑎 ≠ 0). 

On the face of it a system of algebraic equations seem more complicated. For example 
consider the following system of two equations in two unknowns: 

6𝑥 + 5𝑦 = 2 
𝑥 + 2𝑦 = 3 

We could solve this by elimination, but here our interest in writing this out abstractly. In 
matrix form the system and its solution become 

−1 

[6 
2
5] [𝑥 

3] ⇒ [𝑥 5 [2
1 𝑦] = [2 

𝑦] = [1
6 

2] 3] 

5
2], x = [𝑥 If we give names: 𝐴 = [6

1 𝑦], b = [3
2] then the system and its solution become 

𝐴x = b ⇒ x = 𝐴−1b. 
At this level of abstraction we see that the system and its solution are just like those of our 
simplest equation. (One small difference is that we need to take more care with the order 
of matrix multiplication than we do with scalar multiplication.) 

For differential equations our simplest and favorite equation is 

𝑥′ = 𝑎𝑥. 
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Written in matrix form, a linear system of DEs looks similar. 

Example 17.1. As above, let 𝐴 = [6 
2] and x = [𝑥 Write the following system in a1 
5 

𝑦]. 
form that resembles our favorite DE. 

𝑥′ = 6𝑥 + 5𝑦 
𝑦′ = 𝑥 + 2𝑦 

Solution: In matrix form this becomes 

5[6
1 2] [𝑥

𝑦] = [𝑥
𝑦′

′
] or x ′ = 𝐴x. 

The right hand equation looks just like our favorite DE. 
Note: we will call 𝐴 the coefficient matrix of the system. 

17.4 Solving homogeneous DEs using matrix methods 

17.4.1 Review 

In the previous topic we looked briefly at solving linear, homogeneous, constant coefficient 
systems using matrix methods. Recall that we used the method of optimism to guess a 
solution of the form 𝑒𝜆𝑡v. Substituting this in the equation leads immediately to the fact 
that 𝜆 must be an eigenvalue and v an eigenvector. 

We’ll review the process with brief explanations. Later, we will write model solutions that 
skip directly to the characteristic equation. 

[𝑥′ 2Example 17.2. Solve 𝑦′] = [3
1 2] [𝑥

𝑦]. 
This is a linear, homogeneous, constant coefficient system of DEs. 

𝑦] = 𝑒𝜆𝑡v.Solution: Try [𝑥 

2 [3 2Substitution gives: 𝜆𝑒𝜆𝑡v = [3 
2] 𝑒𝜆𝑡 v ⇔ 2] v = 𝜆 v.1 1 

The boxed equation is the eigenvector/eigenvalue equation, where 𝜆 is the eigenvalue and 
v is the corresponding eigenvector. 
We know how to find eigenvalues and eigenvectors: 

3 − 𝜆 2Characteristic equation: ∣ ∣ = 0 ⇔ 𝜆2 − 5𝜆 + 4 = 0 ⇒ 𝜆 = 4, 1.1 2 − 𝜆 

Eigenvectors are in Null(𝐴 − 𝜆𝐼): 

𝜆1 = 4: 𝐴 − 𝜆𝐼 = [−1 Basic eigenvector: v1 = [2
1].1 −2

2 ]. 

𝜆2 = 1: 𝐴 − 𝜆𝐼 = [2 2 Basic eigenvector: v2 = [ 11 1]. −1]. 
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Two modal solutions are x1(𝑡) = 𝑒4𝑡v1 = 𝑒4𝑡 [1
2] and x2(𝑡) = 𝑒𝑡v2 = 𝑒𝑡 [−1

1 ] . 

The general solution is x = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒4𝑡 [2
1] + 𝑐2𝑒𝑡 [−1

1 ] . 

Note: Each of the solutions x = 𝑒𝜆𝑡v is called a normal mode or modal solution. 

17.4.2 Complex eigenvalues 

We handle complex eigenvalues in exactly the same manner as we did complex characteristic 
roots for ordinary differential equations. 
Theorem: Suppose 𝐴 is a real matrix. Consider the DE: x ′ = 𝐴x. 
If z is a complex solution to this DE then both the real and imaginary parts of z are also 
solutions. 
Proof: Suppose z = x1 + 𝑖x2 then 

z ′ = 𝐴z 
⇔ (x1 + 𝑖x2)′ = 𝐴(x1 + 𝑖x2)
⇔ x ′1 + 𝑖x ′2 = 𝐴x1 + 𝑖𝐴x2 

If two complex numbers are equal then their real parts must be equal and so must the 
imaginary parts. Therefore, the equation above shows 

x ′1 = 𝐴x1 and x ′2 = 𝐴x2. 

That is, x1 and x2 are both solutions to the DE. 
Notes: 
1. The proof is just linearity written out the long way. 
2. To be perfectly careful we should say that x1 and x2 are the real and imaginary parts of 
z, but this is clear from the context. 
The next example illustrates the use of this theorem. 

−5Example 17.3. Find the general, real-valued solution to [𝑥
𝑦′

′
] = [3

2 1 ] [𝑥
𝑦]. 

3 − 𝜆 −5Solution: Characteristic equation: |𝐴 − 𝜆𝐼| = ∣ ∣ = 𝜆2 − 4𝜆 + 13 = 02 1 − 𝜆 

Solving, we get 𝜆 = 2 ± 3𝑖. (Complex roots always come in conjugate pairs.) 
Eigenvectors: Find a basis for Null(𝐴 − 𝜆𝐼). 

𝜆 = 2 + 3𝑖: (𝐴 − 𝜆 𝐼) = [1 − 3𝑖 −5
2 −1 − 3𝑖]. 

5By inspection, a basic eigenvector is v1 = [1 − 3𝑖]. 

Note: There is no need to compute the second eigenvector since it is just the complex 
conjugate of the first one. 
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This gives us a complex-valued solution 

5 5 z1(𝑡) = 𝑒(2+3𝑖)𝑡 [1 − 3𝑖] = 𝑒2𝑡(cos 3𝑡 + 𝑖 sin 3𝑡) [1 − 3𝑖] 

= 𝑒2𝑡 [ 5 cos 3𝑡 + 𝑖5 sin 3𝑡 
cos 3𝑡 + 3 sin 3𝑡 + 𝑖(−3 cos 3𝑡 + sin 3𝑡)] 

Just for completeness we give its complex conjugate which is also a solution 

z2(𝑡) = z1(𝑡) = 𝑒(2−3𝑖)𝑡 [ 5 5 cos 3𝑡 − 𝑖5 sin 3𝑡 
1 + 3𝑖] = 𝑒2𝑡 [cos 3𝑡 + 3 sin 3𝑡 − 𝑖(−3 cos 3𝑡 + sin 3𝑡)] 

The theorem above tells us that The real and imaginary parts of z1 are both solutions: 

5 cos 3𝑡 x1(𝑡) = 𝑒2𝑡 [cos 3𝑡 + 3 sin 3𝑡] 

5 sin 3𝑡 x2(𝑡) = 𝑒2𝑡 [−3 cos 3𝑡 + sin 3𝑡] . 

As always, the general, real-valued solution is given by superposition 

5 cos 3𝑡 5 sin 3𝑡 x(𝑡) = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒2𝑡 [cos 3𝑡 + 3 sin 3𝑡] + 𝑐2𝑒2𝑡 [−3 cos 3𝑡 + sin 3𝑡] . 

17.4.3 Repeated roots (2 by 2 case only) 

Repeated eigenvalues complicate matters somewhat. We will study this by looking at two 
examples. 

0Example 17.4. (Complete case) Solve [𝑥
𝑦′

′
] = [5

0 5] [𝑥
𝑦] 

Solution: This is a diagonal matrix so the eigenvalues are 𝜆 = 5, 5. 
0For 𝜆 = 5 the matrix 𝐴 − 𝜆𝐼 = [0 
0]. The null space of this matrix is all of R2. That is, 0 

every vector is an eigenvector i.e., the eigenspace is 2 dimensional. Since we only need to 
choose two independent eigenvectors, we can choose the standard basis vectors: 

v1 = [0
1] , v2 = [0

1] . 

(Any other independent pair would work as well.) 

Thus the general solution to the DE is x = 𝑐1𝑒5𝑡 [1
0] + 𝑐2𝑒5𝑡 [0

1] = 𝑒5𝑡 [𝑐
𝑐

1
2
] . 

This is called the complete case because we have a full complement of basic solutions. That 
is, we have two independent solutions to our second-order system. 

The next example looks at the so-called defective case. The name comes from the following 
ideas. If a matrix has a repeated eigenvalue we would like an independent eigenvector for 
each time the eigenvalue is repeated. The matrix is defective if this is not the case. 
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−1Example 17.5. (Defective case) Solve [𝑥
𝑦′

′
] = [7

4 3 ] [𝑥
𝑦] 

Solution: First we find the eigenvalues: The characteristic equation is 

|𝐴 − 𝜆 𝐼| = 𝜆2 − 10𝜆 + 25 = 0. 

So the eigenvalues are repeated: 𝜆 = 5, 5. 
Next we find the basic eigenvectors v. As usual, we need find to a basis of Null(𝐴 − 𝜆 𝐼). 

For 𝜆 = 5: 𝐴 − 𝜆𝐼 = [2 −1
4 −2]. 

−1/2The row reduced echelon form (RREF) of the coefficient matrix is 𝑅 = [1
0 0 ]. 

This has only one free variable, so the eigenspace is only one dimensional. A basis is given 

by v1 = [1
2]. 

This eigenvector gives us one solution to the DE: x1 = 𝑒5𝑡 [1
2] 

As we said, this case is defective. The system is second-order but the eigenmethods only 
found one solution. We’ll use a magic algorithm to find a second solution. Below we’ll see 
why the magic worked. You will need to take 18.06 (or even better 18.701) for more insight 
on why this works. 
The first step of the algorithm is to solve (𝐴 − 𝜆𝐼)v2 = v1. That is, 

[2 −1 ] = [1
−2] [𝑎1 

2]4 𝑎2 

Using row reduction (or by inspection) we find that one solution is v2 = [1
1]. 

The algorithm now tells us that a second solution to the DE is 

x2 = 𝑡𝑒5𝑡v1 + 𝑒5𝑡v2 = 𝑡𝑒5𝑡 [1
2] + 𝑒5𝑡 [1

1] . 

Now that we have two solutions we can give the general solution to the DE: 

x(𝑡) = 𝑐1x1 + 𝑐2x2 

= 𝑐1 𝑒5𝑡 [1
2] + 𝑐2 (𝑡𝑒5𝑡 [1

2] + 𝑒5𝑡 [1
1]) 

Abstract version of defective case 

The example above is complicated by actual computations. Here is the abstract version of 
the algorithm for the defective case. We check that the result is a solution by plugging it 
into the DE. 
The algorithm uses two vectors 
1. An eigenvector v1, i.e., 𝐴v1 = 𝜆v1 
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2. A vector v2 that satisfies (𝐴 − 𝜆 𝐼)v2 = v1. 
v2 is called a generalized eigenvector. In the proof below, we will need to use this in the 
form: 𝐴v2 = v1 + 𝜆v2. 
We assert that x1(𝑡) = 𝑒𝜆𝑡v1 and x2(𝑡) = 𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡v2 are independent solutions to the 
DE. 
Proof: We know that 𝑥1 is the eigenvector solution. To check that x2 is a solution, we 
plug it into the DE and check that both sides of the equation are the same. 

(left side) x ′ 
2 = 𝜆𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡v1 + 𝜆𝑒𝜆𝑡v2 = 𝜆𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡(v1 + 𝜆v2) 

(right side )𝐴x2 = 𝑡𝑒𝜆𝑡𝐴v1 + 𝑒𝜆𝑡𝐴v2 = 𝜆𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡(v1 + 𝜆v2) 

Comparing both sides we see that x ′ 
2 = 𝐴x2. That is, x2 is a solution. 

17.5 Companion systems 

Early in 18.03 we learned how to solve ordinary differential equations 𝑃 (𝐷)𝑥 = 0. For 
example 𝑥″+8𝑥′+7𝑥 = 0. In this section we will convert a higher order ordinary differential 
equation to a system of first-order equations. 
Example 17.6. Convert the ODE 𝑥″ + 8𝑥′ + 7𝑥 = 0 to a system of first-order equations. 
Solution: Introduce a second variable 𝑦 = 𝑥′ . Our ODE then becomes 

𝑦′ + 8𝑦 + 7𝑥 = 0. 

Writing out the equations for 𝑥′ and 𝑦′ we get 

𝑥′ = 𝑦 [𝑥′ 1
𝑦′ = −7𝑥 − 8𝑦 ⇔ 𝑦′] = [−7

0 
−8] [𝑥

𝑦] 

The system is called the companion system to the original ODE. We call the coefficient 
matrix the companion matrix. 
We will sometimes refer to the method of converting an ODE to a system as anti-elimination. 
This is because elimination is a process of removing variables and equations, so anti-
elimination is a process of adding variables and equations. 

Example 17.7. Find the companion system for the ODE 𝑥‴ + 2𝑥″ + 5𝑥′ + 7𝑥 = 0. 
Solution: Let 𝑦 = 𝑥′ and 𝑧 = 𝑦′ = 𝑥″ . The ODE becomes 𝑧′ + 2𝑧 + 5𝑦 + 7𝑥 = 0. So our 
companion system is 

𝑥′ = 𝑦 𝑥′ 0 1 0 𝑥 
𝑦′ = 𝑧 ⇔ ⎢⎡𝑦′⎥⎤ = ⎡⎢ 0 0 1 ⎥⎤ ⎢⎡𝑦⎥⎤ 

𝑧′ = −7𝑥 − 5𝑦 − 2𝑧 ⎣𝑧′⎦ ⎣−7 −5 −2⎦ ⎣𝑧⎦ 
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17.6 Physical examples 

Example 17.8. Population models 
Suppose we have two countries with time varying populations 𝑥 and 𝑦. Suppose also that 
the natural growth rate in the countries is 2% and 2% respectively. In addition every year 
3% of the country 1 moves to country 2 and 1% of country 2 moves to country 1. 
Give a system of differential equations modeling this scenario. Assume initial populations 
of 𝑥(0) = 2 and 𝑦(0) = 2 (in units of one million). Solve the system and interpret the 
eigenvectors in terms of populations. 
Solution: We have 

𝑥′ = 0.02𝑥 − 0.03𝑥 + 0.01𝑦 = −0.01𝑥 + 0.01𝑦 ⇔ [𝑥
𝑦′

′
] = [−0.01 0.01

𝑦′ = 0.03𝑥 + 0.02𝑦 − 0.01𝑦 = 0.03𝑥 + 0.01𝑦 0.03 0.01] [𝑥
𝑦] 

We solve by finding eigenvalues and eigenvectors. 
−0.01 − 𝜆 0.01Characteristic equation: ∣ ∣ = 0 ⇒ 𝜆 = 0.02, −0.02 0.03 0.01 − 𝜆 

Eigenvectors (basis of Null(𝐴 − 𝜆𝐼), where 𝐴 is the coefficient matrix: 

𝜆1 = 0.02: 𝐴 − 𝜆𝐼 = [−0.03 0.01 Basic eigenvector: v1 = [1
3]0.03 −0.01]. 

𝜆2 = −0.02: 𝐴 − 𝜆𝐼 = [0.01 0.01 Basic eigenvector: v2 = [ 10.03 0.03]. −1] 

The general solution is 

[𝑥(𝑡)
𝑦(𝑦)] = 𝑐1𝑒0.02 𝑡 [1

3] + 𝑐2𝑒−0.02 𝑡 [ 1−1] 

The initial conditions produce 𝑐1 = 1 and 𝑐2 = 1. So 

[𝑥(𝑡) 
3] + 𝑒−0.02 𝑡 [ 1𝑦(𝑡)] = 𝑒0.02 𝑡 [1 

−1] 

Over time the 𝑒−0.02𝑡 term will go to 0 and the populations will grow exponentially and in 
a ratio of 𝑥/𝑦 ≈ 1/3. 
Some eigenvectors may have negative entries and some eigenvalues may be negative or 
complex. However, any population vector is a combination of these pure modes. 

Example 17.9. Coupled springs. Suppose we have two masses and springs configured as 
shown. 

m1 m2

x(t) y(t)
f(t)

k1 k2

𝑥 is the displacement of 𝑚1 from its equilibrium position. 

https://��2���0.02
https://��1��0.02
https://0.02,�0.02
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𝑦 is the displacement of 𝑚2 from its equilibrium position. 
(So the amount that Spring 2 is stretched is 𝑦 − 𝑥.) 
𝑓(𝑡) is a time-varying force applied to 𝑚2. 
Using Hooke’s law, we get the following system of equations 

𝑚1𝑥̈ = −𝑘1𝑥 + 𝑘2(𝑦 − 𝑥) 
𝑚2𝑦̈ = −𝑘2(𝑦 − 𝑥) + 𝑓(𝑡) 

We can rearrange this to be 

𝑥 = −𝑘1 + 𝑘2̈ 𝑥 + 
𝑘2 𝑦 𝑚1 𝑚1

𝑘2 𝑦 + 
𝑓(𝑡) 𝑦 ̈ = 𝑥 − 

𝑘2
𝑚2 𝑚2 𝑚2 

The system is fourth-order because it consists of 2 second-order equations. You should 
think about how you would produce a companion system of 4 first-order equations. 
This system is illustrated by the applet https://mathlets.org/mathlets/coupled-oscillators/ 
(You’ll have to set one of the spring constants to 0.) 

Example 17.10. Salt tanks. Suppose we have two tanks containing a salt solution. Initially 
the volume of water in the tanks is 𝑉1 and 𝑉2 respectively. Pure water flows into Tank 1 
from the outside at 𝑟𝐼 liters/minute. Solution flows out of Tank 2 at a rate of 𝑟𝑂 liters/min. 
Solution is exchanged between the tanks, as shown, at the rates 𝑟1 and 𝑟2 in liters/min. 
Suppose the rates and volumes are: 
𝑟𝐼 = 20 (pure water), 𝑟1 = 10, 𝑟2 = 30, 𝑟𝑂 = 20 

𝑉1 = 100 liters, 𝑉2 = 200 liters. 
Note that the flow rates are balanced, so that 𝑉1 and 𝑉2 do not change. 

r1

r2

V1 V2rI

rO

Write a system of DEs modeling the amount of salt in each tank. 
Solution: Let 𝑥 be the grams of salt in Tank 1 and let 𝑦 be the grams of salt in Tank 2. 
Before starting, let’s note that because pure water is being added all the salt will eventually 
be flushed out of the tanks, i.e., both 𝑥 and 𝑦 → 0 in the long run. We should check that 
our answer reflects this. 
Now for the model: 𝑥′ = rate salt into Tank 1 - rate salt out of Tank 1). 

https://mathlets.org/mathlets/coupled-oscillators/
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𝑦 10rate in = flow ⋅ concentration = 𝑟2 ⋅ 𝑉2 
= 10 l/min ⋅ y g/200 l = 200𝑦 g/min. 

𝑥 30rate out = 𝑟1 ⋅ 𝑉1 
= 100𝑥 g/min. 

Thus, 𝑥′ = −10
3 𝑥 + 20

1 𝑦 
𝑦 Likewise for 𝑦′ : rate in = 𝑟1 ⋅ 𝑥

𝑉
2
2 
, rate out = (𝑟2 + 𝑟𝑂) ⋅ 𝑉2 

So 𝑦′ = 10
3 𝑥 − 20

3 𝑦. 

18 Matrix exponential, exponential and sinusoidal input 

This topic is no longer on the syllabus. We post these notes for anyone who is 
interested. Since we have already covered inhomogeneous, constant coefficient, 
linear DEs and homogeneous systems, linear systems with input is not a big 
step. 

18.1 Goals 

1. Know the definition of the matrix exponential. 

2. Be able to compute the matrix exponential from eigenvalues and eigenvectors. 

3. Be able to use the matrix exponential to solve an IVP for a constant coefficient linear 
system of differential equations. 

4. Be able to derive and apply the exponential response formula for constant coefficient 
linear systems with exponential input. 

5. Be able to solve linear constant coefficient systems with sinusoidal input using complex 
replacement and the ERF. 

18.2 Introduction 

The constant coefficient system x ′ = 𝐴x has a nice conceptual solution in terms of the 
matrix exponential 𝑒𝐴𝑡. This matrix exponential is a square matrix whose derivative follows 
the usual rule for exponentials: 

𝑑𝑒𝐴𝑡 
= 𝐴𝑒𝐴𝑡.𝑑𝑡 

So, as can be checked directly, the system x ′ = 𝐴x has solution x(𝑡) = 𝑒𝐴𝑡c, where c is a 
constant vector. 
We’ll use the diagonalization 𝐴 = 𝑆Λ𝑆−1 to define the matrix exponential 𝑒𝐴𝑡. We will 
then use it to give another way of presenting the solutions to x ′ = 𝐴x. 
After that, we will turn our attention to inhomogeneous linear systems of the form 

x ′ = 𝐴x + F(𝑡). (I) 
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As usual, x is a column vector of (unknown) functions, 𝐴 is a square constant matrix and the 
input F(𝑡) is a column vector. As you might expect, when F(𝑡) is exponential or sinusoidal 
we will have an exponential or sinusoidal resposnse formula. Unlike for ordinary differential 
equations, these formulas are not worth memorizing. It will turn out to be easier to rederive 
them as needed. 

18.3 Matrix Exponential 

In 18.03 we use the exponential function all the time. Its main property is that it helps us 
solve differential equations. 
Example 18.1. Solve 𝑥′ = 𝑎𝑥 

Solution: 𝑥(𝑡) = 𝑥(0) 𝑒𝑎𝑡. 
We are going to define the matrix exponential. There are several ways to do this. Since 
this is a differential equations class, let’s define it as the solution to a DE. Then we will see 
various ways to compute and use it. 
Definition. For any square matrix 𝐴, the matrix exponential 𝑒𝐴𝑡 is the matrix of functions 
that satisfies the initial value problem 

𝑑𝐵(𝑡) = 𝐴 ⋅ 𝐵(𝑡), 𝐵(0) = 𝐼. 𝑑𝑡 
Note. We could also have defined 𝑒𝐴𝑡 using the Taylor series for 𝑒𝑥 

+ 
𝑡3𝐴3

𝑒𝐴𝑡 = 𝐼 + 𝑡𝐴 + 
𝑡2

2
𝐴2 

3! + … 

Either definition gives the same answer. 
We can now list several properties of the matrix exponential. 
1. The initial value problem x ′ = 𝐴x with initial value x(0) = b has solution 𝑒𝐴𝑡b. 

0 02. If Λ = [𝜆
0
1 

𝜆2
] then 𝑒Λ𝑡 = [𝑒𝜆

0
1𝑡 

𝑒𝜆2𝑡]. 

3. If 𝐴 = 𝑆Λ𝑆−1 is the diagonalization of 𝐴 then 

𝑒𝐴𝑡 = 𝑆𝑒Λ𝑡𝑆−1 

4. 𝑒𝐴(𝑠+𝑡) = 𝑒𝐴𝑠𝑒𝐴𝑡. 
5. Definition. 𝑒𝐴𝑡 is called a fundamental matrix for the system x ′ = 𝐴x 

Warning: Because matrix multiplication does not commute, it is not generally true that
𝑒𝐴𝑒𝐵 is the same as 𝑒𝐴+𝐵. They are the same only in special cases. 

Proofs. Here are proofs of these facts. 
1. We need to verify that x(𝑡) = 𝑒𝐴𝑡b satisfies the IVP. This follows directly from our 
definition of matrix exponential: 

𝑑𝑒𝐴𝑡b x ′(𝑡) = = 𝐴eAtb = 𝐴x(𝑡).𝑑𝑡 
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2. 𝑑𝑡 
𝑑 [𝑒𝜆

0
1𝑡 

𝑒𝜆
0

2𝑡] = [𝜆1𝑒
0

𝜆1𝑡 

𝜆2𝑒
0

𝜆2𝑡] = [𝜆
0
1 

𝜆
0
2
] [𝑒𝜆

0
1𝑡 

𝑒𝜆
0

2𝑡] = Λ𝑒Λ𝑡. QED 

3. We need to show that 𝑑𝑡 
𝑑 𝑆𝑒Λ𝑡𝑆−1 = 𝐴𝑆𝑒Λ𝑡𝑆−1. We do this by computing both sides 

and seeing that they are equal: 
Since 𝑆 is constant, the left-hand side of this equation is: 

𝑑𝑡 𝑆𝑒Λ𝑡𝑆−1 = 𝑆 𝑑𝑒Λ𝑡 
= 𝑆Λ𝑒Λ𝑡𝑆−1. 𝑑 

𝑑𝑡 𝑆−1 

Replacing 𝐴 by its diagonalization, the right hand side of the equation is: 

𝐴𝑆𝑒Λ𝑡𝑆−1 = 𝑆Λ𝑆−1𝑆𝑒Λ𝑡𝑆−1 = 𝑆Λ 𝑒Λ𝑡𝑆−1. 

The two sides are the same. QED 

4. This follows from the diagonalized form. To make the calculation explicit, we show it 
for the 2 × 2 case with eigenvalues 𝜆1, 𝜆2. 

𝑒𝐴𝑠𝑒𝐴𝑡 = 𝑆𝑒Λ𝑠𝑆−1𝑆𝑒Λ𝑡𝑆−1 = 𝑆𝑒Λ𝑠𝑒Λ𝑡𝑆−1 = 𝑆 [𝑒𝜆1𝑠 

𝑒𝜆
0

2𝑠] [𝑒𝜆1𝑡 

𝑒𝜆
0

2𝑡] 𝑆−1
0 0 

= 𝑆 [𝑒𝜆1(𝑠+𝑡) 0 = 𝑆𝑒Λ(𝑠+𝑡)𝑆−1 = 𝑒𝐴(𝑠+𝑡).0 𝑒𝜆2(𝑠+𝑡)] 𝑆−1 

Example 18.2. Let 𝐴 = [6
1 2

5] Solve the initial value problem x ′ = 𝐴x, x(0) = [3
5] 

Solution: We know the answer is x = 𝑒𝐴𝑡 [3
5]. 

We also know 𝐴 has eigenvalues 7, 1 and corresponding eigenvectors [5
1], [−1

1 ]. 

We can rewrite x(𝑡) = 𝑒𝐴𝑡 [3
5] as 

−1 

−1
1 ] [𝑒7𝑡 0 1 [3 x(𝑡) = 𝑆𝑒Λ𝑡 𝑆−1 [3

5] = [5
1 0 𝑒𝑡] [5

1 −1] 5] (*) 

= [5 
−1
1 ] [𝑒7𝑡 

𝑒
0
𝑡] [ 8/6 8

6𝑒7𝑡 [1
5] − 

22
6 

𝑒𝑡 [ 11 0 −22//6] = −1] 

As a general rule, the line marked with the (∗) is a fine answer to this question. 

18.4 Exponential response formula (ERF) 

Exponential response formula. For a constant matrix 𝐴 and a constant vector k the DE 

x ′ = 𝐴x + 𝑒𝑎𝑡k 

has a particular solution: 
xp(𝑡) = 𝑒𝑎𝑡(𝑎𝐼 − 𝐴)−1k 
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This formula is valid as long as 𝑎𝐼 − 𝐴 is invertible, i.e., as long as 𝑎 is not an eigenvalue 
of 𝐴. 
Proof. Not surprisingly, we discover this formula by the method of optimism. We try a 
solution of the form xp(𝑡) = 𝑒𝑎𝑡v, where v is a constant vector. 
Plug the guess into the DE and solve for v: 

′ xp = 𝑎𝑒𝑎𝑡v = 𝑒𝑎𝑡𝐴v + 𝑒𝑎𝑡k ⇒ (𝑎𝐼 − 𝐴)v = k ⇒ v = (𝑎𝐼 − 𝐴)−1k. 

Thus we have found a particular solution xp(𝑡) = 𝑒𝑎𝑡v = 𝑒𝑎𝑡(𝑎𝐼 − 𝐴)−1k. QED 

5Example 18.3. Find the general solution to [𝑥
𝑦′

′
] = [6

1 2] [𝑥
𝑦] + [3𝑒

𝑒2𝑡
2𝑡]. 

Solution: For ease of notation we rewrite the equation as x ′ = 𝐴x + 𝑒2𝑡 [3
1]. The 

exponential response formula gives us a particular solution 

−1 

3] = −𝑒2𝑡 −5 5 xp(𝑡) = 𝑒2𝑡(2𝐼 − 𝐴)−1 [3
1] = 𝑒2𝑡 [−4 

0 ] [1 
5 

[0 
−4] [1

3] = −5
1𝑒2𝑡 [ 15

−1 1 −11] 

We know from previous topics that the general homogeneous equation is 

xh(𝑡) = 𝑐1𝑒𝑡 [−1
1 ] + 𝑐2𝑒7𝑡 [5

1] 

By superposition the general solution to the system is x(𝑡) = xp(𝑡) + xh(𝑡). 

Example 18.4. Solve [𝑥
𝑦′

′
] = [6

1 2
5] [𝑥

𝑦] + [3𝑒
5𝑒

2𝑡
3𝑡]. 

Solution: Write the input as 𝑒2𝑡 [3
0] + 𝑒3𝑡 [5

0]. Now you can find a particular solution to 

the equation for a each input term and then use superposition. 

There are more examples in the next section. 

18.5 Exponential response formula examples 

𝑥′ = 3𝑥 − 𝑦 + 𝑒2𝑡 
Example 18.5. Find the general solution to 𝑦′ = 4𝑥 − 𝑦 − 𝑒2𝑡 

= [3 −1Solution: In matrix form the equation is x ′ 
4 −1] x + 𝑒2𝑡 [−1

1 ]. The exponential 

response formula tells us a particular solution is 
−11 −1 xp(𝑡) = 𝑒2𝑡(2𝐼 − 𝐴)−1 [−1

1 ] = 𝑒2𝑡 [−1 
3] [−1

1 ] = 𝑒2𝑡 [3 
−1] [−1

1 ] = 𝑒2𝑡 [5
4] . −4 4 

We’ll let you verify the calculation of the inverse. Likewise we’ll let you find the homogeneous 
solution needed for the general solution. 
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𝑥′ = 3𝑥 − 𝑦 + 3 Example 18.6. Find a particular solution to 𝑦′ = 4𝑥 − 𝑦 + 2 
Solution: Note that we could get our solution using the exponential response formula, 
where the exponent is 𝑎 = 0. Instead, we’ll just say that we’re guessing a constant solution 
and solve for its exact value. 

Try x = v. Substitution into the DE gives x ′ = 0 = 𝐴v + [3
2]. 

−1−1 [3So, v = −𝐴−1 [3
2] = − [4

3 
−1] 2] = [1

6]. That is xp(𝑡) = [1
6]. 

Again, we’ll let you verify the calculation of the inverse. 
2Example 18.7. Find a particular solution to [𝑥

𝑦′
′
] = [1

2 1] [𝑥
𝑦] + [cos0

(𝑡)]. 

Solution: To use the exponential response formula, we first need to use complex replace-
ment. The complexified equation is 

2 z ′ = [1 
1] z + 𝑒𝑖𝑡 [1

0] , where x = Re(z).2 
Now we compute the inverse to prepare for the exponential response formula: 

−1 

= [−1 + 𝑖 −2 1 2(𝑖𝐼 − 𝐴)−1 =−2 −1 + 𝑖] 2−2𝑖 − 4 
[−1 + 𝑖 

−1 + 𝑖] 

1 2 1So, zp(𝑡) = 𝑒𝑖𝑡(𝑖𝐼 − 𝐴)−1 [1
0] = −2𝑖 − 4𝑒𝑖𝑡 [−1 + 𝑖 

−1 + 𝑖] [0
1] = −2 ].2 2𝑖 + 4𝑒𝑖𝑡 [1 − 𝑖 

To find the real part of zp, we work in polar coordinates. First we write the various complex 
numbers in polar form: 

2𝑖 + 4 = 2
√

5𝑒𝑖𝜙1 , where 𝜙1 = Arg(2𝑖 + 4) = tan−1(1/2) in the first quadrant. 

Likewise 1 − 𝑖 = 
√

2𝑒𝑖𝜙2;, where 𝜙2 = −𝜋/4 . 
−𝑒𝑖𝑡 √

2𝑒𝑖𝜙2 
√

2𝑒𝑖(𝑡+𝜙2−𝜙1)
So, zp(𝑡) = 2

√
5𝑒𝑖𝜙1 

[ −2 ] = −2
√1

5 
[ −2𝑒𝑖(𝑡−𝜙1) ] . 

Taking the real part: 
√

2 cos(𝑡 + 𝜙2 − 𝜙1)xp(𝑡) = Re(zp) = [ ]−2 cos(𝑡 − 𝜙1) 

Here is the same calculation in rectangular coordinates. I think the arithmetic is more error 
prone and the answer is harder to interpret. 

1 4 − 2𝑖 [1 − 𝑖 
10
1 [ 1 − 3𝑖 

2𝑖 + 4 
[1 − 𝑖 

20 −4 + 2𝑖] . −2 ] = −2 ] = 

So, (𝑡) = 10
1 (cos(𝑡)+𝑖 sin(𝑡)) [ 1 − 3𝑖 1 cos(𝑡) + 3 sin(𝑡) + 𝑖(sin(𝑡) − 3 cos(𝑡))zp −4 + 2𝑖] = 10 [−4 cos(𝑡) − 2 sin(𝑡) + 𝑖(−4 sin(𝑡) + 2 cos(𝑡))] . 

1 cos(𝑡) + 3 sin(𝑡)Thus, xp(𝑡) = Re(zp(𝑡)) = 10 
[−4 cos(𝑡) − 2 sin(𝑡)] . 
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19 Fundamental matrix, variation of parameters 

This topic is no longer on the syllabus. We post these notes for anyone who is 
interested. 

19.1 Goals 

1. Be able to recognize a linear non-constant coefficient system of differential equations. 

2. Know the definition and basic properties of a fundamental matrix for such a system. 

3. Be able to use the matrix exponential as a fundamental matrix for a constant coeffi-
cient linear system. 

4. Be able to use the variation of paramters formula to solve a (nonconstant) coefficient 
linear inhomogeneous system. 

5. Be able to use Euler’s method to approximate the solution to a system of first-order 
equations. 

19.2 Introduction 

So far we have focused on homogeneous, constant coefficient linear systems. We now want 
to think about systems with input or with non-constant coefficients. So in this topic we will 
consider general linear systems of differential equations. That is, equations of the following 
form. 

x ′ = 𝐴(𝑡)x (homogeneous) (H) 
x ′ = 𝐴(𝑡)x + F(𝑡) (inhomogeneous) (I) 

Here x(𝑡) is a vector valued function, e.g., (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))𝑇 , 𝐴(𝑡) is an 𝑛 × 𝑛 matrix called 
the coefficient matrix and F(𝑡) is called the (mathematical) input to the system. 
As usual, solving the system means finding the unknown vector valued function x(𝑡) . 
A main point in this topic is to introduce the fundamental matrix, Φ(𝑡), for a linear system 
of DEs. This will allow us to state the essential properties of these systems in a concise and 
elegant way. The fundamental matrix is available for any linear system. We will see that 
the matrix exponential 𝑒𝐴𝑡, introduced in a previous topic, is a fundamental matrix for the 
constant coefficient system x ′ = 𝐴x. 
Next, we will look at linear equations with arbitrary input. This will lead to the variation of 
parameters formula for the solution. This is a beautiful formula, which uses the fundamental 
matrix. Since it involves integrals and can be painful or difficult to apply, we will use it as 
a last resort to find solutions to equations with nonconstant coefficients or unusual input. 
We will conclude with a small section showing that Euler’s method works for systems of 
first-order equations in exactly the same way as for ordinary first-order differential equations. 
We start by going over the familiar ideas of linearity and existence and uniqueness. 



19 FUNDAMENTAL MATRIX, VARIATION OF PARAMETERS 172 

19.3 Linearity/Superposition 

As always, linear systems satisfy superposition principles. We restate them in the forms we 
like to use. 
1. If x1 and x2 are solutions to Equation (H), then so is x = 𝑐1x1 + 𝑐2x2 

Proof. x ′ = 𝑐1x1 
′ + 𝑐2x2 

′ = 𝑐1𝐴x1 + 𝑐2𝐴x2 = 𝐴(𝑐1x1 + 𝑐2x2) = 𝐴x. 

2. If xh is a solution to Equation (H) and xp is a solution to Equation (I) then x = xp + xh 
is also a solution to Equation (I). 

′ Proof. x ′ = xp 
′ + xh = 𝐴xp + F + 𝐴xh = 𝐴(xp + xh) + F = 𝐴x + F. 

3. If x1 
′ = 𝐴x1 + F1 and x2 

′ = 𝐴x2 + F2 then x1 + x2 satisfies x ′ = 𝐴x + F1 + F2 

That is, superposition of inputs leads to superposition of outputs. 
Proof. Just the same. 

19.4 Existence and uniqueness theorem 

As we’ve done for other types of equations, we state an existence and uniqueness theorem so 
that we can be sure that we have found all the solutions when we use the 𝑥(𝑡) = 𝑥𝑝(𝑡)+𝑥ℎ(𝑡)
paradigm. 
Consider the initial value problem: 

x ′ = 𝐴(𝑡)x + F(𝑡), x(𝑡0) = x0 (IVP) 

The existence and uniqueness theorem says that there is exactly one solution to this equa-
tion. 
Theorem. (existence and uniqueness) If 𝐴(𝑡) and F(𝑡) are continuous then there exists a 
unique solution to the equation (IVP). 

The next example illustrates that this new version of the existence and uniqueness theorem 
agrees with our old version for second-order linear equations. 
Example 19.1. Consider the IVP 𝑥″ + 𝑡𝑥′ + 𝑡2𝑥 = 𝑡3; 𝑥(0) = 1, 𝑥′(0) = 3. 
Converting this DE to a system using 𝑦 = 𝑥′ , we get: 

[𝑥′ 1 
𝑡3] , [𝑥(0)

𝑦′] = [−𝑡
0

2 −𝑡] [𝑥
𝑦] + [ 0 

𝑦(0)] = [1
3] . 

More abstractly we can write this as: x ′ = 𝐴x + F; x(0) = [1 3]T 

Since 𝐴(𝑡) and F(𝑡) are continuous the existence and uniqueness for systems says there is a 
unique solution to the system. Now, 𝑥(𝑡) is the first entry in this solution, so there is also 
a unique solution to the original IVP. 
Note. Previously, we had an existence and uniqueness theorem for ordinary differential 
equations which said exactly the same thing. 
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19.5 Fundamental matrix 

This is an elegant bookkeeping technique which will make calculations and theorem state-
ments much nicer. Consider the linear homogeneous system 

x ′ = 𝐴(𝑡)x (H) 

Suppose it is an 𝑛×𝑛 system and that we have 𝑛 independent solutions x1, … xn. We define 
the fundamental matrix as the matrix with columns x1, … , xn, i.e. 

Φ(𝑡) = [x1(𝑡) x2(𝑡) … xn(𝑡)]. 

5Example 19.2. Consider the system x ′ = [6 
2] x.1 

(a) Find a fundamental matrix for this system. 
(b) Use the fundamental matrix to give the general solution to this system. 
(c) Find the solution with initial conditions x(𝑡𝑜) = b. 
Solution: (a) We’ve used this coefficient matrix many times. We know two independent 
solutions to the system are 

x1 = 𝑒𝑡 [−1
1 ] , x2 = 𝑒7𝑡 [1

5] . 

5𝑒7𝑡 
So a fundamental matrix is Φ(𝑡) = [ 𝑒

𝑡 

𝑒7𝑡 ].−𝑒𝑡 

(b) The general solution is 

x = 𝑐1x1 + 𝑐2x2 = 𝑐1 [−𝑒
𝑒𝑡 

𝑡] + 𝑐2 [
5𝑒
𝑒7𝑡 

7𝑡
] = Φ(𝑡) ⋅ [𝑐

𝑐
1
2
] . 

(The last expression follows because matrix multiplication is a linear combination of the 
columns of Φ.) 
(c) Now, we can use this to find the solution to the IVP with initial conditions x(𝑡0) = b. 

[𝑐1 [𝑐1 [𝑐1x(𝑡) = Φ(𝑡) ⋅ ] ⇒ Φ(𝑡0) ⋅ ] = b ⇒ ] = Φ−1(𝑡0)b.𝑐2 𝑐2 𝑐2 

This is valid provided Φ−1(𝑡0) exists. We will show this below. 

19.5.1 Properties of the fundamental matrix 

We have the following important properties of the fundamental matrix Φ. 

1. Φ′(𝑡) = 𝐴(𝑡)Φ(𝑡) i.e., Φ satisfies Equation (H). 

2. If c is a column vector, then Φ(𝑡) ⋅ c = 𝑐1x1 + 𝑐2x2 + … + 𝑐𝑛xn. 
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3. If 𝐴(𝑡) is continuous, then 𝑊 (𝑡) = |Φ(𝑡)| ≠ 0 equivalently Φ−1(𝑡) exists. (We call
𝑊 (𝑡) the Wronskian of x1, … , xn.) 

Proof. (1) Before proving this, we note the following property of matrix multiplication: if
𝐵 has columns b1, b2, … , bn then 

𝐴𝐵 = [𝐴b1 𝐴b2 … 𝐴bn] . 

You should make sure you understand this. (If it is confusing, work out a simple numerical 
example with an eye to understanding this property.) 
Now (1) follows easily from this property: 

Φ′(𝑡) = [x ′ x ′ … xn 
′ ] = [𝐴x1 𝐴x2 … 𝐴xn] = 𝐴 [x1 x2 … xn] = 𝐴(𝑡)Φ(𝑡).1 2 

The second equality above follows because the xj are solutions to Equation (H). The third 
equality is the property of matrix multiplication discussed just above. 
(2) This is just a property of matrix multiplication. 
(3) We will prove this by contradiction, i.e., we’ll assume that for some 𝑡0, 𝑊(𝑡0) = 0 
and show that this contradicts the existence and uniqueness theorem. So suppose that
𝑊(𝑡0) = 0. This implies that Φ(𝑡0) has a nontrivial null space. Let c ≠ 0 be a nontrivial 
null vector. The contradiction is that now there are two solutions with x(𝑡0) = 0. That is, 
both 

x1(𝑡) ≡ 0 and x2(𝑡) = Φ(𝑡)c 

are 0 at 𝑡 = 𝑡0. This contradiction means that our assumption that 𝑊(𝑡0) = 0 must be 
false. QED 

[6 5Example 19.3. Consider the system x ′ = 2] x from Example 19.2. Show that its 1 
Wronskian is never 0. 

5𝑒7𝑡 
Solution: In example 19.2 we found the fundamental matrix Φ(𝑡) = [ 𝑒

𝑡 

𝑒7𝑡 ]−𝑒𝑡 

So the Wronskian is 𝑊 (𝑡) = |Φ(𝑡)| = 𝑒8𝑡 + 5𝑒8𝑡 = 6𝑒8𝑡, which is never 0. 

Example 19.4. Again, consider the system x ′ = [6
1 2

5] x. Let 𝐴 be the coefficient matrix. 

Show that the matrix exponential 𝑒𝐴𝑡 is a fundamental matrix and compute its Wronskian. 
Solution: To show 𝑒𝐴𝑡 is a fundamental matrix, we need to show that every solution can 
be written as 𝑒𝐴𝑡c for some constant vector c. This was shown in the Topic 18 notes. 
To compute the Wronskian we use the diagonalized form of 𝐴: 

−15 0 5𝐴 = 𝑆Λ𝑆−1 = [ 1 
1] [1 

7] [ 1 .−1 0 −1 1] 

So, 
0𝑊 (𝑡) = det(𝑒𝐴𝑡) = det(𝑆𝑒Λ𝑡𝑆−1) = det(𝑒Λ𝑡) = det ([𝑒𝑡 

𝑒7𝑡]) = 𝑒8𝑡 ≠ 0. 0 
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19.5.2 The Wronskian of 𝑛 solutions 

In the above we assumed that the solutions were independent. Even if they are not, we can 
still define the Wronskian: Suppose x1, … xn are solutions to Equation (H). We call the 
determinant 𝑊 (𝑡) = det [x1 … xn] the Wronskian of these solutions. If 𝐴(𝑡) is continuous 
then the existence and uniquenss theorem implies: 
(i) 𝑊 (𝑡) is either always 0 or never 0. 
(ii) 𝑊(𝑡) ≠ 0 ⇔ x1, … , xn are independent. 
(iii) 𝑊(𝑡) ≠ 0 ⇔ Φ = [x1 x2 … xn] is a fundamental matrix. 
Conclusion: we can use the Wronskian to test for independence. 

Example 19.5. Consider 𝑥″ + 𝑝(𝑡)𝑥′ + 𝑞(𝑡)𝑥 = 0, with solutions 𝑥1, 𝑥2. Convert this to a 
first-order system. Then give two solutions to the system and compute their Wronskian. 
Solution: The companion system is found by setting 𝑦 = 𝑥′ . Thus the solutions 𝑥1 and 

= [𝑥1 = [𝑥2𝑥2 of the ordinary differential equation become the solutions x1 ] and x2 ] of𝑥′
1 𝑥′

2 
the companion system. Using the definition of the Wronskian we have 

𝑊 (𝑡) = det [𝑥1 𝑥2] = 𝑥1𝑥′
2 − 𝑥1

′ 𝑥2.𝑥′
1 𝑥2

′ 

19.6 Variation of parameters formula 

For the general, not necessarily constant coefficient, linear inhomogeneous system (I) we 
cannot use constant coefficient techniques like the ERF. For those cases where we have no 
other technique, we can try to use the variation of parameters formula. Since it involves 
integration, matrix inverses and matrix multiplication, it is our last choice when trying to 
solve an equation. Nonetheless, sometimes it’s the only method available. In addition, the 
derivation of the formula is really very pretty. 
Suppose we have a fundamental matrix Φ(𝑡) for the homogeneous linear equation 

x ′ = 𝐴(𝑡)x (H) 

Remember this means that Φ has columns which are independent solutions to (H). 
Now suppose we want to solve 

x ′ = 𝐴(𝑡)x + F(𝑡). (I) 

Theorem. The general solution to equation (I) is given by the variation of parameters 
formula 

x(𝑡) = Φ(𝑡) ⋅ (∫ Φ(𝑡)−1 ⋅ F(𝑡) 𝑑𝑡 + C) . 

Proof. We will use a form of the method of optimism to derive this formula. 
We know the general homogeneous solution is x(𝑡) = Φ(𝑡) ⋅ c for a constant vector c. The 
vector c is called a parameter. Variation of parameters is an old-fashioned way of saying 
let’s optimistically make it a (dependent) variable u(𝑡). So we try a solution of the form 
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x(𝑡) = Φ(𝑡) ⋅ u(𝑡). The function u(𝑡) is unknown. To find it, we substitute our guess into 
(I) and see where the algebra leads us: 

Φ′ ⋅ u + Φ ⋅ u ′ = 𝐴Φ ⋅ u + F 

So, (don’t forget Φ′ = 𝐴Φ.) 

𝐴Φ ⋅ u + Φ ⋅ u ′ = 𝐴Φ ⋅ u + F ⇒ Φ ⋅ u ′ = F. 

This last equation is easy to solve: 

u ′ = Φ−1 ⋅ F ⇒ u(𝑡) = ∫ Φ−1(𝑡) ⋅ F(𝑡) 𝑑𝑡 + C. 

Finally, we take this formula for u(𝑡) and use it in our trial solution: 

x(𝑡) = Φ(𝑡) ⋅ u(𝑡) = Φ(𝑡) ⋅ (∫ Φ(𝑡)−1 ⋅ F(𝑡) 𝑑𝑡 + C) . ■ 

Remark. Note that the variation of parameters formula assumes you know the general 
homogeneous solution. It gives no help in finding this solution. 
Example 19.6. Use the variation of parameters formula to solve 

x ′ = [6
1 2

5] x + [𝑒
𝑒
5𝑡
𝑡 
] . 

Note. We retiterate that using the ERF is the preferred method of solving this equation. 
We use the variation of parameters formula here for practice. 

5Solution: Let’s introduce some notation to save typing: 𝐴 = [6
1 2], F = [1

𝑡]. 

[ 𝑒
𝑡 5𝑒7𝑡 

We know a fundamental matrix from an earlier example: Φ(𝑡) = −𝑒𝑡 𝑒7𝑡 ]. So, 

Φ−1(𝑡) = 𝑒−8𝑡 [𝑒7𝑡 −5𝑒7𝑡 

6 𝑒𝑡 𝑒𝑡 ]. Calculating with the variation of parameters we get 

x = Φ(𝑡) ∫ Φ−1(𝑡) ⋅ F(𝑡) 𝑑𝑡 

[𝑒7𝑡 −5𝑒7𝑡 
[ 𝑒

𝑡 
= Φ(𝑡) ∫ 

𝑒−8𝑡 
] ⋅ 𝑒5𝑡] 𝑑𝑡 6 𝑒𝑡 𝑒𝑡 

6 
[ 1 − 5𝑒4𝑡 

= Φ(𝑡) ∫ 
1 

𝑒−6𝑡 + 𝑒−2𝑡] 𝑑𝑡 

1 𝑡 − 5
4𝑒4𝑡 + 𝑐1= 6Φ(𝑡) [−6

1𝑒−6𝑡 − 1
2𝑒−2𝑡 + 𝑐2

] 

1
6 [ 𝑡𝑒𝑡 − 5

4𝑒5𝑡 − 6
5𝑒𝑡 − 5

2𝑒5𝑡 + 𝑐1𝑒𝑡 + 5𝑐2𝑒7𝑡 
= −𝑡𝑒𝑡 + 5

4𝑒5𝑡 − 1
6𝑒𝑡 − 2

1𝑒5𝑡 − 𝑐1𝑒𝑡 + 𝑐2𝑒7𝑡] 

1= 6 
(𝑡𝑒𝑡 [ 1 

3/4 ] + 𝑒𝑡 [−5/6 
−1] + 𝑐2𝑒7𝑡 [5

1]) . −1] + 𝑒5𝑡 [−15/4 
−1/6] + 𝑐1𝑒𝑡 [ 1 

Notice the homogeneous solution appearing with the constants of integration. 
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19.6.1 Definite integral version of variation of parameters 

The equation (I) with initial condition x(𝑡0) = b has definite integral solution 

x(𝑡) = Φ(𝑡) (∫
𝑡 

Φ−1(𝑢) ⋅ F(𝑢) 𝑑𝑢 + C) where C = Φ−1(𝑡0) ⋅ b. 
𝑡0 

19.7 Euler’s method 

Consider a first-order system with initial conditions: 

x = F(x, 𝑡), x(𝑡0) = x0. 

Euler’s method for ordinary first-order DEs works without any change for this first-order 
systems. That is, fix a stepsize ℎ. Then, the step from (xn, 𝑡𝑛) to (xn+1, 𝑡𝑛+1) is given 
by 

m = F(xn, 𝑡𝑛) ⇒ xn+1 = xn + ℎm, 𝑡𝑛+1 = 𝑡𝑛 + ℎ. 
Just as for ordinary DEs, there are other, better, algorithms for choosing m or varying ℎ. 

Example 19.7. Consider [𝑥
𝑦′

′
] = 𝑡 [𝑥

𝑦], x(1) = [1
0]. Let x = [𝑥

𝑦] and use ℎ = 0.5 to 

estimate x(2). 
Solution: 

𝑛 𝑡𝑛 xn m = F(xn, 𝑡𝑛) 

0 1.0 [0
1] [1

0] 

[0.75 1 1.5 [ 1
0.5] 1.5 ] 

[1.375 2 2.0 1.25 ] 

So, x(2) ≈ [1.375
11.25]. 

20 Step and delta functions 

20.1 Goals 

1. Be able to define the unit step and unit impulse functions and give their properties. 

2. Be able to explain why the unit step and unit impulse functions are idealized versions 
of real physical phenomena. 

3. Be able to compute the generalized derivative of a function with jump discontinuities. 

4. Be able to compute integrals involving delta functions. 
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5. Be able to solve DEs with impulses as input. 

6. Be able to find the pre and post-initial conditions for a physical model with impulsive 
input. 

20.2 The unit step function 

20.2.1 Definition 

Let’s start with the definition of the unit step function, 𝑢(𝑡): 
for 𝑡 < 0 𝑢(𝑡) = {0 

1 for 𝑡 > 0 

We do not define 𝑢(𝑡) at 𝑡 = 0. Rather, at 𝑡 = 0 we think of it as in transition between 0 
and 1. 
It is called the unit step function because it takes a unit step at 𝑡 = 0. It is sometimes 
called the Heaviside function. The graph of 𝑢(𝑡) is simple. 

𝑡 

1 
𝑢(𝑡) 

We will use 𝑢(𝑡) as an idealized model of a natural system that goes from 0 to 1 very quickly. 
In reality it will make a smooth transition, such as the following. 

𝑡 

1 

Figure 1. 𝑢(𝑡) is an idealized version of this curve 

But, if the transition happens on a time scale much smaller than the time scale of the 
phenomenon we care about, then the function 𝑢(𝑡) is a good approximation. It is also much 
easier to deal with mathematically. 
One of our main uses for 𝑢(𝑡) will be as a switch. It is clear that multiplying a function
𝑓(𝑡) by 𝑢(𝑡) gives 

for 𝑡 < 0 𝑢(𝑡)𝑓(𝑡) = {0 
𝑓(𝑡) for 𝑡 > 0. 

We say the effect of multiplying by 𝑢(𝑡) is that for 𝑡 < 0 the function 𝑓(𝑡) is switched off 
and for 𝑡 > 0 it is switched on. 

20.2.2 Integrals of 𝑢′(𝑡) 

From calculus we know that 

∫ 𝑢′(𝑡) 𝑑𝑡 = 𝑢(𝑡) + 𝑐 and ∫
𝑏 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(𝑏) − 𝑢(𝑎). 
𝑎 
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For example: 

∫
5 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(5) − 𝑢(−2) = 1,
−2 

∫
3 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(3) − 𝑢(1) = 0,
1 

∫
−3 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(−3) − 𝑢(−5) = 0. 
−5 

In fact, the following rule for the integral of 𝑢′(𝑡) over any interval is obvious 

𝑏 if 0 is inside the interval (𝑎, 𝑏) ∫ 𝑢′(𝑡) = {1 (32)
𝑎 0 if 0 is outside the interval [𝑎, 𝑏]. 

Note: If one of the limits is 0, we throw up our hands and refuse to do the integration. 

20.2.3 0− and 0+ 

Let 0− be infinitesimally to the left of 0 and 0+ infinitesimally to the right of 0. That is, 

0− < 0 < 0+. 

For a function, 𝑓(0−) is defined as the left hand limit at 0 or, equivalently, the limit from 
below at 0, provided this limit exists. Likewise, 𝑓(0+) is the right hand limit or the limit 
from above. 

𝑓(0−) = lim 𝑓(𝑡) 𝑓(0+) = lim 𝑓(𝑡) 
𝑡↑0 𝑡↓0 

Here are some examples of integrals of 𝑢′ that involve 0− and 0+: 

∫
0+ 

𝑢′(𝑡) 𝑑𝑡 = 1 (because −∞ < 0 < 0+),
−∞ 

∫
0− 

𝑢′(𝑡) 𝑑𝑡 = 0 (because −∞ < 0− < 0),
−∞ 

∫
0+ 

𝑢′(𝑡) 𝑑𝑡 = 1 (because 0− < 0 < 0+). 
0− 

20.3 Preview of generalized functions and derivatives 

Of course 𝑢(𝑡) is not a continuous function, so, in the 18.01 sense, its derivative at 𝑡 = 0 
does not exist. Nonetheless, we saw that we could make sense of the integrals of 𝑢′(𝑡). So, 
rather than throw it away, we call 𝑢′(𝑡) the generalized derivative of 𝑢(𝑡). You can’t do 
everything with 𝑢′(𝑡) you can do with an ordinary function, but we’ll see that it can go 
anywhere we have an input function in 18.03. 
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20.4 The delta function (unit impulse) 

20.4.1 The definition and mathematics of the delta function 

Let’s delve a little deeper into 𝑢′(𝑡). It’s clear 𝑢′(𝑡) = 0 if 𝑡 ≠ 0. At 𝑡 = 0 the curve is 
vertical, so the slope is infinite, i.e., 𝑢′(0) = ∞. (If you think of 𝑢(𝑡) as an idealized version 
of the curve in Figure 1, then we would say the derivative near 0 gets very large.) We define 

𝛿(𝑡) = 𝑢′(𝑡) 

and call it the delta function or the Dirac delta function or the unit impulse function. We 
have seen the following properties of 𝛿(𝑡): 

if 𝑡 ≠ 0 1. 𝛿(𝑡) = {0 
∞ if 𝑡 = 0. 

2. ∫ 𝛿(𝑡) 𝑑𝑡 = 𝑢(𝑡) and ∫
∞ 

𝛿(𝑡) 𝑑𝑡 = 1. 
−∞ 

Based on Property 1, we ‘graph’ 𝛿(𝑡) as an infinite spike at the origin and 0 everywhere 
else. The integrals show that the ‘area’ under this graph equals 1 and it is all concentrated 
at the origin. 

𝑡 0 

𝛿(𝑡) 

𝑡 0 𝑎 

𝛿(𝑡 − 𝑎) 

We also show 𝛿(𝑡 − 𝑎) which is just 𝛿(𝑡) shifted to the right. 

20.5 The non-idealized delta function 

Just like the unit step function, the 𝛿 function is really an idealized view of nature. In 
reality, a delta function is nearly a spike near 0, which goes up and down on a time interval 
much smaller than the scale we are working on. The integral, i.e., area under the curve, is 
always 1. Its graph might actually look something like 

𝑡 
Figure 2. Non-idealized delta function; area under the graph = 1. 

The total amount input is still the integral (see Section 20.7 below), or, in geometric terms, 
the area under the graph. A unit impulse is defined so the area is 1. Later we will consider 
𝛿 as input to a physical system. 
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20.6 Delta functions are your friend 

20.6.1 Integrals with the delta function 

Recall how painful integration could be. In contrast, integrals with delta functions are 
always easy and involve no techniques of integration. 
Suppose we scale 𝛿(𝑡): the integrals are just scaled. 

5 −3 0+ ∞
∫ 3𝛿(𝑡) 𝑑𝑡 = 3, ∫ 3𝛿(𝑡) 𝑑𝑡 = 0, ∫ 3𝛿(𝑡) 𝑑𝑡 = 3, ∫ 3𝛿(𝑡) 𝑑𝑡 = 0. 

−5 −5 0− 0+ 

The integral ∫𝑎
𝑏 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 is also easy. If 𝑓(𝑡) is continuous at 𝑡 = 0 then 

𝑏 if (𝑎, 𝑏) contains 0 ∫ 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 = {𝑓(0) 

𝑎 0 if [𝑎, 𝑏] does not contain 0. 

That is, integrating against 𝛿(𝑡) just amounts to evaluating 𝑓(𝑡) at 𝑡 = 0. 
Note 1. If one of the endpoints 𝑎 or 𝑏 is 0, the integral cannot be evaluated, so we just 
throw up our hands and refuse to do it. 
Note 2. Technicality: We must have 𝑓(𝑡) continuous at 𝑡 = 0. 

20.6.2 Justification of the formula for integrating with delta functions 

We should start by admitting that, in formal mathematic, this is formula is given as the 
definition of 𝛿(𝑡), so our arguments will just go to show that it is a reasonable definition. 
We’ll do this in three ways. 
Quick reason: 𝛿(𝑡) is 0 everywhere except 𝑡 = 0, So 𝑓(𝑡)𝛿(𝑡) is 0 for all 𝑡 ≠ 0 and at
𝑡 = 0 it just scales the delta function by 𝑓(0). That is, 𝑓(𝑡)𝛿(𝑡) = 𝑓(0)𝛿(𝑡). 
Reason 1. Since we can interpret the integral as area, we need to show that the ‘area’ under 
𝑓(𝑡)𝛿(𝑡) is 𝑓(0). Figure 2 (above) shows a tall, thin curve near 𝑡 = 0 which approximates 
𝛿(𝑡). Since 𝑓(𝑡) is continuous we know that 𝑓(𝑡) ≈ 𝑓(0) near 𝑡 = 0. Thus 𝑓(𝑡)𝛿(𝑡) is 
approximated by the graph in the Figure 2 scaled by 𝑓(0). Finally, since the area under 
the curve in Figure 2 is one, if we scale it by 𝑓(0) it will have area equal to 𝑓(0). As the 
graph in Figure 2 gets narrower and taller it goes to the graph of 𝛿(𝑡). As this happens, the 
approximation we just made will become exact, i.e., as we wanted to show, the area under 
the 𝑓(𝑡)𝛿(𝑡) = 𝑓(0). 
Reason 2. This is a direct argument using integration by parts. First, since 𝛿(𝑡) = 0 for 
𝑡 ≠ 0 the integral ∫𝑎

𝑏 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 must be zero for any interval [𝑎, 𝑏] not containing 0. Next, 
suppose 𝑎 < 0 < 𝑏, then we get 

𝑏 𝑏 

∫ 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 = ∫ 𝑓(𝑡)𝑢′(𝑡) 𝑑𝑡 (since 𝛿 = 𝑢′ )
𝑎 𝑎 

𝑏 

= 𝑓(𝑡)𝑢(𝑡)|𝑏𝑎 − ∫ 𝑓′(𝑡)𝑢(𝑡) 𝑑𝑡 (integration by parts) 
𝑎 
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Now, since 𝑢(𝑏) = 1, 𝑢(𝑎) = 0 and 𝑢(𝑡) = 0 for 𝑡 < 0 this becomes 

= 𝑓(𝑏) − ∫
𝑏

𝑓′(𝑡) 𝑑𝑡 
0 

= 𝑓(𝑏) − 𝑓(𝑡)|𝑏 
0 

= 𝑓(𝑏) − 𝑓(𝑏) + 𝑓(0) 
= 𝑓(0) 

Comparing the first and last expressions in this long sequence of steps, we’ve shown the 
result. 
Important note: For continuous 𝑓(𝑡), the formula 

𝑓(𝑡)𝛿(𝑡) = 𝑓(0)𝛿(𝑡) 

is extremely useful. Your life will be much easier if you learn to replace 𝑓(𝑡)𝛿(𝑡) by 𝑓(0)𝛿(𝑡). 

20.6.3 Shifting by a 

If we shift by 𝑎, we have ∫
∞ 

𝑓(𝑡)𝛿(𝑡 − 𝑎) = 𝑓(𝑎). More generally: 
−∞ 

𝑑 if (𝑐, 𝑑) contains a∫ 𝑓(𝑡)𝛿(𝑡 − 𝑎) 𝑑𝑡 = {𝑓(𝑎) 

𝑐 0 if [𝑐, 𝑑] does not contain a. 

Important note: Just as for 𝛿(𝑡), for continuous 𝑓(𝑡) we have, 𝑓(𝑡)𝛿(𝑡 − 𝑎) = 𝑓(𝑎)𝛿(𝑡 − 𝑎). 
You should learn to make this replacement. 

Example 20.1. (Practice with 𝛿.) Quickly cover up the answers on the right and try to 
evaluate each of the integrals on the left. 

∫
3 

𝛿(𝑡)2𝑒4𝑡2 𝑑𝑡 = 2, (evaluate 2𝑒4𝑡2 at 𝑡 = 0)
−1 

∫
3 

𝛿(𝑡)2𝑒4𝑡2 𝑑𝑡 = 0, (0 is not in [1,3]) 
1 

∫
3 

𝛿(𝑡)2𝑒4𝑡2 𝑑𝑡 = 2, (evaluate 2𝑒4𝑡2 at 𝑡 = 0)
0− 

∫
∞ 

𝛿(𝑡)2𝑒− tan2(𝑡3) 𝑑𝑡 = 2, (evaluate 2𝑒− tan2(𝑡3) at 𝑡 = 0)
0− 

3
∫ 𝛿(𝑡 − 2)2𝑒4𝑡2 𝑑𝑡 = 2𝑒16, (evaluate 2𝑒2𝑒4𝑡2 

at 𝑡 = 2)
−1 

∫
5 

𝛿(𝑡 − 2)2𝑒4𝑡2 𝑑𝑡 = 0, (2 is not in [3,5]) 
3 

3
∫ 𝛿(𝑡 − 2)2𝑒4𝑡2 𝑑𝑡 = 2𝑒16 (evaluate 2𝑒2𝑒4𝑡2 

at 𝑡 = 2),
0− 

∫
∞ 

𝛿(𝑡 − 2)2𝑒− tan2(𝑡3) 𝑑𝑡 = 2𝑒− tan2(8) (evaluate 2𝑒− tan2(𝑡3) at 𝑡 = 2).
0− 
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20.7 The physical interpretation of delta functions as a unit impulse 

In general, we will be using 𝛿 functions as the input to LTI systems. So, in this subsection, 
we want to explore what this means. Our goal is to understand what is meant by an impulse 
and to see that 𝛿(𝑡) can be thought of as an (idealized) unit impulse. 
Example 20.2. Consider the rate equation ̇ = 𝑓(𝑡). To be specific, assume 𝑥 is𝑥 + 𝑘𝑥 
in kilograms of a radioactive substance and 𝑡 is in hours. This is a rate equation and the 
derivative 𝑥̇ and the input 𝑓(𝑡) are rates, in units of kg/hour. We then have that the total 

amount of substance input from time 0− to time 𝑡 is ∫
𝑡 

𝑓(𝜏) 𝑑𝜏 . 
0− 

Consider the following possible inputs 𝑓(𝑡), shown graphically as box functions. 

𝑡 

𝑓1(𝑡) kg/hour 

2 

1/2 
𝑡 

𝑓2(𝑡) kg/hour 

4 

1/4 
𝑡 

𝑓3(𝑡) kg/hour 
6 

1/6 

Look at the input function 𝑓1(𝑡) in the leftmost figure. It is only nonzero in the interval 
[0, 1/2] during which time it inputs at a constant rate of 2 kg/hour. The total amount input 
over that time is 

1/2
∫ 𝑓1(𝑡) 𝑑𝑡 = 1 kg.

0 

The function 𝑓2 has a higher rate, but acts for a shorter time. The total amount it inputs 
over time is also 1 kg. The function 𝑓3 is similar: it acts for even a shorter time, but also 
inputs a total of 1 kg. 
If 𝑥(0) = 𝑥0 kg, then over the interval [0, 1/2] some of the original matter and some of what 
is added by 𝑓1(𝑡) will decay away. So we’ll end with something less than 𝑥0 + 1 kg. 
Likewise with 𝑓2(𝑡), we add a total of 1 kg over the interval [0, 1/4]. Again, there will be 
decay over the interval, so we’ll have less than 𝑥0 + 1 at the end of the interval. But, since 
the interval is shorter, there will be less decay and the amount at the end will be closer to 
𝑥0 + 1 than with 𝑓1. 
If we continue to shorten the time interval in which we input a total of 1 kg, then, in the 
limiting case, we will dump 1 kg in all at once. In this case, there will be no time for 
decay and the amount will jump instantaneously from 𝑥0 to 𝑥0 + 1, after which it will start 
decaying. This instantaneous input is called an impulse; an instantaneous input of one unit 
is called a unit impulse. In a first-order system, an impulse results in an instantaneous 
jump in the amount of 𝑥. 
Note, as the time interval gets smaller, the rate needed to add a total of 1 kg must increase. 
In the limit, when 1 kg is added all at once, the rate must be infinite. 
It is worth acknowledging that, in a real physical system, we can’t really have an ideal 
impulse with an infinite rate over an infinitesimal time. But we can come close by having a 
large rate over a very small time. As long as the time interval is tiny compared to the decay 
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rate, the idealized impulse is a good model. For example, if we add 1 kg of radioactive 
material in a few seconds, while it decays on a scale of hours, then so little decays while 
we’re adding it, that it is reasonable to model it as an impulse over an infinitesimal time 
interval. 
Claim. Let 𝑢ℎ(𝑡) be the box function of width ℎ and height 1/ℎ. Then the integral 
∫∞ 
−∞ 𝑢ℎ(𝑡) 𝑑𝑡 = 1 and 

lim 𝑢ℎ(𝑡) = 𝛿(𝑡). 
ℎ→0 

That is, as the boxes get narrower and taller they become the 𝛿 function. 
Proof. We saw above that 𝛿(𝑡) was described by two properties 

if 𝑡 ≠ 0 1. 𝛿(𝑡) = {0 
∞ if 𝑡 = 0. 

2. ∫ 𝛿(𝑡) 𝑑𝑡 = 𝑢(𝑡), ∫
∞ 

𝛿(𝑡) 𝑑𝑡 = 1. 
−∞ 

The picture below illustrates that lim 𝑢ℎ(𝑡) satisfies property 1. Because all the integrals 
ℎ→0 

of 𝑢ℎ(𝑡) = 1, the second property is also true of the limit. Because the limit satisfies both 
properties it must equal 𝛿(𝑡). 

3 
2 ℎ → 0 

𝑡 𝑡 𝑡 𝑡 1 1 1
1 2 3 

A sequence of box functions 𝑢ℎ(𝑡) limiting to 𝛿(𝑡). 

Summary. Here’s a summary of what we’ve done in this subsection. 

1. If 𝑓(𝑡) is an input rate. The total amount input over [𝑎, 𝑏] is ∫
𝑏 

𝑓(𝑡) 𝑑𝑡. 
𝑎 

2. A unit impulse adds a total of 1 unit in one instant. 

3. If the impulse is at 𝑡 = 𝑡0 then all the input happens at 𝑡 = 𝑡0. 

4. We can visualize an impulse as the limit of a sequence of boxes as they get narrower 
and taller. (Also, look back at the non-idealized delta function in Figure 2: an impulse 
is the limit of any spike function as it gets narrower and taller.) 

5. A unit impulse is modeled by 𝛿(𝑡). 

20.8 Solving DES: pre and post-initial conditions. 

The main lesson in this section is that for an 𝑛th order equation a delta function, input 
causes an instantaneous jump in the (𝑛 − 1)st derivative of the output. Once we deal with 
that, we can use our standard techniques to solve the DE. 
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Because an impulse causes an instantaneous jump in some value, we have to consider the 
conditions just before and just after the impulse. Assume the impulse occurs at 𝑡 = 0, then: 
At 𝑡 = 0−, the conditions are pre-initial conditions. 
At 𝑡 = 0+, the conditions are post-initial conditions. 

20.8.1 Impulses as input to first-order systems 

Example 20.3. Solve ̇𝑥 + 𝑘𝑥 = 𝛿(𝑡) with rest initial conditions. 
Solution: This is a first-order exponential decay system. The unit impulse at 𝑡 = 0 causes 
an instantaneous jump of 1 in the value of 𝑥. 
On 𝑡 < 0: The DE is always ̇𝑥 + 𝑘𝑥 = 𝛿(𝑡). But on this interval 𝛿(𝑡) = 0, so we can simplify 
the DE to 

̇𝑥 + 𝑘𝑥 = 0. 
Since 𝑡 < 0 our initial conditions should use 0−: 𝑥(0−) = 0. 
Solving the equation we get: 𝑥(𝑡) = 𝑐𝑒−𝑘𝑡. 
Using the initial condition we get: 𝑥(0−) = 𝑐 = 0. 
So, on 𝑡 < 0, 𝑥(𝑡) = 0 . (This should have been obvious to us!) 

On 𝑡 > 0: The DE is always ̇𝑥+𝑘𝑥 = 𝛿(𝑡). But, on this interval 𝛿(𝑡) = 0, so we can simplify 
the DE to 

̇𝑥 + 𝑘𝑥 = 0. 
Since 𝑡 > 0 our initial conditions should use 0+: The pre-initial condition is 𝑥(0−) = 0. 
The effect of the unit impulse is to cause the value of 𝑥 to jump by 1 at 𝑡 = 0. That is, 
𝑥(0+) = 1. 
Solving the equation we get: 𝑥(𝑡) = 𝑐𝑒−𝑘𝑡. 

Using the initial condition we get: 𝑥(0+) = 𝑐 = 1. So, on 𝑡 > 0, 𝑥(𝑡) = 𝑒−𝑘𝑡 . 

The full solution is 
for 𝑡 < 0 𝑥(𝑡) = {0 

𝑒−𝑘𝑡 for 𝑡 > 0. 

Response from rest to input = 𝛿(𝑡). 

Key: We highlight one key thing to remember in the example above: 
In each of the cases 𝛿(𝑡) = 0. That is, when 𝑡 < 0 we have 𝛿(𝑡) = 0. Likewise, when 𝑡 > 0 
we have 𝛿(𝑡) = 0. 

Here is the graph. Note the jump at 𝑡 = 0, followed by exponential decay. 

𝑡 

𝑥 

1 
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20.8.2 Impulses as input to second-order systems 

Here will give physical reasons for the jump an impulse causes in the first derivative of a 
second-order system. Later, in Section 20.11, we’ll give algebraic reasons for the jump in a 
system of any order. 
Now let’s consider the second-order system 

𝑚 ̈ ̇ (33)𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑓(𝑡), 

with input 𝑓(𝑡) and output 𝑥(𝑡). To be specific, we’ll think of this as a spring-mass-damper 
system with 𝑥 in meters, 𝑡 in seconds, and 𝑚 in kg. 
We need to think about the units on 𝑓(𝑡). It’s clear enough that they are in Newtons, but 

what are the units of the total input ∫
𝑏 

𝑓(𝑡) 𝑑𝑡? Newtons can be written as 
𝑎 

kg⋅ m/sec momentum Newton = = . sec time 

That is, force changes momentum over time. We see that the total input has units of 
momentum. 
Following this idea, we see that a unit impulse to this second-order system is a sudden blow, 
i.e., a large force acting with a short duration, that causes the momentum to jump by one 
unit. 
Example 20.4. Suppose a unit impulse is applied to the system in Equation 33. If the 
system is at rest before time 0, find the pre- and post-initial conditions. 
Solution: Since the system is initially at rest the pre-initial conditions are 

𝑥(0−) = 0 and 𝑥(0̇ −) = 0. 

Since, for this system, the impulse causes a one unit jump in momentum at 𝑡 = 0 we have, 
at 𝑡 = 0+, the momentum 𝑚𝑥(0̇ +) = 1, i.e., the post-initial conditions 

𝑥(0+) = 0 and 𝑥(0̇ +) = 1/𝑚. 

Example 20.5. Assume rest initial conditions and solve the equation 

2 ̈ ̇𝑥 + 7𝑥 + 3𝑥 = 𝛿(𝑡). 

Solution: Following Example 20.4, the post-initial conditions are 𝑥(0+) = 0 and 𝑥(0̇ +) = 
1/2. We work on the intervals 𝑡 < 0 and 𝑡 > 0 separately. 
On 𝑡 < 0: The input 𝛿(𝑡) = 0, so we have a homogeneous DE with initial conditions 

2 ̈ ̇ 𝑥(0−) = 0, 𝑥(0̇ −) = 0.𝑥 + 7𝑥 + 3𝑥 = 0, 

You can easily check that the solution to this is 𝑥(𝑡) = 0. 
So, on 𝑡 < 0, 𝑥(𝑡) = 0. 
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On 𝑡 > 0: The input 𝛿(𝑡) = 0, so we have a homogeneous DE with initial conditions 

2 ̈ ̇ 𝑥(0+) = 0, 𝑥(0̇ +) = 1/2.𝑥 + 7𝑥 + 3𝑥 = 0, 

The characteristic roots are −1/2 and −3, so 

𝑥(𝑡) = 𝑐1𝑒−𝑡/2 + 𝑐2𝑒−3𝑡. 

Using the initial conditions we find 𝑐1 = 1/5 and 𝑐2 = −1/5. 
1 
5𝑒−𝑡/2 − 

1
5𝑒−3𝑡.So, on 𝑡 > 0, 𝑥(𝑡) = 

The full solution is 
for 𝑡 < 0 𝑥(𝑡) = {0 

5𝑒−𝑡/2 − 11 
5𝑒−3𝑡 for 𝑡 > 0. 

Example 20.6. Solve 4 ̈ with rest IC. 𝑥 + 𝑥 = 𝛿(𝑡) 

Solution: The pre-initial conditions are 0, so the post-initial conditions are 

𝑥(0+) = 0, 𝑥(0̇ +) = 1/4. 

On 𝑡 < 0: The differential equation with initial conditions is 

4 ̈ 𝑥(0−) = 0, 𝑥(0−) = 0.𝑥 + 𝑥 = 0; ̇ 

The solution to this is 𝑥(𝑡) = 0. 
On 𝑡 > 0: The differential equation with initial conditions is 

4 ̈ 𝑥(0+) = 0, 𝑥(0+) = 1/4.𝑥 + 𝑥 = 0; ̇ 

We know the solution to this: 

𝑥(𝑡) = 𝑐1 cos(𝑡/2) + 𝑐2 sin(𝑡/2). 

We find 𝑐1 and 𝑐2 to match the post-initial conditions: 𝑐1 = 0, 𝑐2 = 1/2. Therefore, the 
complete solution is 

for 𝑡 < 0 𝑥(𝑡) = {0 
1
2 sin(𝑡/2) for 𝑡 > 0. 

Physical explanation. At 𝑡 = 0 an impulse kicks the simple harmonic oscillator into 
motion. After that, input is 0 and the system is in simple harmonic motion. The jump in 
momentum corresponds to the corner in graph at 0. 

𝑡 

𝑥 
1
4 

Example 20.7. Solve 4 ̈ with rest IC. 𝑥 + 𝑥 = 𝛿(𝑡 − 𝑎) 
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Solution: This is an LTI system, so shifting the input from the previous example 𝑎 units 
to the right, shifts the response in the same way. 

𝑡 

𝑥 
1
4 

𝑎 

Example 20.8. (Resonance) Solve the equation 𝑥 + 𝑥 = 𝑓(𝑡) with rest IC, where thë 
input 𝑓(𝑡) is an impulse every 2𝜋 seconds of magnitude 3 in the positive direction. 
Solution: We have 𝑓(𝑡) = 3𝛿(𝑡) + 3𝛿(𝑡 − 2𝜋) + 3𝛿(𝑡 − 4𝜋) + …. We can solve by solving the 
DE individually for each input: 

𝑥�̈� + 𝑥𝑛 = 3𝛿(𝑡 − 2𝑛𝜋) 

and using superposition. (Note carefully that the rest IC are preserved by superposition. If 
we did not have rest IC, we would have to be a little more fussy.) The individual equations 
are exactly like the previous example. We get that the solution to 𝑥�̈� + 𝑥𝑛 = 3𝛿(𝑡 − 2𝑛𝜋) is 

0 for 𝑡 < 2𝑛𝜋 𝑥𝑛(𝑡) = {3 sin(𝑡 − 2𝑛𝜋) = 3 sin(𝑡) for 𝑡 > 2𝑛𝜋 

Now, when we superposition these solutions, we see that every 2𝜋 seconds we add another 
copy of 3 sin(𝑡) to the output. We call this resonance –the blows come at the natural 
frequency (every 2𝜋 seconds) of the system. 

⎧0 for 𝑡 < 0 

3 sin(𝑡) for 0 < 𝑡 < 2𝜋 {
𝑥(𝑡) = 6 sin(𝑡) for 2𝜋 < 𝑡 < 4𝜋 ⎨ 

9 sin(𝑡) for 4𝜋 < 𝑡 < 6𝜋 
{⎩ ⋯ 

20.8.3 Impulses as input to third-order systems 

Example 20.9. Assume rest initial conditions and solve the equation 

4(𝐷 − 1)(𝐷 − 2)(𝐷 − 3)𝑥 = 4𝑥‴ − 24𝑥″ + 44𝑥′ − 24𝑥 = 5𝛿(𝑡). 

(We give the differential operator in factored form so we can find the characteristic roots 
easily.) 
Solution: For a third-order DE, the jump caused by the impulse follows the same pattern 
as in the second-order case. That is, the input 5𝛿(𝑡) causes a jump of 5 in 4𝑥″(𝑡) at 𝑡 = 0. 
Here, the factor of 4 is the coefficient of 𝑥‴ in the DE. Thus 𝑥″ has a jump of 5/4. The 
pre-initial conditions are all zero, so after the jump the post-initial conditions are 

𝑥(0+) = 0, 𝑥′(0+) = 0, 𝑥″(0+) = 5/4. 
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(In Section 20.11 we will show why this has to be the case.) 
On 𝑡 < 0: On this interval, the input 5𝛿(𝑡) = 0. So the differential equation with initial 
conditions is 

4(𝐷 − 1)(𝐷 − 2)(𝐷 − 3)𝑥 = 0, 𝑥(0−) = 0, 𝑥′(0+) = 0, 𝑥″(0+) = 0. 

The solution to this is 𝑥(𝑡) = 0. 
On 𝑡 > 0: We have the homogeneous DE with initial conditions: 

4(𝐷 − 1)(𝐷 − 2)(𝐷 − 3)𝑥 = 0, 𝑥(0+) = 0, 𝑥′(0+) = 0, 𝑥″(0+) = 5/4. 

The characteristic roots are 1, 2 and 3, so for 𝑡 > 0 we have 

𝑥(𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒2𝑡 + 𝑐3𝑒3𝑡. 
5 = −5 5Using the initial conditions to find the coefficients, we get: 𝑐1 = 8, 𝑐2 4, 𝑐3 = 8 . 

The full solution is 
for 𝑡 < 0𝑥(𝑡) = {0 

5
8𝑒𝑡 − 4

5𝑒2𝑡 + 5
8𝑒3𝑡 for 𝑡 > 0. 

20.9 Box vs. delta as input 

In this section we will compare box functions and delta functions as input. You will see 
that the delta function is much easier to work with! 
Example 20.10. (Box vs. delta.) Let’s compare box 𝑢ℎ(𝑡) input with unit impulse (𝛿(𝑡)) 
input by solving: ̇ with rest IC.𝑥 + 𝑘𝑥 = 𝑢ℎ 

(Physical reasoning:) This models radioactive dumping. 𝑢ℎ is the rate matter is added
ℎ 

over time and, as we have seen, the total amount added is ∫ 𝑢ℎ = 1. 
0 

In the figure below the top row of graphs show the input 𝑢ℎ for various values of ℎ. The 
corresponding responses are shown in the second row of graphs. The total amount input is 
one, so, since there is decay, at the end of the input interval, we have 𝑥(ℎ) < 1. After time
𝑡 = ℎ there is no more input and the response shows exponential decay. 
As ℎ goes to 0 the input becomes the unit impulse 𝛿(𝑡). This is shown in the last graph. 
Since the input is dumped in all at once the graph jumps from 0 to 1 at 𝑡 = 0. After 𝑡 = 0 
the graph is that of exponential decay. 

Input in units of 𝑥/time 

3 

2 

1 1 1 

𝑡 𝑡 𝑡 𝑡 1 11 2 3 

1 
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𝑥 𝑥 𝑥 𝑥 
Response 1 
dim. = amount 

𝑡 𝑡 𝑡 𝑡 

Top: a sequence of box function inputs limiting to 𝛿(𝑡). 
Bottom: response to the sequence of box functions limiting to response to 𝛿(𝑡). 

For completeness we give the exact solution to the IVP ̇𝑥 + 𝑘𝑥 = 𝑢ℎ with rest IC. 

ℎ𝑘
1 (1 − 𝑒−𝑘𝑡) for 0 < 𝑡 < ℎ 𝑥 = { 1

ℎ𝑘(𝑒𝑘ℎ − 1)𝑒−𝑘𝑡 for ℎ < 𝑡 

Just as expected, as ℎ → 0 the input becomes 𝛿 and the output becomes 𝑥 = 𝑒−𝑘𝑡 (i.e.,
𝑒𝑘ℎ − 1 lim = 1)

ℎ→0 ℎ𝑘 

20.10 Generalized derivatives 

So far we have only one generalized derivative: �̇�(𝑡) = 𝛿(𝑡). In this section we will learn to 
compute them for any function with jump discontinuities. 
Definition. We say a function 𝑓(𝑡) has a jump discontinuity at 𝑡 = 𝑡0 if its graph is 
continuous on both the left and right, and there is a jump at 𝑡0. 
Formally this means that both left and right limits lim 𝑓(𝑡) and lim 𝑓(𝑡) exist, but are 

𝑡↑𝑡−
0 𝑡↓𝑡+

0 

different. The jump at 𝑡0 is defined as the difference 

lim 𝑓(𝑡) − lim 𝑓(𝑡) 
𝑡→𝑡+

0 
𝑡→𝑡−

0 

Example 20.11. The graph of a function 𝑓(𝑡) is shown below. It has jump discontinuities 
at −2, 0 and 2. The jumps are respectively 2, −2 and 3. The graph also has a corner at
−1. That is, the graph is continuous at 𝑡 = −1, but the derivative has a jump there. 

𝑡 

−2 

1 

3 

−2 −1 1 2 
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Notes. 1. Not all discontinuities result in jumps. At 𝑡 = 1 the jump between the left and 
right limits is 0. You could say the function jumps from -1.5 to 0 and back to -1.5 for a net 
jump of 0. 
2. The value of 𝑓(2) (represented by a dot on the graph) did not play a role in the value of 
the jump at 𝑡 = 2. The jump is the size of gap between the left and right branches of the 
curve. You could say the function jumps from 0 to 1.5 to 3 for a net jump of 3. 
3. At 𝑡 = 0 the jump is negative because the right branch of the graph is below the left 
branch. 
Generalized derivative: If a function is smooth except for some jump discontinuities and 
corners then its generalized derivative is: 

• the regular derivative away from the jumps and corners. 

• delta functions at the jumps. The coefficient on the delta function is the size of the 
jump. 

• undefined at the corners. 

Reason. Just as with the unit step function, the graph has ‘infinite’ slope at a jump 
and the integral of the derivative should give the original function. This is exactly what 𝛿 
functions do at jumps. 
Example 20.12. Suppose 

⎧−2 for 𝑡 < −2 
𝑡 + 2 for − 2 < 𝑡 < −1{

𝑓(𝑡) = −𝑡 for − 1 < 𝑡 < 0⎨
𝑡2/2 − 2 for 0 < 𝑡 < 2

{⎩3 − 3(𝑡 − 2)2 for 2 < 𝑡. 

Find the generalized derivative 𝑓′(𝑡). 
Solution: We just take the regular derivative and add delta functions at the jump discon-
tinuities. Note that the corner when 𝑡 = −1 becomes a jump in the derivative. 

⎧0 for 𝑡 < −2 
1 for − 2 < 𝑡 < −1{

𝑓′(𝑡) = 2𝛿(𝑡 + 2) − 2𝛿(𝑡) + 3𝛿(𝑡 − 3) + for − 1 < 𝑡 < 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⎨−1 
singular part 𝑡 for 0 < 𝑡 < 2

{⎩−6(𝑡 − 2) for 2 < 𝑡.⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
regular part 

Vocabulary: We name the two parts of the generalized derivative. The part which is the 
regular derivative is called the regular part and the part with delta functions due to the 
jumps is called the singular part. These are labeled in the example above. 

Example 20.13. Derivative of a square wave 
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The graphs below are of a function sq(𝑡) (called a square wave) and its derivative. The 
function alternates every 𝜋 seconds between ±1. The derivative sq ′(𝑡) is clearly 0 everywhere 
except at the jumps. A jump of +2 gives a (generalized) derivative of 2𝛿 and a jump of −2 
gives a (generalized) derivative of −2𝛿. Thus we have 

sq ′(𝑡) = … + 2𝛿(𝑡 + 2𝜋) − 2𝛿(𝑡 + 𝜋) + 2𝛿(𝑡) − 2𝛿(𝑡 − 𝜋) + 2𝛿(𝑡 − 2𝜋) − 2𝛿(𝑡 − 3𝜋) + … 

⋯ 

−3𝜋 −2𝜋 𝜋 𝜋 2𝜋 3𝜋 4𝜋 

⋯
𝑡 𝑡 

2 2 2 2 

2 2 2 2 

−3𝜋 𝜋 𝜋 3𝜋 

−2𝜋 2𝜋 4𝜋 

Graph of sq(𝑡) = square wave Graph of sq ′(𝑡) = impulse train 

Note that we put the weight of each delta function next to it. We use the convention that 
−2𝛿(𝑡) is represented by a downward arrow with the weight 2 next to it. That is, the sign 
is represented by the direction of the arrow, so the weight is positive. 

20.11 Generalized derivative: checking solutions, explanation for jumps 
in post-initial conditions 

In this section we will check the answers to a few of our previous examples by plugging 
them into the original DE. This should give you a feel for how a delta function as input 
causes a jump in the (𝑛 − 1)st derivative of an nth-order equation. 
Example 20.14. (Check the solution in Example 20.3) 

for 𝑡 < 0 The DE ̇ has solution 𝑥 + 𝑘𝑥 = 𝛿(𝑡) 𝑥(𝑡) = {0
𝑒−𝑘𝑡 for 𝑡 > 0. . 

This has a jump of 1 at 𝑡 = 0, so ̇𝑥(𝑡) is a generalized derivative: 

for 𝑡 < 0 ̇𝑥(𝑡) = 𝛿(𝑡) + {0 
−𝑘𝑒−𝑘𝑡 for 𝑡 > 0 

We now check: 

for 𝑡 < 0 for 𝑡 < 0 ̇ 
for 𝑡 > 0) + 𝑘 ({0 𝛿(𝑡). 𝑥 + 𝑘𝑥 = (𝛿 + {0 = −𝑘𝑒−𝑘𝑡 𝑒−𝑘𝑡 for 𝑡 > 0) 

Notice that the jump in 𝑥 yielded a delta function in 𝑥.̇ 

Example 20.15. (Check Example 20.5) Here the DE was 2 ̈ ̇𝑥 + 7𝑥 + 3𝑥 = 𝛿(𝑡) and the 
solution was 

for 𝑡 < 0 𝑥(𝑡) = {0
5𝑒−𝑡/2 − 11 

5𝑒−3𝑡 for 𝑡 > 0. 
𝑥(𝑡) has no jump at 𝑡 = 0, so it has a regular derivative 

for 𝑡 < 0 ̇𝑥(𝑡) = {0 

10𝑒−𝑡/2 + 3
5𝑒−3𝑡 − 1 for 𝑡 > 0. 
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Since ̇ ̈𝑥(𝑡) has a jump of 1/2 at 𝑡 = 0, we will get a 𝛿 function in 𝑥(𝑡): 

1 for 𝑡 < 0 ̈ 2𝛿(𝑡) + {0𝑥(𝑡) = 
20
1 𝑒−𝑡/2 − 9

5𝑒−3𝑡 for 𝑡 > 0. 

It is now easy to check that 2 ̈ ̇𝑥 + 7𝑥 + 3𝑥 = 𝛿(𝑡). 
In particular, note that 2 ̈𝑥(𝑡) = 𝛿(𝑡) + regular part. This explains why, in Example 20.5 
we wanted 𝑥̇ to jump by 1/2, i.e., then 𝑥̈ had singular part 𝛿(𝑡)/2, so 2𝑥̈ had singular part 
𝛿(𝑡), which is needed for the left hand side of the DE to equal 𝛿(𝑡). 

Example 20.16. (Check Example 20.9) We will do this check more quickly than the 
previous two. Also, we will leave out the case 𝑡 < 0 since it is always 0. As we do the 
computation, notice that 𝑥(0−) = 𝑥(0+) and 𝑥′(0−) = 𝑥′(0+), so there is no jump until 
𝑥″(0−) = 0 and 𝑥″(0+) = 5/4. Thus 𝛿(𝑡) appears in 𝑥‴(𝑡) and the jump is such that
4𝑥‴(𝑡) = 5𝛿(𝑡) + regular part. 
To check the solution, we compute each term in the DE: 

−24𝑥 = −24 (5
8𝑒𝑡 − 

5
4𝑒2𝑡 + 

5
8𝑒3𝑡) 

44𝑥′ = 44 (5
8𝑒𝑡 − 

5
2𝑒2𝑡 + 

15
8 

𝑒3𝑡) 

−24𝑥″ = −24 (5
8𝑒𝑡 − 5𝑒2𝑡 + 

45
8 

𝑒3𝑡) 

8 
𝑒3𝑡 + 

54𝑥‴ = 4 (5
8𝑒𝑡 − 10𝑒2𝑡 + 135 

4𝛿(𝑡)) 

Adding this up verifies that 𝑥(𝑡) is a solution to the DE: 4𝑥‴ − 24𝑥″ + 44𝑥′ − 24𝑥 = 5𝛿(𝑡). 

21 Fourier series introduction 

21.1 Goals 

1. Know the definition and terminology of Fourier series. 

2. Know how to compute the Fourier coefficients for a given periodic function. 

21.2 Introduction 

So far in 18.03 we have spent a lot of time solving the constant coefficient differential 
equation 𝑃(𝐷)𝑥 = 𝑓(𝑡), where 𝑓(𝑡) is sinusoidal. Our main goal in the next few topics is 
to extend this to solve 𝑃(𝐷)𝑥 = 𝑓(𝑡), where 𝑓(𝑡) can be any periodic function. The outline 
of our plan is fairly simple: 
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1. Fourier series. If 𝑓(𝑡) is periodic, we’ll see that we can write it as a superposition of 
sine and cosine functions. For example, 

𝑓(𝑡) = 1 + cos(𝑡)/2 + cos(2𝑡)/4 + cos(3𝑡)/8 + … 

2. Linearity. Then we can use the sinusoidal response formula for each term and use the 
superposition principle to solve 𝑃(𝐷)𝑥 = 𝑓(𝑡). 

21.3 Terminology 

21.3.1 Frequency terminology 

Angular frequency or circular frequency is in radians/sec or more generally in radians/time. 
Frequency is in cycles/time –often in cycles/sec = hertz. 
Example 21.1. Consider the function cos(3𝑡), where 𝑡 is in seconds. 
The angular frequency is 𝜔 = 3 rad/sec. 
The frequency is 𝑓 = 𝜔/(2𝜋) = 3/(2𝜋) hz. 
The period is 𝑇 = 1/𝑓 = 2𝜋/𝜔 = 2𝜋/3 sec. 
Depending on the context, we will use frequency or angular frequency. To make matters 
messier we will often say frequency when we mean angular frequency. 

21.3.2 Fourier series terminology 

Here we give an example Fourier series. We’ll use it to define the terminology we’ll be using. 
Example 21.2. Suppose we have 

3 + 
cos(3𝜋𝑡) + 

sin(3𝜋𝑡) 𝑓(𝑡) = 2 + cos(𝜋𝑡) + 
cos(2𝜋)𝑡 + … + sin(𝜋𝑡) + 

sin(2𝜋𝑡) + … 2 3 22 32 

This is a Fourier series. It has the following properties. 

1. A Fourier series is sum of sines and cosines. All of the terms have a common period. 
In this example, every term has period 2. (Most terms also have a smaller period.) 

2. It has a base angular frequency also called the fundamental angular frequency. In this 
example, the base frequency is 𝜋. 

3. The frequency in each term is a multiple of the base frequency. 

4. The base period corresponds to the base frequency. In this example, the base period 
is 2. 

5. The Fourier coefficients are the coefficients of the sine and cosine terms. In this 
example, the cosine coefficients are 

1 11, 1
2, 3, … , 𝑛, … 

and the sine coefficients are 
1 11, 1 
32 , … , 22 , 𝑛2 , … 

The constant term is 3
2 . This is called the DC term. DC stands for direct current. 
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21.4 Periodic functions 

Definition. 𝑓(𝑡) is periodic with period 𝑝 > 0 if 𝑓(𝑡 + 𝑝) = 𝑓(𝑡) for all 𝑡. 
Examples: cos(𝑡) has period 2𝜋, cos(3𝑡) has period 2𝜋/3, cos (𝐿

𝜋 𝑡) has period 2𝐿 

Important point. Just like a complex number has multiple arguments, a periodic function 
has multiple periods. For example, cos(𝑡) has periods 2𝜋, 4𝜋, 6𝜋, …. 
An even more extreme case is the constant function 𝑓(𝑡) = 1 which has period 𝑝 for any 
𝑝 > 0. 
Specifying a periodic function. For a periodic function, it’s enough to specify two things: 
1. The period 

2. The values of the function over 1 period. 

for − 1 < 𝑡 < 0 Example 21.3. Period 2 square wave: period = 2, over one period 𝑓(𝑡) = {−1 
1 for 0 < 𝑡 < 1 

We can now plot the 𝑓(𝑡) by plotting the period given and then shifting that one period at 
a time. 

⋯ 
𝑡 

Graph of 𝑓(𝑡) = period 2 square wave 

⋯ 

−3 −2 −1 1 2 3 4 

21.5 Fourier’s theorem 

Theorem (Fourier): Suppose 𝑓(𝑡) has period 𝑝 = 2𝐿 then 

1. We can write 𝑓(𝑡) as a Fourier series 

𝑎0𝑓(𝑡) ∼ 2 
+ 𝑎1 cos (𝐿

𝜋 𝑡) + 𝑎2 cos (2𝐿
𝜋 𝑡) + 𝑎3 cos (3𝐿

𝜋 𝑡) + ⋯ 

+𝑏1 sin (𝐿
𝜋 𝑡) + 𝑏2 sin (2𝐿

𝜋 𝑡) + 𝑏3 sin (3𝐿
𝜋 𝑡) + ⋯ 

∞ ∞𝑎0= 2 
+ ∑ 𝑎𝑛 cos (𝑛𝐿

𝜋 𝑡) + ∑ 𝑏𝑛 sin (𝑛𝐿
𝜋 𝑡)

𝑛=1 𝑛=1 

(We use ∼ instead of an equal sign because the two sides might differ for a few values of 𝑡. 
From now on, we will simply use an equal sign and ignore this fact.) 
2. The base period of 𝑓(𝑡) is 2𝐿. Each term in the Fourier series has period 2𝐿. For 
example, cos (3𝐿

𝜋 𝑡) has period 2𝐿/3, but also 4𝐿/3, 6𝐿/3 = 2𝐿 

3. The series has base angular frequency = 𝜔 = 𝐿
𝜋 . Every term in the series has an angular 

frequency which is a multiple of 𝜋
𝐿 . 
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4. The Fourier coefficients are given by: 

𝑎0 = 
𝐿

𝑓(𝑡) 𝑑𝑡 𝐿
1 ∫ 

−𝐿
𝐿 

𝑎𝑛 = 𝑓(𝑡) cos (𝑛𝐿
𝜋 𝑡) 𝑑𝑡 𝐿

1 ∫ 
−𝐿

𝐿 

𝑏𝑛 = 𝑓(𝑡) sin (𝑛𝐿
𝜋 𝑡) 𝑑𝑡 𝐿

1 ∫ 
−𝐿 

Notes 
1. All Fourier terms 𝑎𝑛 cos (𝑛𝐿

𝜋 𝑡), 𝑏𝑛 sin (𝑛 𝐿
𝜋 𝑡) have period 2𝐿. 

2. Accept the formulas for Fourier coefficients for now, we will give more explanation later. 
3. The integrals must be over one full period. We showed them from −𝐿 to 𝐿 because that 
is the interval of integration we use most often. Sometimes, the function is defined in a way 
that makes the interval from 0 to 2𝐿 a better choice. 

Example 21.4. Compute the Fourier series for the square wave of period = 2𝜋, 

for − 𝜋 < 𝑡 < 0 sq(𝑡) = {−1 .1 for 0 < 𝑡 < 𝜋. 

Solution: The half period 𝐿 = 𝜋. So, for 𝑛 ≠ 0, we have 

𝜋 0 𝜋 0 𝜋 1 + 
sin(𝑛𝑡)𝑎𝑛 = 𝑓(𝑡) cos(𝑛𝑡) 𝑑𝑡 = ∫ − cos(𝑛𝑡) 𝑑𝑡+∫ cos(𝑛𝑡) 𝑑𝑡 = −sin(𝑛𝑡) ∣ ∣ = 0.𝜋 

∫ 𝑛𝜋 𝑛𝜋 −𝜋 −𝜋 0 −𝜋 0 

For 𝑛 = 0, 𝑎0 = 
𝜋

𝑓(𝑡) 𝑑𝑡 = 0. (Always compute 𝑎0 separately.) 𝜋
1 ∫ 

−𝜋 

Likewise 
𝜋 0 𝜋 

𝑏𝑛 = 
1 𝑓(𝑡) sin(𝑛𝑡) 𝑑𝑡 = 

1 − sin(𝑛𝑡) 𝑑𝑡 + 
1 sin(𝑛𝑡) 𝑑𝑡 𝜋 ∫ 𝜋 ∫ 𝜋 ∫ 

−𝜋 −𝜋 0
0 𝜋 cos(𝑛𝑡) − 

cos(𝑛𝑡)= ∣ ∣𝑛𝜋 𝑛𝜋 −𝜋 0 
41 − cos(−𝑛𝜋) − 

cos(𝑛𝜋) − 1 2 2 for 𝑛 odd = = 𝑛𝜋(1 − cos(𝑛𝜋)) = 𝑛𝜋 
(1 − (−1)𝑛) = { .𝑛𝜋 𝑛𝜋 0

𝑛𝜋 
for 𝑛 even 

4Thus, 𝑓(𝑡) = 𝜋 
(sin 𝑡 + 

1
3 
sin 3𝑡 + 5

1 sin 5𝑡 + ⋯). 

21.5.1 Simple formulas for certain angles 

Here are several formulas you know and should always use: 
1. cos(𝑛𝜋) = (−1)𝑛 always make this substitution 

2. sin(𝑛𝜋) = 0 always make this substitution 
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2 ) and cos (𝑛𝜋 The values sin (𝑛𝜋 
2 

) do not have an easier formula. For example for 𝑛 = 

sin (𝑛𝜋 0, 1, 2, 3, 4 we have 2 
) = 0, 1, 0, −1, 0. 

22 Fourier series introduction: continued 

22.1 Goals 

1. Be able to compute the Fourier coefficients of even or odd periodic function using 
simplified formulas. 

2. Be able to determine the decay rate of the coefficients of a Fourier series. 

3. Be able to predict the decay rate of the Fourier coefficients based on the smoothness 
of the original function. 

22.2 Introduction 

In this topic we continue our introduction to Fourier series. We start by looking at some 
tricks for computing Fourier coefficients. Then we will talk about more conceptual notions, 
including the convergence properties of Fourier series and the decay rate of Fourier coeffi-
cients. At the end, we will look at the orthogonality relations which explain the formulas 
for Fourier coefficients. 

22.3 Calculation tricks: even and odd functions 

22.3.1 Even and odd functions 

A function is an even function if 𝑓(−𝑡) = 𝑓(𝑡) for all 𝑡. 

• The graph of an even function is symmetric about the 𝑦-axis.
𝑥 𝑥 𝑥 

𝑡 𝑡 𝑡 

Graphs of some even functions 

• Examples of even functions: 1, 𝑡2, 𝑡4, …, cos(𝜔𝑡). In general, even functions are built 
out of even powers of 𝑡. Note that, the power series for cos(𝜔𝑡) has only even powers. 

• By symmetry we have the following key integration fact for even functions: 

𝐿 𝐿 

∫ 𝑓(𝑡) 𝑑𝑡 = 2 ∫ 𝑓(𝑡) 𝑑𝑡 for any even 𝑓(𝑡). 
−𝐿 0 
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A function is an odd function if 𝑓(−𝑡) = −𝑓(𝑡) for all 𝑡. 

• The graph of an odd function is symmetric about the origin.
𝑥 𝑥 

𝑡 𝑡 

Graphs of some odd functions 

• Examples of odd functions: 𝑡, 𝑡3, 𝑡5, …, sin(𝜔𝑡). In general, odd functions are built 
out of odd powers of 𝑡. Note that, the power series for sin(𝜔𝑡) has only odd powers. 

• By symmetry we have the following key integration fact for odd functions: 

∫
𝐿

𝑓(𝑡) 𝑑𝑡 = 0 for any odd 𝑓(𝑡). 
−𝐿 

Products of even and odd functions 

We give the rules in a kind of short-hand. You can remember these rules by thinking about 
powers of 𝑡, e.g., 𝑡4 ⋅ 𝑡7 = 𝑡11, so even ⋅ odd is odd. 

• even ⋅ even = even, e.g., 𝑡4 ⋅ 𝑡6 = 𝑡10 

• odd ⋅ odd = even, e.g., 𝑡3 ⋅ 𝑡5 = 𝑡8 

• odd ⋅ even = odd, e.g., 𝑡3 ⋅ 𝑡6 = 𝑡9 

22.3.2 Fourier coefficients of even and odd functions 
𝐿 

• If 𝑓(𝑡) is even, then 𝑏𝑛 = 0 and 𝑎𝑛 = 𝑓(𝑡) cos(𝑛𝜋
𝐿 

𝑡) 𝑑𝑡. 𝐿
2 ∫ 

0 

𝐿 

• If 𝑓(𝑡) is odd, then 𝑎𝑛 = 0, and 𝑏𝑛 = 𝑓(𝑡) sin(𝑛𝜋
𝐿 

𝑡) 𝑑𝑡. 𝐿
2 ∫ 

0 

Reason. Assume 𝑓(𝑡) is even. Then the multiplication rules for even functions imply
𝐿 𝐿 

𝑓(𝑡) cos(𝜔𝑡) is even. So, 𝑎𝑛 = 𝑓(𝑡) cos (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 𝑓(𝑡) cos (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡. 𝐿
1 ∫ 𝐿

2 ∫ 
−𝐿 0 

𝐿 

Likewise, the rules imply 𝑓(𝑡) sin(𝜔𝑡) is odd. So, 𝑏𝑛 = 𝑓(𝑡) sin (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 0.𝐿
1 ∫ 

−𝐿 

The argument is similar when 𝑓(𝑡) is odd. 

Example 22.1. In the previous topic notes we met the period 2𝜋 square wave, which over 
for − 𝜋 < 𝑡 < 0 one period has the formula sq(𝑡) = {−1 

1 for 0 < 𝑡 < 𝜋. 
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𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

1 

−1 

Graph of sq(𝑡) = square wave 

Since the period is 2𝜋, we have 𝐿 = 𝜋. Since sq(𝑡) is odd, we know that 𝑎𝑛 = 0 and 
𝜋 𝜋 𝜋 42 2 for 𝑛 odd 𝑛𝜋 𝑏𝑛 = sq(𝑡) sin(𝑛𝑡) 𝑑𝑡 = sin(𝑛𝑡) 𝑑𝑡 = −𝑛𝜋

2 cos(𝑛𝑡)∣ = {𝜋 ∫ 𝜋 ∫ 
0 0 for 𝑛 even.0 0 

We have found the Fourier series for sq(𝑡): 
∞ 4 + 

sin(5𝑡) 4 sin(𝑛𝑡)sq(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑡) = 𝜋 
(sin(𝑡) + 

sin(3𝑡) + ⋯) = .3 5 𝜋 ∑ 𝑛 𝑛=1 𝑛 odd 

Example 22.2. Triangle wave function (also called the continuous sawtooth function). Let
𝑓(𝑡) have period 2𝜋 and 𝑓(𝑡) = |𝑡| for −𝜋 ≤ 𝑡 ≤ 𝜋. Compute the Fourier series of 𝑓(𝑡). 

𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

𝜋 

Graph of 𝑓(𝑡) = triangle wave 

Since 𝑓(𝑡) is an even function, we know that 𝑏𝑛 = 0 and for 𝑛 ≠ 0 we have 
𝜋 𝜋 

𝑎𝑛 = |𝑡| cos(𝑛𝑡) 𝑑𝑡 = 𝑡 cos(𝑛𝑡) 𝑑𝑡 𝜋
1 ∫ 𝜋

2 ∫ 
−𝜋 0

𝜋 

𝜋
2 [𝑡 sin(𝑛𝑡) + 

cos(𝑛𝑡) 2 for 𝑛 odd 𝑛2𝜋 = ] = 𝑛2𝜋 
((−1)𝑛 − 1) = {− 4 

𝑛 𝑛2
0 0 for 𝑛 even. 

𝜋 𝜋 

As usual, we compute 𝑎0 separately: 𝑎0 = |𝑡| 𝑑𝑥 = 𝑡 𝑑𝑡 = 𝜋.𝜋
1 ∫ 𝜋

2 ∫ 
−𝜋 0 

Thus we have the Fourier series for 𝑓(𝑡): 
∞𝑎0 𝜋 + 

cos(5𝑡) 𝜋 cos(𝑛𝑡)𝑓(𝑡) = ∑ 𝑎𝑛 cos(𝑛𝑡) = 2 − 𝜋
4 (cos(𝑡) + 

cos(3𝑡) + ⋯) = 2 − 4 .2 + 32 52 𝜋 ∑ 𝑛2
𝑛=1 𝑛 odd 

22.4 Summing Fourier series 

We can use the sum of a finite number of terms from a Fourier series to approximate the 
original function. The applet 
https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html illustrates 
this. In the following sections we will bring out the following key points: 

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html
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• The first few terms of the Fourier series approximate the shape of the function, not 
necessarily the value of the function at any one point. 

• At points of continuity, the Fourier series converges to the original function. 

• The smoother the function, the faster the Fourier series converges to the function. 

• At jumps in the graph, no matter how many terms you use, the Fourier series always 
overshoots the graph near that point. 

22.5 Convergence of Fourier series 

Piecewise smooth: The period 2𝐿 function 𝑓(𝑡) is called piecewise smooth if there are 
only a finite number of points 0 ≤ 𝑡1 < 𝑡2 < … < 𝑡𝑛 ≤ 2𝐿 where 𝑓(𝑡) is not differentiable 
and at each of these points the left and righthand limits 

𝑓(𝑡+
𝑖 ) = lim 𝑓(𝑡) and 𝑓(𝑡−

𝑖 ) = lim 𝑓(𝑡) 
𝑡→𝑡+

𝑖 
𝑡→𝑡−

𝑖 

exist (although they might not be equal). 
In short, a function is piecewise smooth if it is smooth except at a discrete set of points 
where is has jump discontinuities. 
Here is our main theorem about convergence of Fourier series. We will not prove it in 
ES.1803. 
Theorem: If 𝑓(𝑡) is piecewise smooth and periodic, then the Fourier series for 𝑓 : 
1. Converges to 𝑓(𝑡) at values of 𝑡 where 𝑓 is continuous. 
2. Converges to the average of 𝑓(𝑡−) and 𝑓(𝑡+) at values of 𝑡 where 𝑓(𝑡) has a jump 
discontinuity. 
Example 22.3. Square wave. The square wave in the example above has jump discontinu-
ities. No matter how we specify the endpoint behavior of sq(𝑡), the Fourier series converge 
to 0, i.e., the midpoint of the gap, at the discontinuities. 

𝑡 ⋯ ⋯ 
𝑡 ⋯ ⋯ 

Original sq(𝑡) Fourier series 
Example 22.4. The triangle wave in the example above is continuous so its Fourier series 
converges to the original function 𝑓(𝑡). 

Example 22.5. We give one more graphical example. Here the original function has 
discontinuities –admittedly somewhat artificial. Since the left and righthand limits are the 
same at each discontinuity the Fourier series is continuous. 
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𝑡 
⋯ ⋯ 

𝑡 
⋯ ⋯ 

Original 𝑓(𝑡) Fourier series 

22.5.1 Decay rate of Fourier coefficients 

Sequences like 𝑎𝑛 = 1/𝑛 and 𝑏𝑛 = 1/𝑛2 go to 0 as 𝑛 goes to infinity. We say they decay to 
0. Clearly 𝑏𝑛 goes to 0 faster than 𝑎𝑛. We will say ‘𝑏𝑛 decays like 1/𝑛2’. 
In general we will ignore constant factors, so, for example, we say 4/(𝑛𝜋) decays like 1/𝑛. 
Example 22.6. The Fourier coefficients of sq(𝑡) are 

= {4/(𝑛𝜋) for 𝑛 odd 𝑎𝑛 = 0 and 𝑏𝑛 0 for 𝑛 even. 

We say these coefficients decay like 1/𝑛. 
Example 22.7. The triangle wave looked at above has Fourier coefficients 

= {−4/(𝑛2𝜋) for 𝑛 odd 𝑏𝑛 = 0 and 𝑎𝑛 0 for even 𝑛 ≠ 0. 

So these coefficients decay like 1/𝑛2. 
Example 22.8. The coefficients 𝑎𝑛 = 1/(𝑛 + 𝑛2) decay like 1/𝑛2. 
Example 22.9. If a Fourier series has 𝑎𝑛 = 1/𝑛 and 𝑏𝑛 = 1/𝑛2, we say 𝑎𝑛 decays like 1/𝑛 
and 𝑏𝑛 decays like 1/𝑛2. The Fourier coefficients as a whole decay like the slower of the two 
rates. That is, they decay like 1/𝑛. 
Example 22.10. The function 𝑓(𝑡) = 3 cos(𝑡) + 5 cos(2𝑡) is a finite Fourier series. The 
coefficients are 𝑎0 = 0, 𝑎1 = 3, 𝑎2 = 5, 𝑎3 = 0, 𝑎4 = 0, … We say these coefficients decay 
like 0. 

22.5.2 Important heuristics 

• If a function has a jump discontinuity, then its Fourier coefficients decay like 𝑛
1 , e.g., 

the square wave. 

• If a function has a corner, then its Fourier coefficients decay like 𝑛
1
2 , e.g., the triangle 

wave 

• A smooth function has Fourier coefficients that decay like 𝑛
1
3 or faster. 

• The smoother the function, the faster the coefficients decay. 
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22.6 Gibbs’ phenomenon 

22.6.1 Non-local nature of Fourier series 

Generally speaking, if we sum the first few terms of a Fourier series, it will match the overall 
shape of the original function. An analogy is the way a squares fit of data points matches 
the shape of the data without necessarily going through any of the data points. 
The figures below show the square wave and its Fourier series summed to some number 
of terms. The first plot uses just the first term, i.e., 𝜋

4 sin(𝑡). Notice how it matches the 
general oscillation of the square wave without matching it well at any particular place. 

4The second plot uses the terms out to 𝑛 = 3, i.e., 𝜋 
(sin(𝑡) + 

sin(3𝑡)). This fits the square 3 
wave a little better than the first plot. The third plot uses the terms out to 𝑛 = 21. This 
fits the square even better. 

t−π π

1

−1

1.18

−1.18

t−π π

1

−1

1.18

−1.18

t−π π

1

−1

1.18

−1.18

t−π π

1

−1

1.18

−1.18

Sum up to 𝑛 = 1 Sum up to 𝑛 = 3 Sum up to 𝑛 = 9 Sum up to 𝑛 = 21 

22.6.2 Gibbs’ phenomenon 

In the figures above, notice that the peak of the reconstructed square wave always overshoot 
the square 0.18, i.e., it goes up to about 1.18 or down to −1.18. As the number of terms 
increases, the point where the overshoot occurs moves closer to the point of discontinuity, 
but never disappears. 
This is a general phenomenon, called Gibbs’ phenomenon. For any periodic function with 
a jump discontinuity, summing any number of terms from its Fourier series will always 
overshoot the jump by about 9% of the size of the jump. For example, the square wave has 
a jump of size 2, so the overshoot is about 2 ⋅ 0.09 = 0.18. Gibbs’ phenomenon is extremely 
important in many applications, e.g., digital filtering of signals. 
We won’t prove Gibbs’ phenomenon in ES.1803. For those who are interested, we’ve posted 
an enrichment note with the proof. It should accessible to anyone who knows calculus. 
The applet 
https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html 
shows this overshoot in several cases. 

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html
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22.7 Orthogonality relations 

22.7.1 Orthognality relation integrals 

The key to the integral formulas for Fourier coefficients are the orthogonality relations. 
These are the following integral formulas that say certain trigonometric integrals are either 
0 or 1. 

⎧1 𝑛 = 𝑚 ≠ 0 1 𝐿 

cos (𝑛𝜋
𝐿 

𝑡) cos (𝑚𝜋 {
𝐿 ∫ 𝐿 

𝑡) 𝑑𝑡 =
{

0 𝑛 ≠ 𝑚 ⎨−𝐿 ⎩2 𝑛 = 𝑚 = 0 
𝐿 1 sin (𝑛𝜋

𝐿 
𝑡) cos (𝑚𝜋 

𝐿 
𝑡) 𝑑𝑡 = 0𝐿 

∫ 
−𝐿 

𝐿 1 sin (𝑛𝜋
𝐿 

𝑡) sin (𝑚𝜋 𝑛 = 𝑚 ≠ 0 
𝐿 

𝑡) 𝑑𝑡 = {1 
𝐿 ∫ 0 𝑛 ≠ 𝑚 −𝐿 

Proof. We have two methods to do this. We will carry out the first, but only mention the 
second. 
Method 1: Use the following trigonometric identities 

cos(𝛼) cos(𝛽) = 
cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽) 

2 
sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) sin(𝛼) cos(𝛽) = 

sin(𝛼) sin(𝛽) = 
cos(𝛼 − 𝛽) −

2 
cos(𝛼 + 𝛽)

2 

Method 2: Use cos(𝑎𝑡) = 𝑒𝑖𝑎𝑡+𝑒
2 

−𝑖𝑎𝑡 etc. 
Using method 1 we get the following if 𝑛 ≠ 𝑚: 

𝐿 𝐿 cos ((𝑛+𝑚)𝜋𝑡) + cos ((𝑛−𝑚)𝜋 1 cos (𝑛𝜋
𝐿 

𝑡) cos (𝑚𝜋 1 𝐿 𝐿 𝑡)
𝐿 

𝑡) 𝑑𝑡 = 𝑑𝑡 𝐿 ∫ 𝐿 ∫ 2−𝐿 −𝐿 

2𝐿 
[
sin ((𝑛+𝑚)𝜋 sin ((𝑛−𝑚)𝜋 

= 
1 𝐿 𝑡) 𝐿 𝑡)

∣
𝐿 

(𝑛 + 𝑚)𝜋/𝐿 
+ (𝑛 − 𝑚)𝜋/𝐿 

−𝐿 

= 0. 
The last equality is easy to see since every term is 0 when 𝑡 = ±𝐿. 
The case 𝑛 = 𝑚 is special because then 𝑛 − 𝑚 = 0. It is easy to use the first trig identity 
above with 𝛼 = 𝛽, i.e., cos(𝛼) cos(𝛼) = (cos(2𝛼) + 1)/2, to see that the integral in this case 
is 1. All the other orthogonality relations are proved in a similar fashion. 
The term orthogonality comes from linear algebra, where we say two vectors are orthogonal 
if there dot product is 0. It turns out that we can think of ∫𝐿 

−𝐿 𝑓(𝑡)𝑔(𝑡) 𝑑𝑡 as a dot product 
(usually called inner product) between 𝑓 and 𝑔. So the orthogonality relations say that, for 
𝑛 ≠ 𝑚, the functions cos(𝑛𝜋𝑡/𝐿) and cos(𝑚𝜋𝑡/𝐿) are orthogonal. 



22 FOURIER SERIES INTRODUCTION: CONTINUED 204 

22.7.2 Using orthogonality relations to show the formula for Fourier coefficients 

The orthogonality relations allow us to see that if 𝑓(𝑡) is written as a Fourier series, then 
the coefficients must be given by the integral formulas we’ve been using. 
So suppose 𝑓(𝑡) has Fourier series’: 

𝑓(𝑡) = 
𝑎
2
0 + 𝑎1 cos (𝐿

𝜋 𝑡) + 𝑎2 cos (
2𝜋
𝐿 

𝑡) + ⋯ + 𝑏1 sin (𝐿
𝜋 𝑡) + 𝑏2 sin (2𝜋

𝐿 
𝑡) + ⋯ 

Then for 𝑛 > 0 
𝐿 𝐿 1 1 [𝑎

2
0 cos (𝑛𝜋 

𝐿𝑡) cos (𝑛𝜋 𝑓(𝑡) cos (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 𝐿 
𝑡) + 𝑎1 cos ( 

𝜋 
𝐿 

𝑡)𝐿 ∫ 𝐿 ∫ 
−𝐿 −𝐿 

𝐿 
𝑡) cos (𝑛𝜋 + 𝑎2 cos (

2𝜋 
𝐿 

𝑡) + ⋯ 

𝐿𝑡) cos (𝑛𝜋 
𝐿 

𝑡) cos (𝑛𝜋 +𝑏1 sin ( 
𝜋 

𝐿 
𝑡) + 𝑏2 sin (2𝜋 

𝐿 
𝑡) + ⋯] 𝑑𝑡 

Now we can apply the orthogonality relations to each term. All of them are 0, except 
𝐿 𝑡) cos (𝑛𝜋 the term with 𝑎𝑛 cos (𝑛𝜋 

𝐿 𝑡) which, again by the orthogonality relations, integrates 
𝐿 

to 𝑎𝑛. Thus, 𝑓(𝑡) cos(𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 𝑎𝑛. Which is exactly the formula for the Fourier 𝐿
1 ∫ 

−𝐿 
coefficient. The formulas for 𝑎0 and 𝑏𝑛 are found in the same way. 

22.8 Hearing a musical triad: C-E-G 

Here is a simplified Fourier-centric view of how humans hear sound. 
Sound reaches your ear as a pressure wave. For example 

𝑓(𝑡) = 𝑎1 cos(𝜔1𝑡) + 𝑎2 cos(𝑤2𝑡) + ⋯ 

Do the ears do Fourier analysis? 

Answer: Yes! The ear contains hair-like structures called stereocilia. These are different 
sizes and, so, resonate at different frequencies. As they vibrate they stimulate nerves, which 
then send signals to the brain. Thus, for each frequency in the pressure wave, the brain is 
getting a signal from the nerves attached to the stereocilia which vibrate at that frequency. 
The greater the amplitude in the input wave the greater the amplitude of the signal sent 
to the brain. 
Does the brain do Fourier synthesis? 

Answer: Yes! It is up to the brain to combine all the nerve signals at different frequencies 
into a single signal which it then interprets. 
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23 Fourier sine and cosine series; calculation tricks 

23.1 Goals 

1. Be able to use various calculation shortcuts for computing Fourier series: 
shifting and scaling 𝑓(𝑡) 
shifting and scaling 𝑡 
differentiating and integrating known series. 

2. Be able to find the sine and cosine series for a function defined on the interval [0, 𝐿] 
3. Understand the distinction between 𝑓(𝑥) defined on [0, 𝐿] and it’s even and odd pe-

riodic extensions. 

23.2 Introduction 

This topic is split into two subtopics. First, we look at a few more calculation tricks. The 
common idea in these tricks is to use the Fourier series of one function to find the Fourier 
series of another. A simple example is if we scale a function, say 𝑔(𝑡) = 5𝑓(𝑡), the Fourier 
series for 𝑔(𝑡) is 5 times the Fourier series of 𝑓(𝑡). 
Next, we’ll look at functions 𝑓(𝑥) that are only defined on the interval [0, 𝐿]. This is in 
preparation for our later study of the heat and wave equations. This function is not periodic 
–it’s not even defined for all 𝑥. By extending 𝑓(𝑥) to an even or odd periodic function we 
can write the original function 𝑓(𝑥) as a sum of sines (sine series) or a sum of cosines (cosine 
series). 

23.3 Calculation shortcuts 

One of our goals is to avoid computing integrals when finding the Fourier coefficients of 
a periodic function. In this section we’ll consider the following calculation shortcuts for 
computing Fourier series: 

1. Simplify computations for even or odd periodic functions. (Already covered in the 
previous topic.) 

2. Use known Fourier series to compute the Fourier series for scaled and shifted functions. 

3. Use known Fourier series to compute the Fourier series for the derivative or integrals 
of functions. 

Even and odd functions were covered in the previous topic, so we won’t go over them again 
here. 

23.3.1 New series from old ones: shifting and scaling 

First, if you scale and shift 𝑓(𝑡), then you scale and shift its Fourier series. To avoid 
burdening the statement with too much notation we state it for period 2𝜋 functions. You 
can extend this easily to any period. 
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∞ ∞𝑎0Suppose 𝑓(𝑡) has Fourier series 𝑓(𝑡) = 2 
+ ∑ 𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑏𝑛 sin(𝑛𝑡).

𝑛=1 𝑛=1 

Theorem. (Scaling and shifting 𝑓(𝑡).) The scaled and shifted function 𝑔(𝑡) = 𝑐𝑓(𝑡) + 𝑑 
has Fourier series 

∞ ∞𝑐𝑎0𝑔(𝑡) = 𝑐𝑓(𝑡) + 𝑑 = 2 
+ 𝑑 + ∑ 𝑐𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑐𝑏𝑛 sin(𝑛𝑡).

𝑛=1 𝑛=1 

Theorem. (Scaling and shifting in time.) The function 𝑔(𝑡) = 𝑓(𝑐𝑡 + 𝑑) has 
∞ ∞

𝑔(𝑡) = 𝑓(𝑐𝑡 + 𝑑) = 
𝑎
2
0 + ∑ 𝑎𝑛 cos(𝑛(𝑐𝑡 + 𝑑)) + ∑ 𝑏𝑛 sin(𝑛(𝑐𝑡 + 𝑑)). 

𝑛=1 𝑛=1 

This is not quite in standard Fourier series form, but it is in a useable form. Also, if we 
really want a standard Fourier series, it is easy to expand out the trig functions to put it 
in standard form. 
The rest of this subsection will be devoted to an extended example, illustrating these tech-
niques using our standard period 2𝜋 square wave whose graph is shown just below. 
Example 23.1. (Extended example.) The graph of 𝑓(𝑡) looks like this: 

𝑓(𝑡) = 𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

1 

−1 

Graph of 𝑓(𝑡) = square wave 

We know that the Fourier series for 𝑓(𝑡) is 

4 sin(𝑛𝑡)𝑓(𝑡) = . (34)𝜋 ∑ 𝑛 𝑛 odd 

Now we will use this to find the Fourier series for scaled and shifted versions of 𝑓(𝑡). We’ll 
define these new functions graphically, we could also write down formulas if we wanted. 

sin(𝑛𝑡)⋯ ⇒ 𝑓1(𝑡) = 1 + 𝑓(𝑡) = 1 + 
4 .(a) 𝑓1(𝑡) = 𝜋 ∑ 𝑛 𝑡 𝑛 odd 

⋯ 

𝜋 2𝜋 

2 

𝜋 2𝜋 

2 

−2 

⋯ 
𝜋 2𝜋 

1 

⋯ 8 sin(𝑛𝑡)⋯ ⇒ 𝑓2(𝑡) = 2𝑓(𝑡) = .(b) 𝑓2(𝑡) = 𝜋 ∑ 𝑛 𝑡 𝑛 odd 

⋯
(c) 𝑓3(𝑡) = 

1 1 sin(𝑛𝑡)⇒ 𝑓3(𝑡) = 2(1 + 𝑓(𝑡)) = 2 
+ 

2 .𝑡 𝜋 ∑ 𝑛 𝑛 odd 
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Next will look at what happens if we scale the time 𝑡. 
4 sin(𝑛𝜋𝑡) ⋯ ⇒ 𝑓4(𝑡) = 𝑓(𝜋𝑡) = .(d) 𝑓4(𝑡) = ⋯ 

1 2 

1 

−1 

𝑡 𝜋 ∑ 𝑛 𝑛 odd 

It’s a little tricky to see that 𝑓4(𝑡) = 𝑓(𝜋𝑡). I think about it two ways. First, the picture 
shows that we want 𝑓4(1) = 𝑓(𝜋), which is given by 𝑓4(𝑡) = 𝑓(𝜋𝑡). Second, 𝑓4(𝑡) has period 
2 so its Fourier series should have terms with frequencies 𝑛𝜋. 
Our last example involves shifting the time. 

⋯ 

−𝜋/2 𝜋/2 

1 

−1 

⋯ 4 sin(𝑛(𝑡 + 𝜋/2)) 
𝑡 ⇒ 𝑓5(𝑡) = 𝑓(𝑡 + 𝜋/2) = .(e) 𝑓5(𝑡) = 𝜋 ∑ 𝑛 𝑛 odd 

That is, 

4 4𝑓5(𝑡) = 𝜋 
(sin(𝑡 + 𝜋/2) + 

sin(3𝑡 + 3𝜋/2) + …) = 𝜋 (cos 𝑡 − 
cos 3𝑡 + …) . 3 3 

The last expression is in the form we defined for Fourier series. For most applications, the 
middle expression is perfectly useable and sometimes even preferable. 

23.3.2 Differentiation and integration 

If 𝑓(𝑡) is periodic, then the Fourier series for 𝑓′(𝑡) is just the term-by-term derivative of the 
Fourier series for 𝑓(𝑡). An example should make this clear. 
Example 23.2. Let 𝑓(𝑡) be the period 2𝜋 triangle wave with 𝑓(𝑡) = |𝑡| on [−𝜋.𝜋]. It’s 
clear that 𝑓′(𝑡) is the square wave. Check that the derivative of the Fourier series of 𝑓(𝑡) is 
the Fourier series of 𝑓′(𝑡). 

𝑓(𝑡) = 𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

𝜋 

Graph of 𝑓(𝑡) = triangle wave 

Solution: From the previous topic notes, we know the Fourier series for 𝑓(𝑡) is 

𝜋 + 
cos 5𝑡 𝑓(𝑡) = 2 − 𝜋

4 (cos 𝑡 + 
cos 3𝑡 + …) 32 52 

4 + 
sin 5𝑡 Thus, 𝑓′(𝑡) = 𝜋 

(sin 𝑡 + 
sin 3𝑡 + …). We know this is the Fourier series of our3 5 

standard square wave as claimed. 
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Decay rate of Fourier series. Note that 𝑓(𝑡) has a corner and its coefficients decay like 1/𝑛2, 
while 𝑓′(𝑡) has a jump and its coefficients decay like 1/𝑛. Note also, how differentiation 
changed the power of 𝑛 in the decay rate. 
Differentiation of discontinuous functions. Term-by-term differentiation of Fourier series 
works for discontinuous functions as long as we use the generalized derivative. 
Example 23.3. Let 𝑓(𝑡) be our standard period 2𝜋 square wave. Find 𝑓′(𝑡) and the 
Fourier series of 𝑓′(𝑡). Graph 𝑓′(𝑡). 
Solution: Because 𝑓(𝑡) has jumps (alternating between 2 and −2) we must take the gen-
eralized derivative: 

𝑓′(𝑡) = … − 2𝛿(𝑡 + 𝜋) + 2𝛿(𝑡) − 2𝛿(𝑡 − 𝜋) + 2𝛿(𝑡 − 2𝜋) − … 

4 sin(𝑛𝑡) 4We know 𝑓(𝑡) = . So, taking the term-by-term derivative, 𝑓′(𝑡) = cos(𝑛𝑡).𝜋 ∑ 𝑛 𝜋 ∑ 
𝑛 odd 𝑛 odd 

You can check this by computing the Fourier coefficients of 𝑓′(𝑡) directly using the integral 
formulas. 

2 2 2 2 

−3𝜋 𝜋 𝜋 3𝜋 

2 

−2𝜋 

2 2 

2𝜋 

2 

4𝜋 
𝑡 

Graph of 𝑓′(𝑡) = impulse train 

Example 23.4. Term-by-term integration. Suppose that 

+ 
cos(3𝑡) + 

cos(4𝑡)𝑓(𝑡) = 1 + cos(𝑡) + 
cos(2𝑡) + … 2 3 4 

What is ℎ(𝑡) = ∫
𝑡
𝑓(𝑢) 𝑑𝑢? 

0 

Solution: We integrate the Fourier series term-by-term to get 
𝑡 

+ 
sin(3𝑡)ℎ(𝑡) = ∫ 𝑓(𝑢) 𝑑𝑢 = 𝐶 + 𝑡 + sin(𝑡) + 

sin(2𝑡) + … 22 32
0 

Note: Just because 𝑓(𝑡) is periodic doesn’t mean the integral of 𝑓(𝑡) will be periodic. In 
this case, the “𝑡-term” shows that ℎ(𝑡) is not periodic. So we can’t officially say we have a 
Fourier series for ℎ(𝑡). Nonetheless we have a nice series for ℎ(𝑡) that can be used in many 
applications. 
Here’s one more example of integration. It’s very cool, but we probably won’t get to it in 
class. 
Example 23.5. For your amusement. Consider the period 2𝜋 discontinuous sawtooth 
function 𝜋

2 
− 

𝑡 𝑓(𝑡) = for 0 < 𝑡 < 2𝜋. 2 
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𝑓(𝑡) = 𝑡 
⋯ ⋯ 

−2𝜋 −𝜋 𝜋 2𝜋 3𝜋 4𝜋 

𝜋 

Graph of 𝑓(𝑡) = discontinuous sawtooth 

Since 𝑓(𝑡) is odd with period 2𝜋, we know that the cosine coefficients 𝑎𝑛 = 0. For the sine 
coefficients it is slightly easier to do the integral over a full period rather than double the 
integral over a half period: 

1 𝜋 − 𝑡 1𝑏𝑛 = 
2𝜋 

sin(𝑛𝑡) 𝑑𝑡 = 𝜋 ∫ 2 𝑛. 
0 

+ 
sin(3𝑡)Thus, 𝑓(𝑡) = sin(𝑡) + 

sin 
2
(2𝑡) 

3 
+ …. 

Now, let ℎ(𝑡) be the integral of 𝑓(𝑡), specifically 

𝑡 𝑡 

+ 
sin 3𝑢 Let ℎ(𝑡) = ∫ 𝑓(𝑢) 𝑑𝑢 = ∫ sin 𝑢 + 

sin 
2
2𝑢 

3 
+ … 𝑑𝑢 

0 0 

+ 
1 − cos(3𝑡)= (1 − cos(𝑡)) + 

1 − cos(2𝑡) + … 22 32 
∞ 1 ∞ cos(𝑛𝑡)= ∑ ∑ .𝑛2 − 𝑛2
1 1 

𝑎0The DC term is 2 = ∑ 𝑛
1
2 . This is an infinite sum, but we can compute its value directly

𝑡 𝜋
2 

− 
𝑢 𝜋𝑡 

2 
− 

𝑡2 
using the integral formula for Fourier coefficients. On [0, 2𝜋], ℎ(𝑡) = ∫ 2 𝑑𝑢 = 4 

. 
0

Thus, 
2𝜋 1 𝜋𝑡 

2 
− 

𝑡2 𝜋2
𝑎0 = 4 𝑑𝑡 =𝜋 ∫ 3 . 

0 

𝑎0 𝜋2 
So, = = ∑ 𝑛

1
2 . We’ve summed an infinite series! 2 6 

23.4 Sine and cosine series; even and odd extensions 

23.4.1 Definition of sine and cosine series 

In this section we will be concerned with functions 𝑓(𝑥) defined on an interval [0, 𝐿]. We 
start by stating the theorem on how to write functions as sine and cosine series. After that, 
we will use what we know about Fourier series to justify the theorem. We will need sine 
and cosine series when we study the heat and wave equations. 
But first, an important semantic distinction: Fourier series are defined for periodic func-
tions. A function defined only on an interval [0, 𝐿] cannot be periodic, so it doesn’t have a 
Fourier series. The figures below show a function defined on the interval [0, 𝜋] and a period 
𝜋 function defined over the entire real line. 
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x

y

π
x

y

−π π 2π 3π

· · · · · ·

Left: function defined [0, 𝜋], can’t be periodic. Right: periodic function 

Sine and cosine series. Without further ado, we state how to write a function as a cosine 
or sine series and how to compute the coefficients for the series. Note, the statements look 
very much like the ones for Fourier series. 
Consider a function 𝑓(𝑥) defined on the interval [0, 𝐿]. 𝑓(𝑥) can be written as a cosine 
series: 

∞ 𝐿 𝑎0 𝑎𝑛 cos (
𝑛𝜋𝑥 2 𝑓(𝑥) cos (𝑛𝜋𝑥 𝑓(𝑥) = 2 

+ ∑ 𝐿 
) , where 𝑎𝑛 = 𝐿 

) 𝑑𝑥. 𝐿 
∫ 

𝑛=1 0 

𝑓(𝑥) also has a sine series: 
∞ 𝐿 

𝑏𝑛 sin (𝑛𝜋𝑥 2𝑓(𝑥) = ∑ 𝐿 
) , where 𝑏𝑛 = 𝑓(𝑥) sin (𝑛𝜋𝑥 

𝐿 
) 𝑑𝑥. 𝐿 

∫ 
𝑛=1 0 

Important. 

1. Sine and cosine series are about functions defined on an interval. 

2. The sine and cosine series have values for all 𝑥. At points in (0, 𝐿) where 𝑓(𝑥) is 
continuous, the sine and cosine series equal 𝑓(𝑥). Since 𝑓(𝑥) is only defined on [0, 𝐿], 
this is usually what we want. 

3. Computing 𝑎𝑛 and 𝑏𝑛 only depends on the values of 𝑓(𝑥) in the interval [0, 𝐿]. 
4. We will make use of sine and cosine series when we study the heat and wave equations. 

23.4.2 Examples of sine and cosine series 

Now, we’ll give some example computations. We can do this by mechanically applying the 
formulas. We’ll gain more insight into these series after we have seen the proof justifying 
the formulas for the coefficients. 
Example 23.6. Find the Fourier cosine and sine series for the function 𝑓(𝑥) = sin(𝑥)
defined on [0, 𝜋]. 
Solution: Cosine series. 𝐿 = 𝜋, Using the formula for 𝑎𝑛: 

𝜋 𝜋 

𝑎0 = sin(𝑥) 𝑑𝑥 = [−𝜋
2 cos(𝑥)∣ = 𝜋

2 ∫ 𝜋
4 . 

0 0 

sin(𝑎 + 𝑏) + sin(𝑎 − 𝑏) By applying the formula sin(𝑎) cos(𝑏) = we get:2 
𝜋 𝜋 2 

𝜋
1 [−cos((1 + 𝑛)𝑥) − 

cos((1 − 𝑛)𝑥) = {0 for odd 𝑛 > 0 𝑎𝑛 = sin(𝑥) cos(𝑛𝑥) 𝑑𝑥 = ∣ −4𝜋 ∫
0 1 + 𝑛 1 − 𝑛 0 𝜋(𝑛2−1) for even 𝑛 > 0. 
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(You have to be careful with 𝑛 = 1, but the formula is correct.) 
Thus, 

2 
𝜋 (cos(2𝑥) + 

cos(4𝑥) + 
cos(6𝑥) 2 cos(𝑛𝑥)𝑓(𝑥) = + …) = ∑𝜋 − 4 

3 15 35 𝜋 − 𝜋
4 

𝑛2 − 1 
. 

𝑛>0, even 

Important. This is only valid where 𝑓(𝑥) is defined, i.e., on [0, 𝜋]. 
Sine series. 𝑓(𝑥) = sin(𝑥) on [0, 𝜋]. This can be seen by comparing the abstract sine series 
∑∞ 

𝑛=1 𝑏𝑛 sin(𝑛𝑥) with the given function 𝑓(𝑥) = sin(𝑥). Or we could compute the integrals 
for 𝑏𝑛 similar to the way we computed 𝑎𝑛 above. 

23.4.3 Even and odd periodic extensions 

The proof of the formulas for the sine and cosine series coefficients turns out to be a 
straightforward application of Fourier series for periodic functions. The trick is to view the 
fact that 𝑓(𝑥) is only defined on [0, 𝐿] as an opportunity instead of a limitation. To do this 
we need to define even and odd periodic extensions of 𝑓(𝑥). 
Definition. If 𝑓(𝑥) is a function defined on the interval [0, 𝐿] then the even period 2𝐿 
extension of 𝑓(𝑥) is the period 2𝐿 function 

𝑓�̃�(𝑥) = {𝑓(−𝑥) for −𝐿 < 𝑥 < 0 
𝑓(𝑥) for 0 < 𝑥 < 𝐿 

To visualize this, we first reflect 𝑓(𝑥) in the 𝑦-axis to get a function defined over one period 
[−𝐿, 𝐿]. We then extend this to be periodic over the entire real line. 

x

y

L

Original function f(x)

x

y

L−L

Reflected function on [−L,L]

x

y

L 2L 3L 4L 5L−L−2L−3L

. . . . . .

Even period 2L extension f̃e(x)

Making an even period 2𝐿 extension. 

The odd period 2𝐿 extension of 𝑓(𝑥) is defined similarly, with 

𝑓�̃�(𝑥) = {−𝑓(−𝑥) for −𝐿 < 𝑥 < 0 
𝑓(𝑥) for 0 < 𝑥 < 𝐿 

To visualize this, we first reflect 𝑓(𝑥) through the origin to get a function defined over one 
period [−𝐿, 𝐿]. We then extend this to be periodic over the entire real line. 
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x

y

L 2L 3L 4L 5L−L−2L−3L

. . . . . .

Odd period 2L extension f̃o(x)

The odd period 2𝐿 extension. 

23.4.4 Proof of the formulas for the sine and cosine series 

As we said, using the even and odd period 2𝐿 extensions this is a straightforward application 
of Fourier series for periodic functions. We will give the argument for the cosine series. The 
sine series is similar. 
We have 𝑓(𝑥) defined on [0, 𝐿] and the even period 2𝐿 extension 𝑓�̃� (𝑥). Since 𝑓�̃� (𝑥) is 
periodic, it has a Fourier series and since it is even this series has only cosine terms. That 
is, 

∞𝑎0 𝑎𝑛 cos (
𝑛𝜋𝑥 𝑓�̃�(𝑥) = ∑ 𝐿 

) . 2 
+ 

𝑛=1 

𝐿 2 𝑓𝑒(𝑥) cos (𝑛𝜋𝑥 Using the symmetry of even functions we know 𝑎𝑛 = ̃ 
𝐿 

) 𝑑𝑥. But, on𝐿 
∫ 

0 
the interval of integration, we know 𝑓�̃�(𝑥) = 𝑓(𝑥). Therefore, 

𝐿 2 𝑓(𝑥) cos (𝑛𝜋𝑥 𝑎𝑛 = 𝐿 
) 𝑑𝑥. 𝐿 

∫ 
0 

This is the formula we wanted to prove. 
Sine series. You should try proving the formula for the sine series coefficients. 
Once more to emphasize the grammar: 
𝑓(𝑥) is defined for 𝑥 in [0, 𝐿], while 𝑓�̃� (𝑥) and 𝑓�̃� (𝑥) are defined for all 𝑥. 
The three functions agree on [0, 𝐿], i.e., 𝑓(𝑥) = 𝑓�̃�(𝑥) = 𝑓�̃�(𝑥) for 𝑥 in [0, 𝐿]. The cosine 
series for 𝑓(𝑥) is just the Fourier series for 𝑓�̃� (𝑥). The sine series for 𝑓(𝑥) is just the Fourier 
series for 𝑓�̃� (𝑥). 
This is illustrated in the following figure: 

x

y

L 2L 3L−L−2L−3L

. . . . . .

𝑓(𝑥) in orange, ̃𝑓𝑒(𝑥) in cyan, ̃𝑓𝑜(𝑥) in purple. All three are the same for 0 < 𝑥 < 𝐿. 
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We finish with an example that shows how to use known Fourier series to avoid computing 
integrals for sine and cosine series. 
Example 23.7. Find the sine and cosine series for the function 𝑓(𝑥) = 1 defined on the 
interval [0, 𝜋]. 
Solution: Since the odd period 2𝜋 extension of 𝑓(𝑥) is our standard square wave, we have 
the sine series is the Fourier series of sq(𝑥): 

4 sin(𝑛𝑥)𝑓(𝑥) = .𝜋 ∑ 𝑛 𝑛 odd 

Since the even period 2𝜋 extension is the constant function 𝑓(𝑥) = 1, we have the cosine 
series: 

𝑓(𝑥) = 1. 

24 Linear ODEs with periodic input 

24.1 Goals 

1. Be able to solve a linear constant coefficient differential equation with periodic input 
by writing the input as a Fourier series. 

• Know to index the phase lags as 𝜙(𝑛) or 𝜙𝑛 in the superposition for the solution. 
• Be able to identify the term in the input that causes the biggest response. 
• Be able to recognize when one term in the Fourier series for the input produces 

a pure resonant term in the output. 

24.2 Introduction 

In this topic we combine Fourier series with the superposition principle to solve linear 
differential equations. This is really a small extension of what we did way back in the first 
unit where we had a finite number of terms being superpositioned. Now, with Fourier series, 
we have an infinite number of terms. Superposition works exactly the same way as before, 
but we’ll have to work out how to present the solution in a nice form. 
We’ll do this by presenting a series of examples. You should pay attention to the format of 
the solutions. 

24.3 Examples of constant coefficient DEs with periodic input 

Example 24.1. Let 𝑓(𝑡) be the odd period 2𝜋 square wave with height 1. Find the periodic 
solution to the DE ̈𝑥 + 8𝑥 = 𝑓(𝑡). 
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Solution: Using the (known) Fourier series for 𝑓(𝑡) the equation becomes 

4 + 
sin(5𝑡) 4 sin(𝑛𝑡)𝑥 + 8𝑥̈ = 𝜋 (sin(𝑡) + 

sin(3𝑡) + …) = 3 5 𝜋 ∑ 𝑛 𝑛 odd 

In preparation for using the superposition principle we solve the DE separately for each 
term in the input, i.e., solve 

sin(𝑛𝑡)𝑥�̈� + 8𝑥𝑛 = 𝑛 
The characteristic polynomial for this equation is 𝑃(𝑟) = 𝑟2 + 8. So, 

if 𝑛 ≤ 2 𝑃 (𝑖𝑛) = 8 − 𝑛2; |𝑃 (𝑖𝑛)| = |8 − 𝑛2|; Arg(𝑃 (𝑖𝑛)) = 𝜙(𝑛) = {0 
𝜋 if 𝑛 ≥ 3 

The sinusoidal response formula gives us 

sin(𝑛𝑡 − 𝜙(𝑛)) = 
sin(𝑛𝑡 − 𝜙(𝑛)) .𝑥𝑛,𝑝(𝑡) = 𝑛|𝑃 (𝑖𝑛)| 𝑛|8 − 𝑛2| 

Putting it together using superposition 

𝜋
4 ( 

sin(𝑡) + 
sin(5𝑡 − 𝜋) 4 sin(𝑛𝑡 − 𝜙(𝑛)) 

|8 − 1| + 
sin(3𝑡 − 𝜋) 𝑥𝑝(𝑡) = 3|8 − 9| 5|8 − 25| + …) = 𝜋 

∑ 𝑛|8 − 𝑛2|𝑛 odd 

We will often call this the steady periodic solution. 
Important feature. Note that we were careful to label the phase lags as 𝜙(𝑛). This is 
because 𝜙 is be different for different terms. Instead of 𝜙(𝑛), we will sometimes use the 
notation 𝜙𝑛. 
Note: The solution given just above is correct, but we can make it a bit nicer looking by 
noting that sin(𝑛𝑡 − 𝜋) = − sin(𝑛𝑡). This gives us 

4 sin(𝑡) − 
4 sin(𝑛𝑡)𝑥𝑝(𝑡) = ⋅ ∑ .𝜋 7 𝜋 𝑛|8 − 𝑛2|𝑛 odd, 𝑛≥3 

Example 24.2. (Near resonance.) In the previous example, which term in the solution 
has the biggest amplitude? 

Solution: The 𝑛 = 3 term has the biggest amplitude (1/3). Note that the resonant 
frequency of the system is 

√
8 and that 3 is the frequency in the Fourier series closest to 

this resonant frequency 

Example 24.3. (Pure resonance.) Let 𝑓(𝑡) be the same square wave as in the previous 
examples. Find a particular solution to ̈𝑥 + 9𝑥 = 𝑓(𝑡). 
Solution: We solve the DE separately for each term in the input: 

sin(𝑛𝑡)𝑥�̈� + 9𝑥𝑛 = 𝑛 
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The characteristic polynomial is 𝑃(𝑟) = 𝑟2+9. The difference between this example and the 
previous one is that 𝑃(3𝑖) = 0, so we will need the extended sinusoidal response formula. 

⎧0 if 𝑛 ≤ 2 {
𝑃 (𝑖𝑛) = 9 − 𝑛2; |𝑃 (𝑖𝑛)| = |9 − 𝑛2|; Arg(𝑃 (𝑖𝑛)) = 𝜙𝑛 = 𝜋 if 𝑛 > 3 ⎨{⎩undefined if 𝑛 = 3 

For 𝑛 ≠ 3 the sinusoidal response formula gives us 

sin(𝑛𝑡 − 𝜙𝑛) sin(𝑛𝑡 − 𝜙𝑛)𝑥𝑛,𝑝(𝑡) = = .𝑛|𝑃 (𝑖𝑛)| 𝑛|9 − 𝑛2| 

When 𝑛 = 3, we have 𝑃(3𝑖) = 0, so we’ll need to use the extended SRF: 

𝑃 ′(𝑟) = 2𝑟 ⇒ 𝑃 ′(3𝑖) = 6𝑖 = 6𝑒𝑖𝜋/2. 

So, 
𝑡 sin(3𝑡 − 𝜋/2) 𝑥3,𝑝(𝑡) = 3 ⋅ 6 

Putting it together, using superposition (and that sin(𝑛𝑡 − 𝜋) = − sin(𝑛𝑡)), our solution is: 

𝜋
4 (sin(𝑡) − 

𝑡 cos(3𝑡) + 
sin(5𝑡 − 𝜋) 4 sin(𝑡)−4𝑡 cos(3𝑡)− 

4 sin(𝑛𝑡)𝑥𝑝(𝑡) = + …) = ∑8 18 80 8𝜋 18𝜋 𝜋 𝑛|9 − 𝑛2|𝑛>3, 𝑛 odd 

Note: The input has angular frequency 1, but its Fourier series contains a frequency 3 
component which causes pure resonance. 

Example 24.4. Solve ̈ ̇ where 𝑓(𝑡) is the triangle wave: 𝑓(𝑡) = |𝑡| for𝑥 + 2𝑥 + 9𝑥 = 𝑓 ,
−𝜋 < 𝑡 < 𝜋. 
Solution: We know from the Topic 22 notes that the Fourier series for 𝑓(𝑡) is 

𝜋 + 
cos(5𝑡)𝑓(𝑡) = 2 − 𝜋

4 (cos(𝑡) + 
cos(3𝑡) + …) 32 52 

We’ll use a slightly different pattern here and ignore the scale factors while we solve the DE 
for each term in the input. We’ll bring the scale factors back when we use superposition. 
The DE for each piece is 

𝑥�̈� + 2𝑥�̇� + 9𝑥𝑛 = cos(𝑛𝑡) 

The characteristic polynomial is 𝑃(𝑟) = 𝑟2 + 2𝑟 + 9. So, 

𝑃 (𝑖𝑛) = 9 − 𝑛2 + 2𝑛𝑖; 
|𝑃 (𝑖𝑛)| = √(9 − 𝑛2)2 + 4𝑛2; 

2𝑛 Arg(𝑃 (𝑖𝑛)) = 𝜙(𝑛) = tan−1 (9 − 𝑛2 ) in Q1 or Q2. 

Thus, 
𝑥𝑛,𝑝(𝑡) = 

cos(𝑛𝑡 − 𝜙(𝑛)) cos(𝑛𝑡 − 𝜙(𝑛)) =|𝑃 (𝑖𝑛)| √(9 − 𝑛2)2 + 4𝑛2 
. 
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There is also a constant term in the input, 𝑥0̈ + 2𝑥0̇ + 9𝑥0 = 𝜋/2. This is easy to solve: 

𝜋 𝑥0,𝑝(𝑡) = 18. 

Putting it together using superposition (and restoring the scale factors) our solution is: 

𝑥𝑝 = 𝑥0,𝑝 − 𝜋
4 (𝑥1,𝑝 + 

𝑥3,𝑝 + 
𝑥5,𝑝 + …) 32 52 

𝜋 
𝜋 (cos(𝑡 − 𝜙(1)) + 

cos(3𝑡 − 𝜙(3)) + 
cos(5𝑡 − 𝜙(5)) = + …) 18 − 4 √

68 
√

36 
√

356 
𝜋 cos(𝑛𝑡 − 𝜙(𝑛)) = 18 

− 𝜋
4 ∑ 

𝑛2√(9 − 𝑛2)2 + 4𝑛2𝑛 odd 

Note. The damping complicates the expressions for 𝑃 (𝑖𝑛), but it also means that we don’t 
need to worry about pure resonance. 

We should do a first-order equation: 
Example 24.5. Find the general solution to ̇𝑥 + 𝑘𝑥 = 𝑓(𝑡), where 

∞ 

+ 
cos(2𝑡) + 

cos(3𝑡) cos(𝑛𝑡)𝑓(𝑡) = 1 + 
cos(𝑡) + … = 1 + ∑ .1 2 3 𝑛 𝑛=1 

Solution: The problem asks for the general solution, so we start by giving the homogeneous
𝑥ℎ(𝑡) = 𝐶𝑒−𝑘𝑡 solution: . 

Finding 𝑥𝑝 is similar to the examples above. 
Characteristic polynomial: 𝑃(𝑟) = 𝑟 + 𝑘. So, 

𝑃 (𝑖𝑛) = 𝑘 + 𝑖𝑛; |𝑃 (𝑖𝑛)| = √𝑘2 + 𝑛2; Arg(𝑃 (𝑖𝑛)) = 𝜙(𝑛) = tan−1(𝑛/𝑘) in Q1 . 

Individual pieces: 𝑥�̇� + 𝑘𝑥𝑛 = cos(𝑛𝑡)/𝑛. Using the SRF 

𝑥𝑛,𝑝(𝑡) = 
cos(𝑛𝑡 − 𝜙(𝑛))

𝑛
√

𝑘2 + 𝑛2 

Constant term: 𝑥0̇ + 𝑘𝑥0 = 1 ⇒ 𝑥0,𝑝 = 1/𝑘. 
Now using superposition we find 

𝑥𝑝(𝑡) = 𝑥0,𝑝 + 𝑥1,𝑝 + 𝑥2,𝑝 + 𝑥3,𝑝 + … 

𝑘
1 + 

cos√(𝑡 − 𝜙(1))
𝑘2 + 1 

+ 
cos(2𝑡 − 𝜙(2)) + 

cos(3𝑡 − 𝜙(3)) = + … 
2
√

𝑘2 + 4 3
√

𝑘2 + 9 
1 ∞ cos(𝑛𝑡 − 𝜙(𝑛)) = ∑ 

𝑛
√

𝑘2 + 𝑛2𝑘 
+ 

𝑛=1 

As always, the general solution is 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡). 
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25 PDEs; separation of variables 

25.1 Goals 

1. Be able to model the temperature of a heated bar using the heat equation plus bound-
ary and initial conditions. 

2. Be able to solve the equations modeling the heated bar using Fourier’s method of 
separation of variables 

3. Be able to model a vibrating string using the wave equation plus boundary and initial 
conditions. 

4. Be able to solve the equations modeling the vibrating string using Fourier’s method 
of separation of variables 

25.2 Introduction 

When a function depends on more than one variable, it has partial derivatives instead of 
ordinary derivatives. For 18.03, this means we will have to consider partial differential 
equations (PDE) involving such functions. 
In this note we will focus on two main examples: the heat equation describing the tempera-
ture of heated metal rod and the wave equation describing the motion of a vibrating string 
We describe these below. In psets we will look at variations of these examples as well as 
extensions of our techniques to other equations. 
Both examples lead to a linear partial differential equation which we will solve using the 
Fourier separation of variables method. Perhaps unsurprisingly, this will involve Fourier 
series, i.e., superposition of sines and cosines. Because there are multiple independent 
variables, the computations will be lengthier than we have seen before. However, the basic 
scheme will be the same. That is, to solve a homogeneous equation with initial conditions 
we: 

1. Use the method of optimism to find modal solutions. In this case, there will be an 
infinite number of independent modal solutions. 

2. The general solution is a linear combination of the modal solutions. 

3. The values of the coefficients in the general solution are determined by the initial 
conditions. In this case, since we have an infinite number of terms in the linear 
combination, finding the coefficients will involve Fourier series. 

For an inhomogeneous equation, the general solution is given by a particular solution plus 
the general homogeneous solution. We’ll need some method, often the method of optimism, 
to find the particular solution. 
The major new wrinkle will be the inclusion of what are called boundary conditions in our 
models. These will be explained in due course. 
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25.3 The heat equation 

In this section we will look at the heat equation, which models the temperature over time 
in a heated bar. 
Suppose we have a heated bar made of a uniform material. The temperature in the bar will 
vary with position along the bar as well as over time. To be specific, we assume we have 
a rod of length 𝐿 which is thin enough that the temperature doesn’t vary in the vertical 
direction. We will also make the assumption that the bar is insulated along its length so 
that no heat passes through the sides. (See the figure with the example in the next section.) 
Given these assumptions, we can describe the temperature of the bar by a function of two 
variables 𝑢(𝑥, 𝑡) which gives the temperature at time 𝑡 at position 𝑥. 
The partial differential equation (PDE) modeling the temperature 𝑢(𝑥, 𝑡) is 

𝜕𝑢 
𝜕𝑥2 (𝑥, 𝑡). 𝜕𝑡 (𝑥, 𝑡) = 𝑘𝜕2𝑢 (35) 

Here, 𝑘 is called the thermal conductivity of the material. It is a physical constant with 
dimension length2/time. 
Equation 35 is called the one-dimensional heat equation because it describes heat conduction 
in one dimension. The heat equation is ubiquitous in science and engineering. It models heat 
flow in a metal rod, diffusion of a contaminant in water, diffusion of information through a 
system and much more. It is a special case of an (in general nonlinear) equation called the 
diffusion equation. 
A nice derivation of the heat equation from physical principles is given in section 8.5 of the 
text by Edwards and Penney. Of course, you can also find many derivations on the internet. 

25.3.1 Modeling a heated bar 

We illustrate the modeling problem by going through one specific example. This is fairly 
wordy, but at the end of the example we will give a succinct summary of the model. 
To be concrete, in this example, we’ll use length in centimeters, temperature in degrees 
Celsius and time in seconds. We’ll also let the thermal conductivity constant 𝑘 = 3 cm/sec2. 
Suppose we have a thin heated bar of length 𝐿 = 𝜋. We assume the top and bottom edges 
are insulated so that no heat passes through them. We also assume that the ends of the 
bars are in an ice bath maintained at 0∘. 

0◦

ice bath
0◦

ice bathheated bar

insulated side

insulated side

Over time, the temperature at various points along the bar will change. We let 𝑢(𝑥, 𝑡) be 
the temperature at the point 𝑥 on the bar at time 𝑡. 
Finally, we suppose that at time 𝑡 = 0 the temperature over the bar is given by 𝑢(𝑥, 0) = 
𝑥(𝜋 − 𝑥). 
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x

u(x, 0)

π

Initial temperature distribution (at 𝑡 = 0). 
The PDE modeling the temperature in a heated bar is given in Equation 35. With our 
value of 𝑘, this becomes 

𝜕𝑢 = 3𝜕2𝑢 for 0 ≤ 𝑥 ≤ 𝜋 and 𝑡 > 0.𝜕𝑡 𝜕𝑥2 

We want to finish the model for 𝑢(𝑥, 𝑡) by taking into account the ice baths and the initial 
temperature profile. 
Since the ends of the bar are in ice baths held at 0∘, we have the boundary conditions (BC) 

𝑢(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) = 0 for all 𝑡. 

The term boundary refers to the endpoints or bounds of the interval [0, 𝜋]. The boundary 
conditions (BC) give the values of 𝑢(𝑥, 𝑡) when 𝑥 equals one of the bounds, i.e., 𝑥 = 0 or
𝑥 = 𝜋. 
We are also given the temperature in the bar at time 0. This is called the initial condition 
(IC): 

𝑢(𝑥, 0) = 𝑥(𝜋 − 𝑥). 
We can summarize this as the heat equation with boundary and initial conditions: 

𝜕𝑢 = 3𝜕2𝑢 • HE: for 0 ≤ 𝑥 ≤ 𝜋, 𝑡 > 0.𝜕𝑡 𝜕𝑥2 

• BC: 𝑢(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) = 0 for 𝑡 ≥ 0 

• IC: 𝑢(𝑥, 0) = 𝑥(𝜋 − 𝑥) for 0 ≤ 𝑥 ≤ 𝜋. 

25.3.2 A notational interlude 

Using curvy d’s to write partial derivatives is cumbersome and time consuming. Often we 
will use another standard notation for partial derivatives: 

𝜕𝑢 𝜕2𝑢 𝜕𝑢 𝜕2𝑢 = 𝑢𝑡,𝜕𝑥 
= 𝑢𝑥, 𝜕𝑥2 = 𝑢𝑥𝑥 𝜕𝑡 𝜕𝑡2 = 𝑢𝑡𝑡. 

With this notation our model becomes 

• HE: 𝑢𝑡 = 3𝑢𝑥𝑥 for 0 ≤ 𝑥 ≤ 𝜋, 𝑡 > 0. 

• BC: 𝑢(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) = 0 for 𝑡 > 0. 

• IC: 𝑢(𝑥, 0) = 𝑥(𝜋 − 𝑥) for 0 ≤ 𝑥 ≤ 𝜋. 
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25.3.3 A strategy for solving the heat equation with boundary and initial con-
ditions 

To solve the system described above means finding a function 𝑢(𝑥, 𝑡) that satisfies all three 
of the criteria: HE, BC, IC. Our strategy will start by ignoring the initial condition. 

1. First, we’ll use the method of optimism to find simple (modal) solutions that satisfy 
both the partial differential equation (HE) and the boundary conditions (BC). 

2. The general solution satisfying the HE and the BC will be the superposition of all the 
modal solutions. 

3. Finally, the initial condition (IC) will let us determine the values of the coefficients in 
the general solution. 

This outline should look familiar: it’s exactly the same as the outline we used for solving 
linear homogeneous differential equations 𝑃 (𝐷)𝑥 = 0. The details of the computation will 
of course be different. 
Before going into these details we need to check linearity and homogeneity. 

25.3.4 The heat equation is linear and homogeneous 

In this part we will give a quick argument showing that the heat equation is linear and 
homogeneous. Here’s one way of explaining what we mean: 
First we rewrite the heat equation to bring out the homogeneity: 

𝑢𝑡 − 3𝑢𝑥𝑥 = 0. 

Now we define the heat operator 𝐻 by 𝐻𝑢 = 𝑢𝑡𝑡 − 3𝑢𝑥𝑥. Remember that the notation 𝐻𝑢 
should be read as ‘𝐻 applied to 𝑢’. With this notation the heat equation is simply 𝐻𝑢 = 0. 
As usual, once we realize the need, showing that the operator 𝐻 is linear is some simple 
algebra. That is, we must show that 

𝐻(𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝐻𝑢1 + 𝑐2𝐻𝑢2 

for any constants 𝑐1, 𝑐2. Since this is just the statement that taking partial derivatives is 
linear we leave it to you to verify. 
This is important. Linearity is important in 18.03. You should make extra certain that 
you understand what is being said in this section. If it’s not clear, make sure to keep asking 
questions until it is! 
Being linear and homogeneous, linear combinations of solutions to the heat equation are 
also solutions, i.e., if 𝐻𝑢1 = 0 and 𝐻𝑢2 = 0, then 𝐻(𝑐1𝑢1 + 𝑐2𝑢2) = 0. 

25.3.5 The boundary conditions are linear and homogeneous 

By linear and homogeneous boundary conditions, we mean that if two functions 𝑢1(𝑥, 𝑡) 
and 𝑢2(𝑥, 𝑡) satisfy the boundary conditions then so does any linear combination of 𝑢1 and 
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𝑢2. This should be clear for the boundary conditions from our example: 𝑢(0, 𝑡) = 0 and
𝑢(𝜋, 𝑡) = 0. 
This is important redux. Linearity is important in 18.03. You should make extra certain 
that you understand what is being said in this section. If it’s not clear make sure to keep 
asking questions until it is! 
Note. If the boundary conditions were not 0, then they would be linear but not homoge-
neous. You should be able to formulate the superposition principle that they satisfy in this 
case. 

25.4 Solving the head equation with boundary and initial conditions 

We are almost ready to learn the Fourier separation of variables method. Now might be a 
good time to review the strategy described in the Section 25.3.3. 

25.4.1 Preliminary notions 

Once we get going, we will need the following notions. 
Notion 1. The ordinary differential equation 𝑋″(𝑥) + 𝜆𝑋(𝑥) = 0 has 3 cases: 
Case (i) If 𝜆 > 0, the solution is 𝑋(𝑥) = 𝑎 cos(

√
𝜆 𝑥) + 𝑏 sin(

√
𝜆 𝑥) 

Case (ii) If 𝜆 = 0, the solution is 𝑋(𝑥) = 𝑎 + 𝑏𝑥 

Case (iii) If 𝜆 < 0, the solution is 𝑋(𝑥) = 𝑎𝑒
√

−𝜆 𝑥 + 𝑏𝑒−
√

−𝜆 𝑥 

Notion 2. If 𝑥 and 𝑡 are independent variables and 𝑓(𝑥) and 𝑔(𝑡) are functions with
𝑓(𝑥) = 𝑔(𝑡) for all 𝑥 and 𝑡, then both 𝑓(𝑥) and 𝑔(𝑡) are constant functions equal to the 
same constant. 
To wrap your mind around what is being said, you should focus on the fact that 𝑥 and 𝑡 are 
independent. This means that we can fix 𝑥 = 2 and let 𝑡 vary. So, under the assumption 
that 𝑓(𝑥) = 𝑔(𝑡) for all 𝑥 and 𝑡, we have 

𝑓(2) = 𝑔(𝑡) for all 𝑡. 
Since 𝑓(2) is a constant, this means that 𝑔(𝑡) is a constant function. The argument that
𝑓(𝑥) is a constant function is identical. Clearly, they both equal the same constant. 

Notion 3. The function 𝑢(𝑥, 𝑡) ≡ 0 satisfies both HE and BC. We call this the trivial 
solution. While it is a fine upstanding solution, it won’t be much help in our search for 
modal solutions that can be used in linear combinations. 

25.4.2 Fourier’s method of separation of variables 

We now return to our example: Our first version of the solution will be rather long-winded 
because we will need to explain each step in the method. Later, we will be able to give 
more streamlined solutions. 
Example 25.1. Solve the following partial differential equation (PDE) with boundary and 
initial conditions (BC & IC). That is, find a function 𝑢(𝑥, 𝑡) that satisfies the following. 



25 PDES; SEPARATION OF VARIABLES 222 

• HE: 𝑢𝑡 = 3𝑢𝑥𝑥, where 0 ≤ 𝑥 ≤ 𝜋 and 𝑡 > 0 

• BC: 𝑢(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) = 0, where 𝑡 > 0 

• IC: 𝑢(𝑥, 0) = 𝑥(𝜋 − 𝑥), where 0 ≤ 𝑥 ≤ 𝜋. 

Solution: Step 1 Separated solutions. Our first trick is to use the method of optimism 
to look for a solution of the form 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 

This is called a separated solution because it is a function of 𝑥 times a function of 𝑡. There 
is no reason to expect that all solutions are separated, but that doesn’t mean we won’t find 
some useful solutions this way. 
Having guessed a trial solution, we substitute it into the partial differential equation HE. 
This gives: 

𝑋(𝑥)𝑇 ′(𝑡) = 3𝑋″(𝑥)𝑇 (𝑡). 
Now we separate the equation so the 𝑥’s are on one side and the 𝑡’s are on the other 

𝑇 ′(𝑡) 𝑋″(𝑥)
3𝑇 (𝑡) 

= 𝑋(𝑥) 
. 

Note, the convention is to keep the coefficient 3 with the 𝑇 . Please do this, it will make 
your life easier. Now, preliminary Notion 2, comes into play: the left side is a function of 𝑡 
and the right side is a function of 𝑥, so both must be constant functions equal to the same 
constant! 
We can call this constant anything we want. Because we know it will help with the algebra 
that is coming, we call it −𝜆. This too is just a convention, but you should do it so 𝜆 will 
mean the same thing for everyone in ES.1803. We have 

𝑋″(𝑥) 𝑇 ′(𝑡)= −𝜆;𝑋(𝑥) 3𝑇 (𝑡) 
= −𝜆. 

A tiny bit of algebra gives the two ordinary differential equations 

𝑋″(𝑥) + 𝜆𝑋(𝑥) = 0; 𝑇 ′(𝑡) + 3𝜆𝑇 (𝑡) = 0. 

Now we appeal to our preliminary Notion 1 to look at the 3 cases for 𝜆. In all three cases
𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑒−3𝜆𝑡. 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. 
Case (iii) 𝜆 < 0: 𝑋(𝑥) = 𝑎𝑒

√
−𝜆𝑥 + 𝑏𝑒−

√
−𝜆𝑥, 𝑇 (𝑡) = 𝑐𝑒−3𝜆𝑡. 

Case (iii) is ugly. Notice that −𝜆 is positive so the square roots are real numbers and so 
these are actually real-valued solutions. Fortunately, we will soon see that we can ignore 
it since it only gives the trivial solution satisfying the partial differential equation HE and 
the boundary conditions BC. 
The method of optimism was wildly successful. We have lots of solutions to HE. We can 
get a separated solution to HE by picking any value of 𝜆 and then any values for 𝑎, 𝑏, 𝑐. 
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Step 2 Boundary conditions (BC). The model also has boundary conditions. So we 
need to see which of the separated solutions to the partial differential equation HE also 
satisfy the boundary conditions BC. Such solutions are called modal solutions. 
For a separated solution 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡), the boundary conditions are 

𝑢(0, 𝑡) = 𝑋(0)𝑇 (𝑡) = 0 and 𝑢(𝜋, 𝑡) = 𝑋(𝜋)𝑇 (𝑡) = 0. 

Being extra careful: this means that either 𝑋(0) = 𝑋(𝜋) = 0 or 𝑇 (𝑡) = 0. The case
𝑇 (𝑡) = 0 gives the trivial solution 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) = 0. Since it is trivial, we ignore this 
case. So (nontrivial) separated solutions satisfying both HE and BC must have 

𝑋(0) = 0 and 𝑋(𝜋) = 0. (36) 

Now we’ll look at each case in turn. 
Case (i). 𝜆 > 0: 𝑋(𝑥) = (𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥)). The boundary conditions give 

𝑋(0) = 𝑎 = 0 and 𝑋(𝜋) = 𝑎 cos(
√

𝜆𝜋) + 𝑏 sin(
√

𝜆𝜋) = 0. 

Solving, we see that 𝑎 = 0 and either 𝑏 = 0 or sin(
√

𝜆𝜋) = 0. The choice 𝑏 = 0 gives us the 
trivial solution, so we ignore it. The other choice, sin(

√
𝜆𝜋) = 0 gives 

√
𝜆𝜋 = 𝑛𝜋 for some 

integer 𝑛. So, for each 
√

𝜆 = 𝑛 (𝜆 = 𝑛2), we have the following separated solutions that 
satisfy both HE and BC: 

𝑢𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡), where 𝑋𝑛(𝑥) = 𝑏𝑛 sin(𝑛𝑥), and 𝑇𝑛(𝑡) = 𝑐𝑛𝑒−3𝑛2𝑡. 

Note, we name the solutions and coefficients with the subscript 𝑛 so we can tell them apart. 
A simplification: in the product we can combine 𝑏𝑛 into 𝑐𝑛 one constant so, 

𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛 sin(𝑛𝑥) 𝑒−3𝑛2𝑡 for 𝑛 = 1, 2, 3, … 

are the separated solutions for case (i) which satisfy both HE and BC. 
In this case, the boundary condition weeded out most values of 𝜆 > 0. 
Case (ii). 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥. The boundary conditions are 

𝑋(0) = 𝑎 = 0 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 0. 

It is easy to see that the only solutions to these equations are 𝑎 = 0, 𝑏 = 0. That is, this 
case only produces trivial solutions and we can ignore it. 
Note well: With other boundary conditions this case may produce nontrivial solutions. 
So we always have to check. 
Case (iii). 𝜆 < 0: 𝑋(𝑥) = 𝑎𝑒

√
−𝜆 𝑥 + 𝑏𝑒−

√
−𝜆 𝑥. The boundary conditions are 

𝑋(0) = 𝑎 + 𝑏 = 0 𝑋(𝜋) = 𝑎𝑒
√

−𝜆 𝜋 + 𝑏𝑒−
√

−𝜆 𝜋 = 0. 

In matrix form the equation is 

1 1[𝑒
√

−𝜆 𝜋 𝑒−
√

−𝜆 𝜋] [𝑎
𝑏] = [0

0] 
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The determinant of the coefficient matrix is 𝑒−
√

−𝜆 𝜋 − 𝑒
√

−𝜆 𝜋. Since 𝜆 ≠ 0 the determinant 
is not 0. Therefore, we only have the trivial solution 𝑎 = 0, 𝑏 = 0. That is, this case only 
yields the trivial solution to HE and BC. So we ignore it! 
It turns out, this case will never give nontrivial solutions. So this is the first and last time 
we will do the algebra for this case. In the future we will just say that Case (iii) 
only has the trivial solution and ignore it. 
Note. All the separated solutions satisfying both HE and BC are called normal modes or 
modal solutions for this system. 
We have now found all the modal solutions. 

Step 3 Superposition. Because both the PDE (HE) and the boundary conditions (BC) 
are linear and homogeneous, the general solution satisfying them both is given by superpo-
sition of all the modal solutions: 

∞ ∞
𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑥) 𝑒−3𝑛2𝑡 . 

𝑛=1 𝑛=1 

Step 4 Use the IC to find the coefficients. We are now ready to use the initial 
conditions (IC) to determine the values of the coefficients 𝑏𝑛 in our general solution. 
IC: 𝑢(𝑥, 0) = ∑ 𝑏𝑛 sin(𝑛𝑥) = 𝑥(𝜋 − 𝑥). Therefore, 𝑏𝑛 are the Fourier sine coefficients of
𝑥(𝜋 − 𝑥). 

𝜋 2 for 𝑛 odd 𝑏𝑛 = 𝑥(𝜋 − 𝑥) sin(𝑛𝑥) 𝑑𝑥 = {8/(𝜋𝑛)3 

𝜋 ∫ 0 for 𝑛 even. 0 

(The full computation of this integral is shown in the section at the end of these notes.) 
Thus, our solution is 

8𝑢(𝑥, 𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑥) 𝑒−3𝑛2𝑡 = ∑ (𝑛𝜋)3 sin(𝑛𝑥) 𝑒−3𝑛2𝑡. 
𝑛 odd 

25.5 Summary of Fourier’s method 

Once again we summarize Fourier’s method for homogeneous PDEs with homogeneous 
boundary conditions. 
1. Find separated solutions to the PDE: one parametrized family for each 𝜆. 
2. The boundary conditions (BC) restrict the 𝜆 to an indexed set of values. They also 
restrict the possible values of the parameters in each family. 
3. Superposition gives the general solution satisfying both the PDE and BC. 
4. Use the initial conditions to determine the values of the coefficients in the general 
solution.. 
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25.6 Model solution 

Because the first time through took several pages, we redo the solution to the previous 
example in model form. But this comes with a WARNING: do not just memorize this 
routine. You should remember the reasons for each of the steps. Different problems will 
use variations on these themes and you have to be prepared to use the reasoning, but not 
the exact details, from this example. 
Example 25.2. (Model solution.) Solve for 𝑢(𝑥, 𝑡) on 0 ≤ 𝑥 ≤ 𝜋 and 𝑡 > 0 satisfying 

• HE: 𝑢𝑡 = 3𝑢𝑥𝑥. 

• BC: 𝑢(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) = 0. 
• IC: 𝑢(𝑥, 0) = 𝑥(𝜋 − 𝑥). 

Solution: Step 1. Look for separated solutions: 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) to the PDE. 
Substitution into HE: 𝑋𝑇 ′ = 3𝑋″𝑇 . 
Algebra: 𝑋″(𝑥)/𝑋(𝑥) = 𝑇 ′(𝑡)/(3𝑇 (𝑡)) = constant = −𝜆. 
More algebra: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ′ + 3𝜆𝑇 = 0. There are three cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐𝑒−3𝜆𝑡. 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. 
Case (iii) 𝜆 < 0. Always ignore, since this case only gives the trivial solution satisfying 
the PDE and boundary conditions. 
Step 2. Modal solutions. Find the separated solutions which also satisfy the BC. 
For separated solutions, the BC are 𝑋(0) = 0, 𝑋(𝜋) = 0. 
Case (i) The BC are 

𝑋(0) = 𝑎 = 0 and 𝑋(𝜋) = 𝑎 cos(
√

𝜆𝜋) + 𝑏 sin(
√

𝜆𝜋) = 0. 

Since 𝑎 = 0, the second condition is 𝑏 sin(
√

𝜆𝜋) = 0. For nontrivial solutions, we need
√(

√
𝜆𝜋) = 0, i.e., 

√
𝜆𝜋 = 𝑛𝜋 for 𝑛 an integer. 

We have found modal solutions 

𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛 sin(𝑛𝑥) 𝑒−3𝑛2𝑡 for 𝑛 = 1, 2, 3, … 

Case (ii) The BC are 𝑋(0) = 𝑎 = 0, 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 0. 
This has only the trivial solution 𝑎 = 0, 𝑏 = 0. 
Case (iii) Ignored – only has the trivial solution. 

Step 3. Both HE and BC are homogeneous, so, by superposition, the general solution 
satisfying both is 

∞ ∞
𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑥) 𝑒−3𝑛2𝑡 . 

𝑛=1 𝑛=1 

Step 4. Use the initial conditions to find the values of the coefficients. 
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IC: 𝑢(𝑥, 0) = ∑ 𝑏𝑛 sin(𝑛𝑥) = 𝑥(𝜋 − 𝑥). This is the Fourier sine series for 𝑥(𝜋 − 𝑥). Now 
𝑛=1 

(see the computation section below) the coefficients are 

So, 

= {8/(𝜋𝑛)3 for 𝑛 odd 𝑏𝑛 0 for 𝑛 even. 

𝑢(𝑥, 𝑡) = ∑ 𝜋𝑛 
8 

3 sin(𝑛𝑥) 𝑒−3𝑛2𝑡 . 
𝑛 odd 

25.7 Another example with different boundary conditions 

Here’s an example with different boundary conditions. In this example, we will see that the 
case 𝜆 = 0 has nontrivial solutions. 
Example 25.3. Suppose we have a heated rod of length 𝐿 as described above. Assume 
that the ends of the bar are also insulated, so that no heat leaves the bar. Also assume that 
the initial temperature of the bar is given by 𝑢(𝑥, 0) = 𝑥(𝐿 − 𝑥) ∘𝐶. 
Write down a PDE with boundary and initial conditions that models the temperature in 
the bar. Then use Fourier’s separation of variables method to solve the system. 
Solution: The physical setup is illustrated in the figure below. 

heated bar

insulated side

insulated side

insulated end insulated end

Heated rod insulated on all sides 
First we set up the model: The PDE is just the heat equation given in (35): 

𝜕𝑢 = 𝑘𝜕2𝑢 (HE) for 𝑡 > 0 and 0 ≤ 𝑥 ≤ 𝐿.𝜕𝑡 𝜕𝑥2 

We are not given enough information to determine 𝑘, so we leave it as an unspecified 
parameter. 
Because the ends of the rod are insulated, the temperature gradient at the ends is 0. This 
translates to the boundary conditions:

𝜕𝑢 𝜕𝑢 (BC) 𝜕𝑥(0, 𝑡) = 0 and 𝜕𝑥(𝐿, 𝑡) = 0 for 𝑡 > 0. 
Note that these are homogeneous boundary conditions. 
We are given the initial condition (i.e., the temperature at time 0) directly: 
(IC) 𝑢(𝑥, 0) = 𝑥(𝐿 − 𝑥) for 0 ≤ 𝑥 ≤ 𝐿. 
Next we solve using the method of separation of variables. 
Step 1. Look for separated solution: 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) to the PDE. 
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Substitution into HE: 𝑋𝑇 ′ = 𝑘𝑋″𝑇 . 
Algebra: 𝑋″(𝑥)/𝑋(𝑥) = 𝑇 ′(𝑡)/(𝑘𝑇 (𝑡)) = constant = −𝜆. 
More algebra: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ′ + 𝑘𝜆𝑇 = 0. There are three cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐𝑒−𝑘𝜆𝑡. 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. 
Case (iii) 𝜆 < 0. Always ignore, since this case only gives the trivial solution satisfying 
the PDE and boundary conditions. 

Step 2. (Modal solutions) Find the separated solutions in Step 1 which also satisfy the 
boundary conditions. 
For separated solutions, the BC are 𝑋′(0) = 0, 𝑋′(𝐿) = 0. 
Case (i) 𝑋′(0) = 

√
𝜆𝑏 = 0 and 𝑋′(𝐿) = −

√
𝜆𝑎 sin(

√
𝜆𝐿) + 

√
𝜆𝑏 cos(

√
𝜆𝐿). 

This has nontrivial solutions when 𝑏 = 0 and 
√

𝜆𝐿 = 𝑛𝜋 for 𝑛 an integer. That is, when √
𝜆 = 𝑛𝜋/𝐿. For this case, the modal solutions are 

𝐿 
𝑥) 𝑒−𝑘(𝑛𝜋/𝐿)2𝑡 𝑢𝑛(𝑥, 𝑡) = 𝑎𝑛 cos (

𝑛𝜋 for 𝑛 = 1, 2, 3, … 

Case (ii) 𝑋′(0) = 𝑏 = 0, 𝑋′(𝐿) = 𝑏 = 0. This has nontrivial solutions 𝑋(𝑥) = 𝑎. So, for 
this case, the modal solutions are 𝑋(𝑥)𝑇 (𝑡) = 𝑎𝑐. We write this as 

𝑎0𝑢0(𝑥, 𝑡) = 2 . 

Step 3. Both HE and BC are homogeneous, so by superposition the general solution 
satisfying both is 

∞ ∞𝑎0 𝑏𝑛 cos (
𝑛𝜋 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 2 

+ ∑ 𝐿 𝑥) 𝑒−𝑘(𝑛𝜋/𝐿)2𝑡. 
𝑛=0 𝑛=1 

(We gave the DC term as 𝑎0/2 so we don’t forget the factor of 1/2 when we do the compu-
tation below.) 
Step 4. Use the initial conditions to find the coefficients. 

𝑏0 𝑏𝑛 cos (
𝑛𝜋 𝑢(𝑥, 0) = 2 

+ ∑ 𝐿 𝑥) = 𝑥(𝐿 − 𝑥). This is the Fourier cosine series for 𝑥(𝐿 − 𝑥). 
𝑛=1 

Now (see the computation section below) the coefficients are 

= {−4𝐿2/(𝑛𝜋)2) for 𝑛 even 𝑏0 = 𝐿2/3, 𝑏𝑛 0 for 𝑛 odd. 

We can leave our answer as a set of boxes or put them together in one box. 

𝐿2 4𝐿2 

𝐿 
𝑥) 𝑒−𝑘(𝑛𝜋/𝐿)2𝑡.𝑢(𝑥, 𝑡) = 6 

− ∑ (37)(𝑛𝜋)2 cos (
𝑛𝜋 

𝑛 even 
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25.7.1 Interpreting the solution 

Writing out the terms in the solution Equation 37 above we have 

𝑢(𝑥, 𝑡) = 
𝐿
6
2 

− 
4𝐿2 

𝐿 
𝑥) 𝑒−𝑘(2𝜋/𝐿)2𝑡 − 

4𝐿2 

𝐿 
𝑥) 𝑒−𝑘(4𝜋/𝐿)2𝑡 

(2𝜋)2 cos (
2𝜋 

(4𝜋)2 cos (
4𝜋 

− 
4𝐿2 

𝐿 
𝑥) 𝑒−𝑘(6𝜋/𝐿)2𝑡 …(6𝜋)2 cos (

6𝜋 

The first thing to note is that all the terms after the constant have decaying exponentials 
in time. This means that, in the long run, the bar will come to an equilibrium temperature 
of 𝐿2/6. It makes intuitive sense that the temperature in the bar will even out over time. 
Looking at the expression for the constant (DC) term 

𝑐0 1 𝐿 

= 𝑥(𝐿 − 𝑥) 𝑑𝑥 2 𝐿 ∫ 
0 

we see that it is the average value of the initial temperature distribution. This too makes 
intuitive sense. 
The second thing we want to note is that, after a very short time, the solution is well 
approximated by the DC term and the first non-zero harmonic 

6 
− 

4𝐿2 

𝐿 
𝑥) 𝑒−𝑘(2𝜋/𝐿)2𝑡 𝑢(𝑥, 𝑡) ≈ 

𝐿2 

(2𝜋)2 cos (
2𝜋 

To see this look at the exponents in the time exponentials: 

𝑒− 𝑘4𝜋2 𝑡 𝑒− 𝑘16𝜋2 𝑡 𝑒− 𝑘36𝜋2 𝑡 𝐿2 , 𝐿2 , 𝐿2 , … 

The later exponents are so much more negative than the first one that the later exponentials 
rapidly become negligible compared to the first. 
Here are a sequence of plots showing the exact solution, the long term equilibrium and the 
approximation by the DC term plus the first non-zero harmonic. (They were made with 
𝐿 = 𝜋 and 𝑘 = 0.4.) Notice how well the approximation matches the exact solution after a 
short time. Also notice how the solution goes to the equilibrium over time. 
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u(x,t) at t = 0.2
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x

u

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

u(x,t) at t = 0.5
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u

0.0 1.0 2.0 3.0
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0
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0

2.
0

u(x,t) at t = 1

x

u

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

u(x,t) at t = 2

Blue = exact sol., cyan = equilibrium, orange = 𝐿2 

6 − 4𝐿2 

(2𝜋)2 cos (2𝜋
𝐿 𝑥) 𝑒−𝑘(2𝜋/𝐿)2 𝑡 

As usual, there is an applet giving a dynamic illustration of the heat equation: 
https://mathlets.org/mathlets/heat-equation/. 

25.7.2 A mathematical explanation of the heat equation 

Suppose the temperature along the bar is given by 𝑢(𝑥, 𝑡). That is, this is the temperature 
at point 𝑥 at time 𝑡. 
Let’s fix a time 𝑡0 and a position 𝑥0. It’s reasonable to assume that if the average tempera-
ture of nearby points is lower than that at 𝑥0, then the point at 𝑥0 will be losing heat, i.e., 
the rate the temperature changes will be negative. Likewise, if the average temperature 
of nearby points is greater than that at 𝑥0 then the rate the temperature changes will be 
positive. 
The graph below shows the temperature distribution 𝑢(𝑥, 𝑡0) at a single time 𝑡0. The 
temperature at 𝑥0 is marked by the point 𝐴 on the curve. The average temperature of the 
two points (equally spaced around 𝑥0) is shown as the point 𝐵 on the secant line between 
the two points. Since the curve is concave down, this average 𝐵 is below 𝐴, i.e., the average 

𝜕𝑢 temperature is lower than the temperature at 𝑥0. So the rate, 𝜕𝑡 (𝑥0, 𝑡0), the temperature 
is changing is negative. 

x

u(x, t0)

A

B

x0

𝜕2𝑢 The concavity of the curve at 𝑥0 is measured by 𝜕𝑥2 (𝑥0, 𝑡0). Since the curve is concave 
down, this is negative, i.e., the same sign as the rate the temperature is changing. Thus, 
at least to a first approximation, the rate the temperature is changing is given by the heat 
equation 

𝜕𝑢 
𝜕𝑥2 (𝑥0, 𝑡0).𝜕𝑡 (𝑥0, 𝑡0) = 𝑘𝜕2𝑢 

https://mathlets.org/mathlets/heat-equation/
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25.8 Physics of a vibrating string: the wave equation 

Suppose we have a string or wire of length 𝐿 tied tightly between two posts, If we start it 
vibrating it will give off a sound. That is, it will create a pressure wave that will strike our 
ears and we will hear a sound. 
If we are careful, we can make the starting shape a perfect sine curve and then, when we 
let the string go, it will vibrate while always maintaining its sine curve shape with only the 
amplitude changing in time. (This is not at all obvious, at least to me, but it will come out 
in our analysis of the wave equation.) This perfect sine curve shaped vibration is called a 
normal or pure mode. In this mode the string will emit a pure tone. The twanginess of 
most vibrating strings tells you that they do not spontaneously vibrate in a normal mode. 
For 𝐿 = 𝜋 the first 3 normal modes have starting shape 𝑦 = 𝑏1 sin(𝑥), 𝑦 = 𝑏2 sin(2𝑥) and
𝑦 = 𝑏3 sin(3𝑥). These are called the first or fundamental harmonic, second harmonic and 
third harmonic respectively. We illustrate this in the pictures below. 

x

y

π

Fundamental: n = 1

x

y

π

Second harmonic: n = 2

x

y

π

Third harmonic: n = 3

An even better way to visualize normal modes is to go to the applet https://mathlets. 
org/mathlets/wave-equation/. Refresh the page so the initial condition is set to its 
default. Set 𝑛 = 3, and leave only the harmonics checkbox checked. Then start the 
animation by clicking the >> button. You will see each of the modes vibrating. Then 
check the Fourier sum checkbox and you will see the superposition of the 3 harmonics. 
The twanginess of a vibrating string comes because the vibration is really a superposition 
or mixture of the many normal modes. The figure shows the starting position for a mixture 
of the first 3 modes (fundamental, first and second harmonics) with amplitudes 1, 0.5 and 
0.3 respectively. That is 

𝑦 = sin(𝑥) + 0.5 sin(2𝑥) + 0.3 sin(3𝑥) 

x

y

π

Mixture: y = sin(x) + 0.5 sin(2x) + 0.3 sin(3x)

25.8.1 Physical model of a vibrating string 

This is well explained in just 2 paragraphs in §8.6 of the textbook by Edwards and Penney. 
They then derive the partial differential equation modeling the vibrating string. We give 

https://mathlets.org/mathlets/wave-equation/
https://mathlets.org/mathlets/wave-equation/
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a quick summary of the terminology and model here. You should read the text or look on 
the internet to see the derivation. 
The physical assumption is that each point on the string only moves up and down in the 
𝑦-direction, i.e., there is no side-to-side movement. This and their other assumptions are 
reasonable for strings that are much longer than the amplitude of their vibration. 
For a point 𝑥 on the string we let 

𝑦(𝑥, 𝑡) = displacement of the point 𝑥 at time 𝑡. 

Assuming small displacements, this is well modeled by the following partial differential 
equation, called the wave equation 

𝜕2𝑦 = 𝑎2 𝜕2𝑦 (38)𝜕𝑡2 𝜕𝑥2 

Here 𝑎 is a constant which depends on the physical characteristics of the string as well as 
its tension and length, it is the called the speed of the wave. You should check that it does 
indeed have units of speed. 

25.9 The wave equation with boundary and initial conditions. 

25.9.1 Modeling a vibrating string 

We illustrate the modeling problem by going through one specific example. Suppose we 
have a string of length 𝐿 = 𝜋 meters which is clamped at both ends. As the string vibrates, 
let 𝑦(𝑥, 𝑡) be the displacement in meters of the point 𝑥 on the string at time 𝑡 in seconds. 
Suppose at time 𝑡 = 0 the string is stationary and has shape 𝑦(𝑥, 0) = 𝑥(𝜋 − 𝑥). 

x

y

π

t = 0

Initial shape of the string (at 𝑡 = 0). 
We want to find a model for 𝑦(𝑥, 𝑡). The model will consist of a partial differential equation 
(PDE) and some extra conditions. For this example, assume the wave speed is 3 m/sec. 
Above we asserted that the PDE modeling a vibrating string is given in Equation 38. With 
our units this becomes 

𝜕2𝑦 = 9𝜕2𝑦 for 0 ≤ 𝑥 ≤ 𝜋 and 𝑡 > 0.𝜕𝑡2 𝜕𝑥2 

Since the ends are clamped they cannot move. That is, the points on the string at 𝑥 = 0 
and 𝑥 = 𝜋 are fixed, i.e., we have the boundary conditions (BC) 

𝑦(0, 𝑡) = 0 and 𝑦(𝜋, 𝑡) = 0 for all 𝑡. 



25 PDES; SEPARATION OF VARIABLES 232 

We are also given the shape (displacement) and velocity of the string at time 0. These are 
the initial conditions (IC). The initial shape was given as 𝑥(𝜋 − 𝑥). The initial velocity is 
0, because the string is momentarily stationary at 𝑡 = 0. Since shape at time 0 is 𝑦(𝑥, 0) 

𝜕𝑦 and the velocity is 𝜕𝑡 (𝑥, 0) we have the initial conditions 

𝜕𝑦 𝑦(𝑥, 0) = 𝑥(𝜋 − 𝑥) and 𝜕𝑡 (𝑥, 0) = 0. 

We can summarize this as the wave equation with boundary and initial conditions: 

𝜕2𝑦 = 9𝜕2𝑦 • WE: for 0 ≤ 𝑥 ≤ 𝜋, 𝑡 > 0.𝜕𝑡2 𝜕𝑥2 

• BC: 𝑦(0, 𝑡) = 0 and 𝑦(𝜋, 𝑡) = 0 for 𝑡 ≥ 0 
𝜕𝑦 • IC: 𝑦(𝑥, 0) = 𝑥(𝜋 − 𝑥) and 𝜕𝑡 (𝑥, 0) = 0 for 0 ≤ 𝑥 ≤ 𝜋. 

The figure below shows that shape of the string at various points in time. Note that the 
boundary points don’t move because of the clamped end boundary conditions. 
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t = 0

t = π/3

t = π/12

t = π/4

t = π/8

t = 5π/24

t = π/6

25.9.2 Solving the wave equation with boundary and initial conditions 

As with our heat equation examples, we will use Fourier’s method of separation of variables 
to solve the wave equation with the given BC and IC. 
Example 25.4. Solve the following partial differential equation (PDE) with boundary and 
initial conditions (BC & IC). That is, find a function 𝑦(𝑥, 𝑡) that satisfies the following. 

• WE: 𝑦𝑡𝑡 = 9𝑦𝑥𝑥, for 0 ≤ 𝑥 ≤ 𝜋 and 𝑡 > 0 

• BC: 𝑦(0, 𝑡) = 0 and 𝑦(𝜋, 𝑡) = 0, for 𝑡 > 0 

• IC: 𝑦(𝑥, 0) = 𝑥(𝜋 − 𝑥) and 𝑦𝑡(𝑥, 0) = 0, for 0 ≤ 𝑥 ≤ 𝜋. 

Solution: Step 1. Look for separated solution: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) to the PDE. 
Substitution into WE: 𝑋𝑇 ″ = 9𝑋″𝑇 . 
Algebra: 𝑋″(𝑥)/𝑋(𝑥) = 𝑇 ″(𝑡)/(9𝑇 (𝑡)) = constant = −𝜆. 
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More algebra: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 9𝜆𝑇 = 0. There are three cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐 cos(3

√
𝜆𝑡) + 𝑑 sin(3

√
𝜆𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. 
Case (iii) 𝜆 < 0. Always ignore, since this case only gives the trivial solution satisfying 
the PDE and boundary conditions. 
Step 2. Find which of the solutions in Step 1 also satisfy the boundary conditions 𝑋(0) = 0,
𝑋(𝜋) = 0. 
Case (i) 𝑋(0) = 𝑎 = 0 and 𝑋(𝜋) = 𝑎 cos(

√
𝜆𝜋) + 𝑏 sin(

√
𝜆𝜋) = 0. This has nontrivial 

solutions when 𝑎 = 0 and 
√

𝜆𝜋 = 𝑛𝜋 for 𝑛 an integer. So, in this case, the nontrivial 
solutions to the PDE satisfying the BC are 

𝑦𝑛(𝑥, 𝑡) = sin(𝑛𝑥)(𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)) for 𝑛 = 1, 2, 3, … 

Case (ii) 𝑋(0) = 𝑎 = 0, 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 0 has only the trivial solution. 
Case (iii) Ignored –only has the trivial solution. 
Step 3. Both WE and BC are homogeneous, so by superposition the general solution 
satisfying both is 

∞ ∞
𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝑥)(𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)).

𝑛=1 𝑛=1 

Step 4. Use the initial conditions to find the coefficients. 
First IC: 𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝑥) = 𝑥(𝜋 − 𝑥). This is the Fourier sine series for 𝑥(𝜋 − 𝑥). 

𝑛=1 
Now (see the computation section below) the coefficients are 

= {8/(𝜋𝑛)3 for 𝑛 odd 𝑐𝑛 0 for 𝑛 even. 

Second IC: 𝑦𝑡(𝑥, 0) = ∑ sin(𝑛𝑥)3𝑛𝑑𝑛 = 0. This means that 3𝑛𝑑𝑛 are the Fourier sine 
𝑛=1 

coefficients for 𝑔(𝑥) = 0. That is, 𝑑𝑛 = 0 for all 𝑛. 
We can leave our answer as a set of boxes or put them together in one box. 

𝑦(𝑥, 𝑡) = ∑ 𝜋𝑛 
8 

3 sin(𝑛𝑥) cos(3𝑛𝑡).
𝑛 odd 

25.10 General initial conditions 

Example 25.5. Suppose we have the same PDE and BC as in the above example, but 
the IC are 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 𝑔(𝑥). Solve for 𝑦(𝑥, 𝑡) in terms of the Fourier sine and 
cosine series 𝑓 and 𝑔. 
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Solution: Note: since 𝑓(𝑥) and 𝑔(𝑥) are not specified, the best we can hope to do is give 
the solution in terms of them. 
Since the partial differential equation and boundary conditions are the same, we get the 
same general solution 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝑥) ⋅ (𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)).
𝑛=1 𝑛=1 

First IC: 𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝑥) = 𝑓(𝑥). Therefore, 𝑐𝑛 are the Fourier sine coefficients of 
𝑛=1 

𝑓(𝑥) on [0, 𝜋]. That is, 𝑐𝑛 = 
𝜋 

𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥 .𝜋
2 ∫ 

0 

Second IC: 𝑦𝑡(𝑥, 0) = ∑ 3𝑛 𝑑𝑛 sin(𝑛𝑥) = 𝑔(𝑥). Therefore, 3𝑛 𝑑𝑛 are the Fourier sine coeffi-
cients of 𝑔(𝑥) on [0, 𝜋]. That is, 

23𝑛𝑑𝑛 = 
𝜋 

𝑔(𝑥) sin(𝑛𝑥) 𝑑𝑥 or 𝑑𝑛 = 
𝜋 

𝑔(𝑥) sin(𝑛𝑥) 𝑑𝑥. 𝜋
2 ∫ 3𝑛𝜋 

∫ 
0 0 

25.11 Appendix: Fourier sine and cosine coefficients of 𝑥(𝐿 − 𝑥) 

We sketch the computation for the Fourier sine and cosine coefficients of 𝑥(𝐿 − 𝑥). The 
actual integrals can be done by parts or by inspection. 
Sine coefficients. 

𝐿 𝐿 2 2 𝑥𝐿 sin (𝑛𝜋 𝑐𝑛 = 𝑥(𝐿 − 𝑥) sin (𝑛𝜋
𝐿 

𝑥) 𝑑𝑥 = 𝐿 
𝑥) − 𝑥2 sin (𝑛𝜋

𝐿 
𝑥) 𝑑𝑥 𝐿 ∫ 𝐿 ∫ 

0 0
2 𝐿 𝐿 = 𝐿 

[−𝑥𝑛𝜋/𝐿 
cos (𝑛𝜋

𝐿 
𝑥) + (𝑛𝜋/𝐿)2 sin (𝑛𝜋

𝐿 
𝑥) + 

𝐿 1 1 2𝑥2 
𝑛𝜋/𝐿 

cos (𝑛𝜋
𝐿 

𝑥) − 2𝑥(𝑛𝜋/𝐿)2 sin (𝑛𝜋
𝐿 

𝑥) − (𝑛𝜋/𝐿)3 cos (
𝑛𝜋
𝐿 

𝑥)]
0

2 𝐿2 2= 𝐿 
[− 

𝐿2 

𝑛𝜋/𝐿 
cos(𝑛𝜋) − 𝑛𝜋/𝐿 

cos(𝑛𝜋) + (𝑛𝜋/𝐿)3 (cos(𝑛𝜋) − 1)] 

= {8𝐿2/(𝑛𝜋)3 if 𝑛 is odd 
0 if 𝑛 is even. 
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Cosine coefficients. 
𝐿 𝐿 2 

𝐿
2 [𝐿𝑥2 

− 
𝑥3 𝐿2

𝑐0 = 𝑥(𝐿 − 𝑥) 𝑑𝑥 = = 𝐿 ∫ 2 3 ] 3 . 
0 0

𝐿 𝐿 2 2 𝑥𝐿 cos (𝑛𝜋 𝑐𝑛 = 𝑥(𝐿 − 𝑥) cos (𝑛𝜋
𝐿 

𝑥) 𝑑𝑥 = 𝐿 
𝑥) − 𝑥2 cos (𝑛𝜋

𝐿 
𝑥) 𝑑𝑥 𝐿 ∫ 𝐿 ∫ 

0 0
2 𝐿 𝐿 = 𝐿 

[𝑥𝑛𝜋/𝐿 
sin (𝑛𝜋

𝐿 
𝑥) + (𝑛𝜋/𝐿)2 cos (

𝑛𝜋
𝐿 

𝑥) + 

𝐿 1 1 2−𝑥2 
𝑛𝜋/𝐿 

sin (𝑛𝜋
𝐿 

𝑥) − 2𝑥(𝑛𝜋/𝐿)2 cos (
𝑛𝜋
𝐿 

𝑥) + (𝑛𝜋/𝐿)3 sin (𝑛𝜋
𝐿 

𝑥)]
0

2 𝐿 2𝐿 = (𝑛𝜋/𝐿)2 (cos(𝑛𝜋) − 1) − 𝐿 
[ (𝑛𝜋/𝐿)2 (cos(𝑛𝜋))] 

= {−4𝐿2/(𝑛𝜋)2 if 𝑛 is even 
0 if 𝑛 is odd. 

26 PDEs continued 

26.1 Goals 

1. Reinforce the goals from Topic 25. 

26.2 Introduction 

The main goal in this topic is to give one more example of the wave equation. This time 
with boundary conditions that are different from all our previous examples. 
As a bonus we also discuss a different method of solving the wave equation called the 
d’Alembert solution. This is nice, but it only applies to the undamped wave equation. In 
contrast, the Fourier method applies to many other systems, including the heat equation 
and the damped wave equation. 
As a further bonus we walk through the ratio of frequencies for various musical intervals. 

26.3 An example with different BC 

Example 26.1. On a string of length 𝐿 = 𝜋 find 𝑦(𝑥, 𝑡) satisfying 

WE: 𝑦𝑡𝑡 = 9𝑦𝑥𝑥 

BC: 𝑦𝑥(0, 𝑡) = 0, 𝑦𝑥(𝜋, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. 
Solution: Note: these are not clamped end boundary conditions. Rather, it is the first 
partial in 𝑥 that is 0 at the boundary. 
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Step 1. Look for separated solutions 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) to WE. 
Substitution of 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) into WE gives 𝑋𝑇 ″ = 9𝑋″𝑇 . 
Algebra: 𝑋″(𝑥)/𝑋(𝑥) = 𝑇 ″(𝑡)/(9𝑇 (𝑡)) = constant = −𝜆. 
More algebra: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 9𝜆𝑇 = 0. 
There are three cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐 cos(3

√
𝜆𝑡) + 𝑑 sin(3

√
𝜆𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. 
Case (iii) 𝜆 < 0. Always ignore since this case only gives the trivial modal solutions. 

Step 2. (Modal solutions) Find the separated solutions from Step 1 which also satisfy the 
boundary conditions. 
For separated solutions, the BC are 𝑋′(0) = 0, 𝑋′(𝜋) = 0. 
Case (i) BC: 𝑋′(0) = 

√
𝜆𝑏 = 0 and 𝑋′(𝜋) = −

√
𝜆𝑎 sin(

√
𝜆𝜋) = 0. 

This has nontrivial solutions when 𝑏 = 0 and 
√

𝜆 = 𝑛 for 𝑛 an integer. So, in this case, the 
nontrivial solutions to the PDE satisfying the BC are 

𝑦𝑛(𝑥, 𝑡) = cos(𝑛𝑥)(𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)) for 𝑛 = 1, 2, 3, … 

Case (ii) BC: 𝑋′(0) = 𝑏 = 0, 𝑋′(𝜋) = 𝑏 = 0. 
So, 𝑋(𝑥) = 𝑎, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. The factor of 𝑎 is redundant, so, in this case, the modal 
solutions is 𝑦(𝑥, 𝑡) = 𝑐 + 𝑑𝑡. As usual with the constant terms, we write this as 

𝑐
2
0 + 

𝑑0𝑡 𝑦0(𝑥, 𝑡) = 2 

Case (iii) Ignored. 

Step 3. Both WE and BC are homogeneous, so by superposition we have 

∞𝑐
2
0 + 

𝑑0𝑡 𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = 2 
+ ∑ cos(𝑛𝑥) ⋅ (𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡))

𝑛=0 𝑛=1 

is a solution to WE and BC. 

Step 4. Use the initial conditions to find the coefficients. 
∞ 

First IC: 𝑦(𝑥, 0) = ∑ 𝑐𝑛 cos(𝑛𝑥) = 𝑓(𝑥). That is, we have the Fourier cosine series 𝑐
2
0 + 

𝑛=1 
for 𝑓(𝑥). 

𝑐0 = 
𝜋

𝑓(𝑥) 𝑑𝑥 , 𝑐𝑛 = 
𝜋 

𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥. 𝜋
2 ∫ 𝜋

2 ∫ 
0 0 

Second IC: 𝑦𝑡(0) = 
𝑑
2
0 + ∑ cos(𝑛𝑥)3𝑛𝑑𝑛 ⇒ 𝑑𝑛 = 0 for 𝑛 = 0, 1, 2, … 
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So we have our solution to the system (WE, BC, IC): 

∞𝑐0𝑦(𝑥, 𝑡) = 2 
+ ∑ 𝑐𝑛 cos(𝑛𝑥) ⋅ cos(3𝑛𝑡),

𝑛=1 

where the values of 𝑐𝑛 are given above. 

26.4 Pluck vs. struck initial conditions 

A plucked string is one that is held in a starting position and then let go. It has no initial 
velocity. 
A struck string is one that is initially at equilibrium and is struck by an impulse to set it 
into motion. 
So the initial conditions for the two are: 
Plucked string: 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. 
Struck string: 𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 𝑔(𝑥). 

Example 26.2. (Struck string.) A struck string of length 𝐿 = 𝜋 satisfies the following 
system 

WE: 𝑦𝑡𝑡 = 9𝑦𝑥𝑥 

BC: 𝑦(0, 𝑡) = 0, 𝑦(𝜋, 𝑡) = 0 (These are different from the previous example.) 
IC: 𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 𝑔(𝑥) 

Find the solution. 
Solution: WE and BC are the same as Example 25.4. So the general solution satisfying 
both WE and BC is 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝑥) ⋅ (𝑐𝑛 cos(3𝑛𝑡) + 𝑑𝑛 sin(3𝑛𝑡)).
𝑛=1 𝑛=1 

As usual, we use the IC to find the values of the coefficents: 

First IC: 𝑦(𝑥, 0) = 0 = ∑ 𝑐𝑛 sin(𝑛𝑥) ⇒ 𝑐𝑛 = 0. So, 𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝑥) sin(3𝑛𝑡). 

Second IC: 𝑦𝑡(𝑥, 0) = 𝑔(𝑥) = ∑ 3𝑛𝑑𝑛 sin(𝑛𝑥). Therefore, 3𝑛𝑑𝑛 are the Fourier sine coeffi-
cients of 𝑔(𝑥). So, 

23𝑛𝑑𝑛 = 
𝜋 

𝑔(𝑥) sin(𝑛𝑥) 𝑑𝑥 or 𝑑𝑛 = 
𝜋 

𝑔(𝑥) sin(𝑛𝑥) 𝑑𝑥. 𝜋
2 ∫ 3𝑛𝜋 

∫ 
0 0 

The two boxed formulas give a complete solution to the example. 

26.5 The d’Alembert solution to the wave equation 

This secion is for enrichment. We will not cover it in ES.1803 
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For the undamped, unforced wave equation there is another standard method of solution 
called the d’Alembert solution. We’ll state it and then show how it equals the solution 
found by the Fourier method. 
Consider the system for a plucked string of length 𝐿: 
WE: 𝑦𝑡𝑡 = 𝑎2𝑦𝑥𝑥 

BC: 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. 
Claim. Let 𝑓�̃� (𝑥) be the period 2𝐿 odd extension of 𝑓(𝑥). Then 

𝑓�̃� (𝑥 + 𝑎𝑡) + 𝑓�̃� (𝑥 − 𝑎𝑡) 𝑦(𝑥, 𝑡) = 2 
is a solution to this system. We call this solution the d’Alembert solution. 
Proof. This is trivial to check directly! You should do it, and make sure you see why the 
BC are satisfied. 
Note. Physically, we can think of 𝑓�̃� (𝑥 + 𝑎𝑡) as a wave traveling to the left at speed 𝑎 
and 𝑓�̃� (𝑥 − 𝑎𝑡) as the same wave traveling to the right. Since the solution 𝑦(𝑥, 𝑡) models a 
standing wave, we see that a standing wave on [0, 𝐿] is the superposition of two traveling 
waves! 

26.5.1 The d’Alembert and Fourier solutions are the same 

This has to be the case, but we will show it using a standard trig identity. 
We know the system has Fourier solution: 

𝑦(𝑥, 𝑡) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥) cos (𝐿

𝜋 𝑎𝑛𝑡) , where 𝑓(𝑥) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥) on 0 < 𝑥 < 𝐿 

Of course the sine series for 𝑓(𝑥) is just the Fourier series for 𝑓�̃� (𝑥), i.e., 𝑓�̃� (𝑥) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥)

for all 𝑥. 
We need the following trig identity (which we’ve used multiple times before). 

sin(𝛼) cos(𝛽) = 2
1(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)). 

Now use this identity to rewrite the Fourier solution. 

𝑦(𝑥, 𝑡) = ∑ 𝑏𝑛 sin (𝐿
𝜋 𝑛𝑥) cos (𝐿

𝜋 𝑎𝑛𝑡) 

1= 2 
∑ 𝑏𝑛 sin (𝐿

𝜋 𝑛(𝑥 + 𝑎𝑡)) + sin (𝐿
𝜋 𝑛(𝑥 − 𝑎𝑡)) 

̃ ̃= 2
1(𝑓𝑜(𝑥 + 𝑎𝑡) + 𝑓𝑜(𝑥 − 𝑎𝑡)). QED 

26.6 Musical notes 

Assume the fundamental note is a C, then we get the following chart. The ‘𝑛’ column is the 
harmonic, i.e., 𝑛 = 1 is the first harmonic (or fundamental), 𝑛 = 2 is the second harmonic, 
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etc. The ‘ratio’ column is the ratio of the frequencies of the harmonic and the previous 
harmonic, i.e., 𝑛/(𝑛 − 1) 
𝑛 ratio note interval 
1 𝐶 fundamental 
2 2/1 𝐶 octave 
3 3/2 𝐺 fifth
4 4/3 𝐶 fourth
5 5/4 𝐸 third
6 6/5 𝐺 augmented second 
7 7/6 ugly harmonic 
8 8/7 𝐶 ignore interval because previous one ugly
9 9/8 𝐷 second
10 10/9 𝐸 second 
The point of this chart is to show that the frequencies in musical intervals have small 
whole number ratios. This is the standard way of tuning a musical instrument. It is called 
‘just-temperament’. 
Another method of tuning is called ’equal temperament. Here the 12 half-steps in an octave 
are all equal. That is, for each step the ratio of the frequencies is 21/12 ≈ 1.05946309. After 
12 steps the frequency has doubled which is an octave. We get the following table. For 
comparison we include a ’just-tempered’ scale. 
𝑛 1/2 steps 2𝑛/12 interval from base just tuning interval percent difference 

0 1.0 unison 1 0.00%
1 1.059 minor second 16/15 −0.68%
2 1.122 major second 9/8 −0.23%
3 1.189 minor third 6/5 −0.91%
4 1.260 major third 5/4 +0.79% 
5 1.335 perfect fourth 4/3 +0.11%
6 1.414 diminished fifth 7/5 +1.02%
7 1.498 perfect fifth 3/2 −0.11%
8 1.587 minor sixth 8/5 −0.79% 
9 1.682 major sixth 5/3 +0.90%
10 1.782 minor seventh 16/9 +0.23%
11 1.888 major seventh 15/8 +0.68%
12 2.0 octave 2/1 0.00% 

Note. It is impossible to tune a piano so that all major keys are just-tempered. A piano 
is called ’well-tempered’ when the major keys are close enough to just-tempered that they 
don’t sound out of tune. 

27 Qualitative behavior of linear systems 

27.1 Goals 

1. Be able to draw the vector field associated to an autonomous system. 
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2. Be able to draw the phase portrait of any linear, autonomous, second-order system. 

3. Be able to use eigenvalues to classify the types of critical points and their dynamic 
stability. 

4. Be able to use the trace-determinant diagram to organize the different types of critical 
points. 

27.2 Introduction 

In this topic we are going to look at the qualitative behavior of systems of the form 

[𝑥
𝑦′

′
] = 𝐴 [𝑥

𝑦] ⇔ x ′ = 𝐴x, (39) 

where x = [𝑥
𝑦] and 𝐴 is a constant, 2 × 2 matrix. 

This is a system of two first-order DEs, so it is a second-order system. Since 𝐴 is constant, 
the system is autonomous (the rate x changes depends only on x) and time invariant. 
Our goal is to sketch portraits of the solutions to these systems that capture their important 
qualitative features. Similar to what we did with first-order autonomous equations and 
phase lines, we will use critical points to organize our work. 
While this gives us a useful perspective on linear systems, since we already know how to 
solve these systems, we don’t really need it to understand such systems. Our real goal here 
is to prepare for a qualitative analysis of nonlinear systems. Since we can’t usually solve 
nonlinear systems exactly, we will approximate them by linear systems and then leverage 
our qualitative understanding of linear systems to get information about nonlinear ones. 

27.3 The phase plane: example with definitions 

1Example 27.1. Let 𝐴 = [ 0 
0]. Consider the autonomous system −1 

x ′ = 𝐴x ⇔ [𝑥′ 1
0] [𝑥

𝑦] . (40)𝑦′] = [−1
0 

We’ll use this example to define and explain the terms we use in our qualitative description 
of a system. 
Phase plane: The phase plane for our system is simply the 𝑥𝑦-plane. This is where we 
will do all of our graphical work. 
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x

y

1

2

1 2

1Trajectories, tangent vectors and direction field in phase plane for [𝑥′ 

0] [𝑥 
𝑦′] = [−1

0 
𝑦] 

Critical points: A critical point of the system is a point in the 𝑥𝑦-plane where x ′ = 0. 
For the system x ′ = 𝐴x, critical points satisfy the equation 

𝐴x = 0. 

[ 0 1Every such system has one critical point at x = 0. In our example, 𝐴 = 0] is−1 
nonsingular. Therefore, x = 0 is the only solution to 𝐴x = 0, i.e., the system’s only critical 
point is at the origin. (This is the case for most systems x ′ = 𝐴x.) 
In the phase plane figure above, the critical point at the origin is marked with a solid pink 
dot. 

Trajectories: Any solution [𝑥(𝑡)
𝑦(𝑡)] to the system can be plotted as a parametrized curve 

in the phase plane (𝑥𝑦-plane). Such a curve is called a trajectory of the system. 
Using the method of eigenvalues and eigenvectors, we found the solution to Equation 40: 

[𝑥(𝑡)
𝑦(𝑡)] = [ 𝑐1 cos(𝑡) + 𝑐2 sin(𝑡) or 𝑥(𝑡) = 𝑐1 cos(𝑡)+𝑐2 sin(𝑡), 𝑦(𝑡) = −𝑐1 sin(𝑡)+𝑐2 cos(𝑡).−𝑐1 sin(𝑡) + 𝑐2 cos(𝑡)

] 

Several trajectories are plotted in the figure above. They are circles turning in the clockwise 
direction. 
Important: The constant function x(𝑡) = 0 is a solution to the system. In the figure 
above, the trajectory of this solution is given by the dot at the origin. That is, the critical 
point x = 0 is also a stationary trajectory. 

Dynamic stability of the equilibrium at the origin: If all solutions go asymptotically 
to 0 as 𝑡 gets large, we call the equilibrium at the origin a dynamically stable equilibrium. 
Clearly, the origin is dynamically stable exactly when all the eigenvalues have negative real 
parts. 
If any eigenvalue has a positive real part, then most solutions go to infinity and we call the 
equilibrium at the origin dynamically unstable. 
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If the real part of one eigenvalue is 0 and those of all the others are ≤ 0, then we say the 
equilibrium is an edge case in terms of dynamic stability. 
In the example in Equation 40, the eigenvalues are pure imaginary, so this is an edge case. 
In the figure above, we see the trajectories don’t go asymptotically to the origin, but they 
also don’t go to infinity. Whether we consider this stable or not depends on the application 
we have in mind. 
Note: Dynamic stability refers to stability over time. We include the word ‘dynamic’ to 
distinguish this type of stability from the notion of structural stability, which we will talk 
about later. 

Vector field and direction field: In general, the mapping [𝑥
𝑦] ⟼ 𝐴 [𝑥

𝑦] gives us a 

vector field in the plane. That is, to each point (𝑥, 𝑦) in the plane we attach a vector 𝐴 [𝑥
𝑦]. 

The figure above shows these vectors at the points (1, 0), (2, 0), (0, 1), (0, 2). Note: we know 
the vector field associated with Equation 40 without having to solve the equations. 

For a curve [𝑥(𝑡)
𝑦(𝑡)], the derivative [𝑥′(𝑡) Equation 40 𝑦′(𝑡)] is the tangent or velocity vector. 

shows that the tangent vectors to trajectories are the same as those in the vector field 
just described. Notice that the vectors in the figure above at (1, 0), (2, 0), (0, 1), (0, 2) are 
tangent to the trajectories through these points. 
Finally, sometimes, rather than trying to show relative lengths of tangent vector fields, we 
can make all the vectors the same length. In this case, we call the plot a direction field. It 
tells you the direction of the trajectory through a point, but not its speed. The figure above 
shows the direction field (for our system) as a grid of small arrows. Note, at each point on 
the trajectories, the curve is tangent to the direction field. 

27.4 Phase portraits 

Definition: To draw the phase portrait of a system of a system, you need to draw enough 
trajectories to get a good sense of the system. Always include the equilibium solution. 
For the remainder of this topic we will consider the general constant coefficient linear system 
in Equation 39. 
This system always has a critical point (i.e., x ′ = 0) at the origin. A critical point also 
represents a stationary trajectory, i.e., x(𝑡) = 0 is a solution to Equation 39. Our goal is to 
use the signs of the eigenvalues to classify the different types of critical points at the origin. 
We will divide these types into ‘main cases’ and ’edge cases’. A main case is one where 
changing the eigenvalues a little will not change the case. For example, if we have one 
positive and one negative eigenvalue, then if the eigenvalues change a little, one will remain 
positive and the other negative. 
An edge case is one where the smallest change could change the case. For example, if we 
have one positive and one zero eigenvalue, then the smallest change in the zero could change 
this to two positive eigenvalues or one positive and one negative eigenvalue. 
Before reading through the cases, you should scan all the phase plane portraits shown below. 



x

y
Mode with bigger λ

Mode with smaller λ

Asymptotically parallel to
mode with bigger λ

Asymptotically tangent to
smaller mode at (0, 0)
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27.4.1 Drawing a phase portrait: examples 

We will use some examples to walk through drawing the phase portrait for several systems. 
This should be enough to see how to draw phase portraits for all our main cases. 
Example 27.2. (Nodal source) Suppose the solution to x ′ = 𝐴x is 

x(𝑡) = 𝑐1𝑒2𝑡 [1
1] + 𝑐2𝑒3𝑡 [1

2] . 

Sketch a phase portrait. 
Solution: Here is the final sketch. We outline the steps for drawing the phase portrait 
below. 

Nodal source at (0, 0) – eigenvalues are positive and different. 
All trajectories “flow out” from the origin. 

Step 1: Sketch the equilibrium solution: x(𝑡) = [0
0] = single point. 

Step 2: Sketch the modes: 

Modal solutions: x1(𝑡) = 𝑐1𝑒2𝑡 [1
1], x2(𝑡) = 𝑐2𝑒3𝑡 [1

2]. 

Mode x(𝑡) = 𝑒2𝑡 [1
1]: trajectory = ray from the origin through (1,1). 

Mode x(𝑡) = −𝑒2𝑡 [1
1]: trajectory = ray from the origin through (-1,-1). 

Likewise, the trajectories of x(𝑡) = 𝑒3𝑡 [1
2], x(𝑡) = −𝑒3𝑡 [1

2] are rays from the origin. 

Summary: modes give straight line trajectories. 

Step 3: Sketch some “mixed modal” solutions, e.g., sketch x(𝑡) = 𝑒2𝑡 [1
1] + 𝑒3𝑡 [1

2]. 

Asymptotics as 𝑡 → ∞: Because the eigenvalues (exponents) are positive, as 𝑡 → ∞, 
x(𝑡) goes to infinity. We claim the trajectory becomes asymptotically parallel to the mode 

with the bigger eigenvalue, i.e., asymptotically parallel to [1
2]. To see this, we look at the 



27 QUALITATIVE BEHAVIOR OF LINEAR SYSTEMS 244 

tangent vector to the trajectory: 

x ′(𝑡) = 2𝑒2𝑡 [1
1] + 3𝑒3𝑡 [2

1] = 𝑒3𝑡 (2𝑒−𝑡 [1
1] + 3 [2

1]) . 

This shows that x ′(𝑡) is parallel to 2𝑒−𝑡 [1
1] + 3 [1

2]. As 𝑡 gets large, the first term vanishes 

and the curve becomes asymptotically parallel to [1
2], as claimed. 

Asymptotics as 𝑡 → −∞: As 𝑡 → −∞, x(𝑡) goes to zero. We claim the trajectory becomes 
asympotically tangent to the mode with the smaller eigenvalue, i.e., asymptotically tangent 

to the line along [1
1]. To see this, we look at the tangent vector to the trajectory: 

x ′(𝑡) = 2𝑒2𝑡 [1
1] + 3𝑒3𝑡 [2

1] = 𝑒2𝑡 (2 [1
1] + 3𝑒𝑡 [2

1]) . 

This shows that x ′(𝑡) is parallel to 2 [1
1]+3𝑒𝑡 [1

2]. So, as 𝑡 gets large and negative, the second 

term vanishes and the tangent vector asymptotically points parallel to [1
1], as claimed. 

Drawing other mixed modal trajectories is similar. 
We call the equilibrium at the origin a nodal source. If you think of the trajectories as 
representing flowing water, the origin appears as a source, pushing out the water. The 
equilibrium is dynamically unstable. 

Key points 

• Trajectories don’t cross. 
• They fill up the plane. 
• Different solutions with the same trajectory have different initial values, e.g., 

x1 = 𝑒2𝑡 [1
1] and x2(𝑡) = 3𝑒2𝑡 [1

1] have the same trajectory, but 

x1(0) = [1
1] and x2(0) = [3

3] are different initial values. 

• For nodal sources: 
– Trajectories become parallel to the mode with the bigger 𝜆 as 𝑡 goes to ∞. 
– Trajectories become tangent to the mode with the smaller 𝜆 as 𝑡 goes to −∞. 
– As 𝑡 → −∞, trajectories go asymptotically to (0, 0). 
– Systems with positive, different eigenvalues have the same qualitative picture, i.e., 
they all look like nodal sources. 

5Example 27.3. (Spiral source) Let x ′ = [ 3 
3] x. Draw the phase portrait. −5 

We find the eigenvalues are 𝜆 = 3 ± 5𝑖. After some algebra we find: 
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x(𝑡) = 𝑐1𝑒3𝑡 [ cos(5𝑡)
− sin(5𝑡)] + 𝑐2𝑒3𝑡 [sin(5𝑡) 

cos(5𝑡)] 

grows × circle = spiral out 

To determine the sense of turning, i.e., if it turns clockwise (CW) or counterclockwise 
(CCW), we look at the tangent vector at the point (1,0) in the plane. 

5At (1, 0) ∶ x ′(0) = 𝐴 [1
0] = [−5

3 
3] [1

0] = [−5
3 ] 

= tangent vector to the trajectory through (1, 0) 

x

y

Tangent vector

[
3
−5

]
points down

Phase portrait: spiral source 

The tangent vector points down, so the spiral must be turning clockwise. 
The critical point at (0, 0) is called a spiral source. It is a dynamically unstable equilibrium. 

Example 27.4. (Saddle) Suppose the matrix 𝐴 has the following eigenvalues and eigen-
vectors. 

𝜆 = −3 2 

[3
1] [−1 v = 1 ] 

Sketch a phase portrait of the system x ′ = 𝐴x. Name the type of critical point at the origin 
and give its stability. 

Solution: The general solution is x(𝑡) = 𝑐1𝑒−3𝑡 [1
3] + 𝑐2𝑒2𝑡 [−1

1]. 

Modes have straight line trajectories: 

x1 = 𝑒−3𝑡 [3
1] goes to 0 as 𝑡 increases. 

x2 = 𝑒2𝑡 [−1
1] goes away from 0 as 𝑡 increases. 

Mixed modal solutions: For example, 𝑒−3𝑡 [3
1]+𝑒2𝑡 [−1

1], goes asympotically to 𝑒2𝑡 [−1
1 ] 

as 𝑡 → ∞ and goes asympotically to 𝑒−3𝑡 [3
1] as 𝑡 → −∞. 
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x

y

mode with negative λ

mode with positive λ

Saddle (dynamically unstable equilibrium at (0,0)) 

27.4.2 Key points about phase portraits 

• Trajectories don’t cross. 
• They fill up the plane. 
• Different solutions can have the same trajectory. They just have different initial values. 
• Qualitatively, the phase portrait is determined by the eigenvalues. 

27.5 Types of critical points: main cases based on eigenvalues 

Here we will summarize the main cases for the possible types of critical points (equilibria) 
at the origin. We’ll start with some notational conventions for this section. 
If the eigenvalues are real, we label them 𝜆1 and 𝜆2. We label the corresponding eigenvectors 
v1 and v2. In this case, the general solution to Equation 39 is 

x(𝑡) = 𝑐1𝑒𝜆1𝑡v1 + 𝑐2𝑒𝜆2𝑡v2. (41) 

If the eigenvalues are complex (with nonzero imaginary part), we label one of them 𝜆 = 
𝛼 + 𝛽 𝑖 and the corresponding eigenvector v + 𝑖 w. In this case, the general solution to 
Equation 39 is 

x(𝑡) = 𝑐1𝑒𝛼𝑡(cos(𝛽𝑡) v − sin(𝛽𝑡) w) + 𝑐2𝑒𝛼𝑡(sin(𝛽𝑡) v + cos(𝛽𝑡) w). (42) 

Case (i) Real eigenvalues, distinct, both postitive: 𝜆1 > 𝜆2 > 0. 
Type of critical point at origin: Nodal source. 
Dynamic stability of the equilibrium: dynamically unstable. 
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x

y

Critical point at the origin is a nodal source 

As 𝑡 → ∞, x(𝑡) goes to ∞ and the trajectory becomes asymptotically parallel to v1, i.e., 
to the eigenvector for the bigger eigenvalue. 
As 𝑡 → −∞, x(𝑡) goes asymptotically to 0 and becomes asymptotically tangent to (the 
line along) v2, i.e., to the eigenvector for the smaller eigenvalue. 

Case (ii) Real eigenvalues, distinct, both negative, 𝜆1 < 𝜆2 < 0. 
Type of critical point at origin: Nodal sink. 
Dynamic stability of the equilibrium: dynamically (asymptotically) stable. 
(Simply reverse the arrows on Case (i).) 

x

y

Critical point at the origin is a nodal sink 

As 𝑡 → ∞, x(𝑡) goes asymptotically to 0 and the trajectory becomes asymptotically 
tangent to (the line along) v2, i.e., to the eigenvector for the less negative eigenvalue (smaller 
absolute value). 
As 𝑡 → −∞, x(𝑡) goes to ∞ and becomes asymptotically parallel to v1, i.e., to the 
eigenvector for the more negative eigenvalue (bigger absolute value). 

Case (iii) Real eigenvalues, one positive, one negative, 𝜆1 > 0 > 𝜆2. 
Type of critical point at origin: Saddle 

Dynamic stability of the equilibrium: dynamically unstable. 

x

y
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Critical point at the origin is a saddle 

As 𝑡 → ∞, x(𝑡) goes to ∞ and becomes asympotically tangent to the mode 𝑐1𝑒𝜆1𝑡v1, i.e., 
to the mode with positive eigenvalue. 
As 𝑡 → −∞, x(𝑡) goes to ∞ and becomes asympotically tangent to the mode 𝑐2𝑒𝜆2𝑡v2, 
i.e., to the mode with negative eigenvalue. 

Case (iv) Complex eigenvalues, positive real part, i.e., 𝛼 > 0. 
Type of critical point at origin: Spiral source 

Dynamic stability: dynamically unstable. 

x

y

x

y

Critical point at the origin is a spiral source. Left: clockwise; right: counterclockwise 

Trajectories can spiral clockwise or counterclockwise. You can find the direction of rotation 
by checking the tangent vector at one point. 
As 𝑡 → ∞, x(𝑡) goes to ∞. 
As 𝑡 → −∞, x(𝑡) goes to 0. 

Case (v) Complex eigenvalues, negative real part, i.e., 𝛼 < 0. 
Type of critical point at origin: Spiral sink 

Dynamic stability: dynamically stable. 
(Reverse arrows from Case (iv).) 

x

y

x

y

Critical point at the origin is a spiral sink. Left: clockwise; right: counterclockwise 

Trajectories can spiral clockwise or counterclockwise. You can find the direction of rotation 
by checking the tangent vector at one point. 
As 𝑡 → ∞, x(𝑡) goes to 0. 
As 𝑡 → −∞, x(𝑡) goes to ∞. 
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27.6 Types of critical points: edge cases based on eigenvalues 

For the edge cases we will just list the properties and show a phase portrait. These are 
drawn in the same way as the main case examples. In class, we’ll look at as many of these 
as we have time for. 
Case (vi) Pure imaginary eigenvalues: 𝜆 = 𝑖𝛽. 
Type of critical point at origin: Center 

Dynamic stability: This is an edge case, in some applications this can be considered stable, 
in others it might not. 
Trajectories can turn clockwise or counterclockwise. As usual, you can find the direction of 
rotation by checking the tangent vector at one point. 
As 𝑡 → ±∞, x(𝑡) goes round and round an ellipse. 

x

y

x

y

Critical point at the origin is a center 

Case (vii) Real, repeated, positive eigenvalues: 𝜆1 = 𝜆2 > 0. 
Type of critical point at origin: Defective nodal source or star nodal source. 
Dynamic stability: dynamically unstable . 

x

y

Tangent vector shows
direction of turning

x

y

Tangent vector
shows direction
of turning

x

y

Defective nodal source Star nodal source 

If the coefficient matrix is defective (repeated eigenvalue, only one independent eigenvec-
tor), then we have a defective nodal source at the origin. 
Let 𝜆 be the eigenvalue and v1 the corresponding eigenvector. Let v2 be a generalized 
eigenvector associated with v1. 
In this case, the general solution to Equation 39 is x(𝑡) = 𝑒𝜆𝑡(𝑐1v1 + 𝑐2(𝑡v1 + v2)). The 
critical point at the origin is called a defective nodal source. 
As 𝑡 → ∞, x(𝑡) goes to ∞ and the trajectory becomes asymptotically parallel to the (only) 
mode, i.e., parallel to v1. 
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As 𝑡 → −∞, x(𝑡) goes to 0 and the trajectory becomes asymptotically tangent to the line 
along v1. 
Trajectories asymptotically make a 180 degree turn. As with spirals, you can find the sense 
of the turn by checking one tangent vector. 
If the coefficient matrix is complete, there are two independent eigenvectors, which implies 

𝐴 is a scalar matrix: 𝐴 = [𝜆 0
0 𝜆]. 

This implies the general solution is x(𝑡) = 𝑒𝜆𝑡c.⃗ 
That is, all trajectories are straight rays. This is called a star nodal source. 
As 𝑡 → ∞, x(𝑡) → ∞ along a line from 0. 
As 𝑡 → −∞, x(𝑡) → 0 

Case (viii) Real, repeated, negative eigenvalues: 𝜆1 = 𝜆2 < 0. 
Type of critical point at origin: Defective nodal sink or star nodal sink. 
Dynamic stability: dynamically stable. 
Just reverse the arrows from Case (vii). 

x

y

Tangent vector shows
direction of turning

x

y

Tangent vector
shows direction
of turning

x

y

Defective nodal sink Star nodal sink 

If the coefficient matrix is defective: 
As 𝑡 → −∞, x(𝑡) goes to ∞ and the trajectory becomes asymptotically parallel to the 
(only) mode, i.e., parallel to v1. 
As 𝑡 → ∞, x(𝑡) goes to 0 and the trajectory becomes asymptotically tangent to the line 
along v1. 
Trajectories asymptotically make a 180 degree turn. As with the defective nodal source, 
you can find the sense of the turn by checking one tangent vector. 

If the coefficient matrix is complete, there are two independent eigenvectors, which implies 

𝐴 is a scalar matrix: 𝐴 = [𝜆 0
0 𝜆]. 

This implies the general solution is x(𝑡) = 𝑒𝜆𝑡c.⃗ 
(Simply reverse the arrows on the star nodal source.) 
Case (ix) Real eigenvalues, one negative, one zero: 𝜆1 = 0 > 𝜆2. 
Type of critical point at the origin: Degenerate (line of critical points) 
Dynamic stability: edge case 
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The critical points are not isolated –they lie on the line through 0 with direction v1. 

x(𝑡) = 𝑐1v1 + 𝑐2𝑒𝜆2𝑡v2. 

As 𝑡 → ∞, x(𝑡) → 𝑐1v1 along a line parallel to v2. 

x

y

Degenerate case: line of critical points 
Case (x) Real eigenvalues, one positive, one zero: 𝜆1 = 0 < 𝜆2. 
Type of critical point at origin: Degenerate (line of critical points) 
Dynamic stability: dynamically unstable . 
(Simply reverse the arrows in Case (ix).) 
The critical points are not isolated –they lie on the line through 0 with direction v1. 

x(𝑡) = 𝑐1v1 + 𝑐2𝑒𝜆2𝑡v2. 

As 𝑡 → ∞, x(𝑡) → ∞ along a line parallel to v2. 

x

y

Degenerate case: line of critical points 
Case (xi) Real eigenvalues, both 0: 𝜆1 = 𝜆2 = 0. 
Since the eigenvalues are repeated, this breaks into two cases: 
Complete case: Every point is a critical point, every trajectory is a point. 
Defective case: Line of critical points. 

x(𝑡) = 𝑐1v1 + 𝑐2(𝑡v1 + v2). 

Trajectories are parallel to v1. 
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x

y

Degenerate and defective: (both 𝜆 = 0) 

27.7 Example 

[ 2 3Example 27.5. The matrix 𝐴 = 2] has eigenvalues 2 ± 3𝑖. So, for the system−3 
x ′ = 𝐴x, the critical point at the origin is a spiral source. 

The tangent vector at the point x0 = [0
1] is 𝐴 x0 = [−3

2 ]. This tells us the curve spirals 

clockwise. 

27.8 Trace-determinant plane 

For 𝐴 = [𝑎 𝑏 the characteristic equation is 𝑐 𝑑], 

𝑎 − 𝜆 𝑏 det(𝐴 − 𝜆𝐼) = ∣ ∣ = 𝜆2 − (𝑎 + 𝑑)𝜆 + (𝑎𝑑 − 𝑏𝑐) = 0.𝑐 𝑑 − 𝜆 

We recognize 𝑎𝑑 − 𝑏𝑐 = det(𝐴). The term (𝑎 + 𝑑) is called the trace of 𝐴, denoted tr(𝐴). 
(Trace is the sum of the entries along the main diagonal.) With this notation, the charac-
teristic equation is 

tr(𝐴) ± √tr(𝐴)2 − 4 det(𝐴)𝜆2 − tr(𝐴) 𝜆 + det(𝐴) = 0 ⟶ 𝜆 = .2 

Since the eigenvalues are determined by trace and determinant we have the following nice 
picture in the trace-determinant plane. (Structural stability will be discussed in Topics 28 
and 29. To read the diagram, it is enough to know that the main cases are structurally 
stable and the edge cases are not.) 
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tr(A)

det(A)

Spiral source
λ = α± iβ, α > 0
dynam. unstable
structurally stable

Spiral sink
λ = α± iβ, α < 0
dynamically stable
structurally stable

Nodal source
λ real: +, +
dyanmically unstable
structurally stable

Nodal sink
λ real: −, −
dynamically stable
structurally stable

Saddle
λ real: +, −
dynamically unstable
structurally stable

Degenerate
λ real: +, 0
stability: edge case
structurally unstable

Degenerate
λ real: −, 0
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: +
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: −
dynamically stable
structurally unstable

Center
λ pure imaginary
stability: edge case
structurally unstable

See the mathlet 
https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/. 

28 Qualitative behavior of nonlinear systems 

28.1 Goals 

1. Be able to find the critical points for a nonlinear, autonomous system. 

2. Be able to linearize a nonlinear system near the critical points. 

3. Be able to draw the phase portrait of a nonlinear, autonomous system using lineariza-
tion near the critical points. 

4. Understand why the linearizations in this topic’s examples are structurally stable. 

28.2 Nonlinear Systems 

A general first-order, autonomous, 2 × 2 system has the following form 

𝑥′ = 𝑓(𝑥, 𝑦) (43)
𝑦′ = 𝑔(𝑥, 𝑦) 

Vector Field: This defines a vector field (𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦)) that attaches the velocity vector 
to each point (𝑥, 𝑦) in the phase plane. 
By definition a critical point is one where 𝑥′ = 0 and 𝑦′ = 0. That is, it is a point (𝑥0, 𝑦0)
where 

𝑓(𝑥0, 𝑦0) = 0, and 𝑔(𝑥0, 𝑦0) = 0. 
Equivalently, it is an equilibrium solution 𝑥(𝑡) = 𝑥0, 𝑦(𝑡) = 𝑦0. This is a solution whose 
trajectory is a single point. 

https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/
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28.3 Approximation and structural stability 

We’ll talk more about structural stability in Topic 29. The key point is this: if you ap-
proximate or measure a number there will be some error. If your approximation says the 
number is 7, and the error is known to be small, then you can be certain the number’s true 
value is positive. By contrast, if your approximation says the number is 0, then the true 
value might be positive, negative or zero. 
We say a linear system is structurally stable if none of its eigenvalues are 0 or have real 
part equal to 0. The idea is that, if there is a small change to the system or a small error 
in our description, then the type of critical point at the origin won’t change. 
For example, if we experimentally determine a system has eigenvalues 7.0 and 1.0, then our 
experiment points to the origin being a nodal source. Even if there is a small error in our 
measurement, we’ll still know the eigenvalues are positive and we have a nodal source. We 
say nodal sources are structurally stable. 
In contrast, if we experiemntally find the eigenvalues are 0.0 ± 2.0 𝑖, then our experiment 
points to the origin being a center. But even the smallest error could mean the eigenvalues 
have positive or negative real part. That is, all we can say from our experiment is that the 
origin is a center, spiral source or spiral sink. We say centers are stucturally unstable. 
We can state this simply in two ways: 
1. The main cases from Topic 27 are structurally stable. The edge cases are not. 
2. In the trace-determinant diagram, the large open regions represent structurally stable 
systems and the dividing lines represent structurally unstable ones. 
In this topic we will learn to approximate a nonlinear system near a critical point by a linear 
one. Because there is approximation error, we can only be sure that the nonlinear system 
matches the linear one if the linear system is structurally stable. For example, if the linear 
system is a nodal source, then we can be sure that the nonlinear system looks like a nodal 
source near the critical point. But, if the linear system is a center, then the nonlinear one 
could look like a center, spiral source or spiral sink. 
All the examples in this topic’s notes will involve structurally stable approximations, so we 
will be confident that we are correctly characterizing the nonlinear system. In Topic 29, we 
will explore structurally unstable linear approximations. 

28.4 Linearization around a critical point 

We’ll start by presenting the method of linearization to sketch the phase portrait. First, 
we’ll use it in an example. After that, we’ll justify the method. 
Jacobian. At a critical point (𝑥0, 𝑦0) of the system in Equation 43, we define the Jacobian 
by 

𝑓𝑦(𝑥0, 𝑦0) 𝑓𝑦 𝐽(𝑥0, 𝑦0) = [𝑓
𝑔

𝑥
𝑥

(𝑥
(𝑥0

0, 𝑦
, 𝑦

0
0)
) 

𝑔𝑦(𝑥0, 𝑦0)] = [𝑓
𝑔

𝑥
𝑥 𝑔𝑦

] . 

This gives the linearization around the critical point (𝑥0, 𝑦0) 
′ 

[𝑢 = 𝐽(𝑥0, 𝑦0) [𝑢 
𝑣] 𝑣] 



255 28 QUALITATIVE BEHAVIOR OF NONLINEAR SYSTEMS 

In general, the nonlinear system behaves like the linearized one. (More precisely, if the 
linearized system is structurally stable, the nonlinear system behaves like the linear one.) 
That is, if we center our 𝑢𝑣-axes on (𝑥0, 𝑦0) then the linear vector field near the 𝑢𝑣 origin 
approximates the nonlinear field near (𝑥0, 𝑦0)

𝑦 

𝑥 

𝑢 

𝑣 

(𝑥0, 𝑦0) 

Near a critical point, the nonlinear system is approximated by its linearization. 
Example 28.1. Find the critical points for the following system. 

𝑥′ = 14𝑥 − 
1
2𝑥2 − 𝑥𝑦 

𝑦′ = 16𝑦 − 
1
2𝑦2 − 𝑥𝑦 

Solution: We solve the equations 𝑥′ = 0, 𝑦′ = 0. 

𝑥′ = 𝑥 (14 − 2
1𝑥 − 𝑦) = 0 ⇒ 𝑥 = 0 or 14 − 2

1𝑥 − 𝑦 = 0 

𝑦′ = 𝑦 (16 − 
1
2𝑦 − 𝑥) = 0 ⇒ 𝑦 = 0 or 16 − 2

1𝑦 − 𝑥 = 0. 

Looking at the product for 𝑥′ we see 𝑥′ = 0 when 𝑥 = 0 or 14 − 𝑥/2 − 𝑦 = 0. Likewise, 
𝑦′ = 0 when 𝑦 = 0 or 16 − 𝑦/2 − 𝑥 = 0. This leads to four sets of equations for critical 
points. 

{𝑥 = 0 {𝑥 = 0 {14 − 𝑥/2 − 𝑦 = 0 {14 − 𝑥/2 − 𝑦 = 0} } } }𝑦 = 0 16 − 𝑦/2 − 𝑥 = 0 𝑦 = 0 16 − 𝑦/2 − 𝑥 = 0 

The first three sets are easy to solve by inspection. The fourth requires a small computation. 
We get the following four critical points: 

(0, 0), (0, 32), (28, 0), (12, 8). 

Example 28.2. (Continued from previous example.) Linearize the system at each of the 
critical points and determined the type of the linearized critical point. 

Solution: The linearized system at (𝑥0, 𝑦0) is [𝑢
𝑣′

′
] = 𝐽(𝑥0, 𝑦0) [𝑢

𝑣]. 

First we compute the Jacobian: 

𝐽(𝑥, 𝑦) = [14 − 𝑥 − 𝑦 −𝑥 
−𝑦 16 − 𝑦 − 𝑥] 
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Next we look at each of the critical points in turn. 
Critical point (0, 0): 

0𝐽(0, 0) = [14 
16] ; eigenvalues 14, 16. 0 

This is a nodal source. Since it is only an approximation of the nonlinear system near the 
critical point, it is not necessary to find the eigenvectors and make a precise sketch. Instead 
we draw general nodal source, i.e., a node with all trajectories pointing outward. Its sketch 
on 𝑢𝑣-axes is shown in the left-most figure below. 

𝑣 𝑣 𝑣 

𝑢 𝑢 𝑢 

Source node Sink node Saddle 

Critical point (0, 32): 

0𝐽(0, 32) = [−18 
−16] ; eigenvalues − 18, −16. −32 

This is a sink node. As with the source node, we don’t need the eigenvectors to make an 
approximate sketch of the nonlinear system. We simply sketch a node with all trajectories 
pointing in towards the critical point. Its sketch is shown in the ‘Sink node’ figure above. 
Critical point (28, 0): 

−28𝐽(28, 0) = [−14 
−12] , eigenvalues − 14, −12; corresponding eigenvectors [1

0] , [−14
0 1 ] 

This is a sink node. As with the source node, we don’t need the eigenvectors to make an 
approximate sketch of the nonlinear system. Its sketch is shown in the ‘Sink node’ figure 
above. 
Critical point (12, 8): 

−12𝐽(12, 8) = [−6 
−4 ] ; eigenvalues − 5 ± 

√
97 ≈ −15, 5. −8 

Eigenvectors: For 𝜆 = −5 − 
√

97 ∶ [1 +
8

√
97] ≈ [11

8 ] 

For 𝜆 = −5 + 
√

97 ∶ [1 − 
√

97] ≈ [−9
8 ]8 

This is a saddle. For saddles, we feel it is a good idea to find the eigenvectors so that the 
orientation of the saddle is correct. (Here, we just gave you the eigenvectors. At this point 
you should be able to find them quickly yourself.) The sketch of the linearized system is 
shown in the ‘Saddle’ figure above. 
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Example 28.3. (Continued from the previous example.) Are all the linearizations struc-
turally stable? What does this imply about the nonlinar system? 

Solution: Yes. We can see this two ways. First, each of the linearized critical points are 
one of our main cases. These are structurally stable. Second, all of the eigenvalues for the 
linearizations are nonzero. Even with a small approximation error, this would still be the 
case. So the approximation error can’t change the types of the critical points, i.e., they are 
structurally stable. 
Since all the linearized critical points are structurally stable, the nonlinear critical points 
are all of the same type as their linearizations. 

Example 28.4. (Continued from the previous example.) Make a rough sketch of the 
nonlinear system’s phase portrait using the following two steps. 
1. Sketch the phase portrait near each critical point, using the linearization. 
2. Connect these sketches together in a consistent manner. 
We do this below and compare it with a computer generated sketch. 

Hand sketch of the phase plane. Computer generated phase portrait. 

28.4.1 Justification for using linearization 

We’ll go through this in detail. One key fact is that the change of variables 𝑢 = 𝑥 − 𝑥0,
𝑣 = 𝑦 − 𝑦0 puts the 𝑢𝑣 origin at (𝑥0, 𝑦0). 
We will use the linear (tangent plane) approximations of 𝑓 and 𝑔. You might recall this 
from 18.02. (If not, notice that it is just a multivariable version of the single variable linear 
approximation 𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)Δ𝑥, where Δ𝑥 = 𝑥 − 𝑥0.) 
For small changes (𝑥 − 𝑥0) = Δ𝑥 and (𝑦 − 𝑦0) = Δ𝑦, the linear approximations for 𝑓 and 𝑔 
near (𝑥0, 𝑦0) are 

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0) Δ𝑥 + 𝑓𝑦(𝑥0, 𝑦0) Δ𝑦 
𝑔(𝑥, 𝑦) ≈ 𝑔(𝑥0, 𝑦0) + 𝑔𝑥(𝑥0, 𝑦0) Δ𝑥 + 𝑔𝑦(𝑥0, 𝑦0) Δ𝑦 

Now, let 𝑢 = 𝑥 − 𝑥0 = Δ𝑥 and 𝑣 = 𝑦 − 𝑦0 = Δ𝑦. 
1. This puts the origin of the 𝑢𝑣-plane at (𝑥0, 𝑦0). 
3. As functions of 𝑡: 𝑢′ = 𝑥′ , 𝑣′ = 𝑦′ (since 𝑥0 and 𝑦0 are constants). 
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Replacing 𝑥 − 𝑥0 and 𝑦 − 𝑦0 by 𝑢 and 𝑣 in the approximations, we get 

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0) 𝑢 + 𝑓𝑦(𝑥0, 𝑦0) 𝑣 
𝑔(𝑥, 𝑦) ≈ 𝑔(𝑥0, 𝑦0) + 𝑔𝑥(𝑥0, 𝑦0) 𝑢 + 𝑔𝑦(𝑥0, 𝑦0) 𝑣 

Writing these in matrix form we see the Jacobian appear: 

[𝑓(𝑥, 𝑦) 𝑓𝑦(𝑥0, 𝑦0)
𝑔(𝑥0, 𝑦0)] + [𝑓𝑥(𝑥0, 𝑦0)

𝑔(𝑥, 𝑦)] ≈ [𝑓(𝑥0, 𝑦0) 
𝑔𝑥(𝑥0, 𝑦0) 𝑔𝑦(𝑥0, 𝑦0)] [𝑢

𝑣] 

= [𝑓(𝑥0, 𝑦0)
𝑔(𝑥0, 𝑦0)] + 𝐽(𝑥0, 𝑦0) [𝑢

𝑣] 

If (𝑥0, 𝑦0) is a critical point, the first term on the right is 0, i.e 

[𝑓(𝑥, 𝑦)
𝑔(𝑥, 𝑦)] ≈ 𝐽(𝑥0, 𝑦0) [𝑢

𝑣] . 

Putting everything together: 

[𝑢′ 

𝑦′] = [𝑓(𝑥, 𝑦) 
𝑣′] = [𝑥′ 

𝑔(𝑥, 𝑦)] ≈ 𝐽(𝑥0, 𝑦0) [𝑢
𝑣] 

Using just the first and last terms from the above gives the linearization formula 

[𝑢
𝑣′

′
] ≈ 𝐽(𝑥0, 𝑦0) [𝑢

𝑣] . 

This is a linearized system with coefficient matrix 𝐽(𝑥0, 𝑦0). We call it the linearization of 
the system around the critical point. 

29 Structural Stability 

29.1 Goals 

1. Be able to classify a linearized system near a critical point as structurally stable or 
unstable. 

2. For a structurally unstable linearized system, be able to list the possible types of 
critical point for the nonlinear system. 

29.2 Structural stability 

Structural stability of the system x = 𝐴x is about the type of system not the type of critical 
point of the system. Consider the following two scenarios. 
Scenario 1. You have an apparatus modeled by a constant coefficient linear system x ′ = 
𝐴x. You are experimentally able to measure the entries of the matrix 𝐴 to two decimal 
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places of accuracy. You are not suprised when your experiments reveal 𝐴 = [6.00 5.00
1.00 2.00]. 

So the eigenvalues of your system are 7.00 and 1.00. 
You have experimentally determined that the equilibrium at the origin is a nodal source, 
which is dynamically unstable, i.e., over time trajectories that start near the source move 
away from it. But we have to take into account the possibility (really, guarantee) of mea-
surement error. Each of your matrix entries might be off by as much as 0.005. Thus the 
eigenvalues are also only approximately correct. 
Nonetheless, with such small errors, the eigenvalues are both guaranteed to be positive and 
the equilibrium is guaranteed to be a nodal source. We say the system is structurally stable. 
That is, a small change (also called a perturbation) of the system won’t change the type of 
the equilibrium. 
To repeat: the linear system with a nodal source is structurally stable, but has a dynamically 
unstable equilibrium at the origin. 
Scenario 2. You have a known nonlinear system with a critical point at (𝑥0, 𝑦0). You 
linearize the system and find that the linearized system has a nodal source with eigenvalues 
1 and 7. In this case, the linearized system is an approximation of the nonlinear one. Since, 
close to the critical point, the approximation error is small, the structural stability of the 
linearized system tells us that the nonlinear system behaves like a nodal source close to the 
critical point. 
That is, the approximation error changes some fine details of the system, but not the 
qualitative type of the system. We state this as a theorem 

29.3 The open regions in the trace-determinant diagram are structurally 
stable 

Theorem. The linearized system correctly classifies the crititcal point if the linear system 
is a spiral node, nodal source, nodal sink or saddle. 
It may not correctly classify a center, defective node, star node or non-isolated critical point. 
That is, it is correct in the open regions of the trace-determinant diagram and not definitive 
on the boundary lines. 

tr(A)

det(A)

Spiral source
λ = α± iβ, α > 0
dynam. unstable
structurally stable

Spiral sink
λ = α± iβ, α < 0
dynamically stable
structurally stable

Nodal source
λ real: +, +
dyanmically unstable
structurally stable

Nodal sink
λ real: −, −
dynamically stable
structurally stable

Saddle
λ real: +, −
dynamically unstable
structurally stable

Degenerate
λ real: +, 0
stability: edge case
structurally unstable

Degenerate
λ real: −, 0
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: +
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: −
dynamically stable
structurally unstable

Center
λ pure imaginary
stability: edge case
structurally unstable
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The basic idea is that if we ‘jiggle’ the matrix it won’t move very far in the trace-determinant 
diagram, so the eigenvalues will be of the same type. 

29.4 Three examples of a linearized center 

The next three examples all have a linearized center at the origin. We will see graphically 
(and analytically for those who are interested) that a linearized center might be a nonlinear 
center, spiral source or spiral sink. 

Example 29.1. Find the critical points for the system 𝑥′ = 𝑦 − 𝑥2, 𝑦′ = −𝑥 + 𝑦2. 
Linearize at each critical point, and say whether the nonlinear system behaves like the 
linearized system near the point. 
Solution: Crititcal points: 𝑦 − 𝑥2 = 0 and −𝑥 + 𝑦2 = 0. 
The first equation implies 𝑦 = 𝑥2. Substitute this in the second equation to get −𝑥+𝑥4 = 0. 
Thus, 𝑥 = 0, 1. So there are two critical points (0, 0) and (1, 1). 

Jacobian: 𝐽(𝑥, 𝑦) = [−2𝑥 1
−1 2𝑦]. 

Linearizing: 
1𝐽(1, 1) = [−2 
2]: characteristic equation: 𝜆2 − 3 = 0 ⇒ 𝜆 = ±

√
3 ⇒ linearized system −1 

has a saddle. 
Since saddles are structurally stable the nonlinear system looks like a saddle at (1, 1). 

1𝐽(0, 0) = [ 0 
0]: eigenvalues = ±𝑖 ⇒ a linearized center. −1 

This is not structurally stable. Looking at the trace-determinant diagram, a center is on 
the line between sprial sources and spiral sinks. So the nonlinear system could look like a 
center, spiral source or spiral sink at (0, 0). Using Matlab it appears that (0,0) is a center. 
(This can be proved analytically.) 

The following proof that the critical point is a center is only for those who are interested. 
We can show the trajectories near (0,0) are not spirals by exploiting the symmetry of the 
picture. First note, if (𝑥(𝑡), 𝑦(𝑡) is a solution then so is (𝑦(−𝑡), 𝑥(−𝑡). That is, the trajectory 
is symmetric in the line 𝑥 = 𝑦. This implies it can’t be a spiral. Since the only other choice 
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is that the critical point (0,0) is a center, the trajecories must be closed. 

The following two examples show that a linearized center might also be a spiral sink or a 
spiral source in the nonlinear system. 
Example 29.2. 𝑥′ = 𝑦, 𝑦′ = −𝑥 − 𝑦3. 
Example 29.3. 𝑥′ = 𝑦, 𝑦′ = −𝑥 + 𝑦3. 
In both examples the only critical point is (0, 0). 

1Also, in both examples, 𝐽(0, 0) = [ 0 
0]. So we have a linearized center at the origin. −1 

Again, this is structurally unstable and the nonlinear system could look like a center or a 
spiral. 
In Example 29.2 the critical point turns out to be a spiral sink. In Example 29.3 it is a 
spiral source. Graphically, using Matlab to plot trajectories, makes this seem reasonable. 
We can also prove it analytically. 
Here are Matlab pictures. (Because the 𝑦3 term causes the spiral to have a lot of turns we 
’improved’ the pictures by using the power 1.1 instead.) 

Spiral in Spiral out 

29.4.1 A proof, only for those who are interested. 

The proof that these are respectively a spiral source and a spiral sink is based on Lyapunov’s 
second method using the potential function 𝑉 (𝑥, 𝑦) = 𝑥2 + 𝑦2. 
Consider the system 𝑥′ = 𝑦, 𝑦′ = −𝑥 − 𝑦3. If (𝑥(𝑡), 𝑦(𝑡)) is a solution then 𝑑𝑉 = 
2𝑥 𝑥′ + 2𝑦 𝑦′ = −2𝑦4. Since this is negative or 0 the potential 𝑉 is decreasing along 

𝑑𝑡 
any 

trajectory of the system. That is, the trajectory must head towards the origin. 
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x

y

V = 1

V = 2

V = 3

V = 4

V = 5

Thus (0, 0) is an asymtotically stable critical point and its type must be a spiral sink. 
𝑑𝑉 Likewise, for 𝑥′ = 𝑦, 𝑦′ = −𝑥 + 𝑦3; 𝑑𝑡 = 𝑦4 ≥ 0. This implies 𝑉 is increasing. So the 

trajectory heads away from origin, i.e. the origin must be a spiral source. 

30 Applications to population biology 

30.1 Modeling examples 

30.1.1 Volterra predator-prey model 

The Volterra predator-prey system models the populations of two species with a predator-
prey relationship. The equations are 

𝑥′ = 𝑎𝑥 − 𝑝𝑥𝑦 = 𝑥(𝑎 − 𝑝𝑦) (𝑥 = prey population) 
𝑦′ = −𝑏𝑦 + 𝑞𝑥𝑦 = 𝑦(−𝑏 + 𝑞𝑥) (𝑦 = predator population), 

where 𝑎, 𝑏, 𝑝, 𝑞 are all positive constants. 
Notice, if 𝑦 = 0, then there is no predator and the prey population grows exponentially. If
𝑥 = 0, then there is no prey and the predator population decays exponentially. 
It is easy to find that there are two critical points 

( 
𝑏 𝑎 Critical points: (0, 0), 𝑞 , 𝑝). 

Volterra’s Principle: Looking at the critical point (𝑏/𝑞, 𝑎/𝑝) we see: 
If you increase 𝑎 (the growth rate of prey) this leaves the equilibrium for 𝑥 (the prey 
population) unchanged but increases the equilibrium for 𝑦 (the predator population). 
Likewise, increasing 𝑏 (the decay rate of the predator) leaves the equilibrium for 𝑦 un-
changed, but increases the equilibrium for 𝑥 (the prey population). 
Volterra was studying fish and sharks. His principle says that if you want to increase the fish 
population, you need to catch more sharks. It’s not enough to catch fewer fish, since, even 



30 APPLICATIONS TO POPULATION BIOLOGY 263 

though this will increase the growth rate of fish, it will just increase the shark population, 
which will eat up all the extra fish. 
Let’s draw a phase portrait for this system by linearizing near the critical points. 

𝐽(0, 0) = [𝑎 
−𝑏]. This has eigenvalues = 𝑎, −𝑏, with eigenvectors = [1

0] , [0
0

0 
1]. 

The linearized system is a saddle. It is structurally stable, so the nonlinear system also has 
a saddle at (0, 0), (See plot below). 

−𝑝𝑏 𝑎 𝑞 𝐽 (𝑞
𝑏 , 𝑝) = [ 0 

0 ] . This has eigenvalues ±𝑖 
√

𝑎𝑏.𝑞𝑎
𝑝 

The linearized system is a center. This not structurally stable, so the nonlinear system has 
either a center, spiral sink or spiral source at (𝑏/𝑞, 𝑎/𝑝). 

𝑎 Since 𝐽 ( 
𝑏 

𝑝) [0
1] = [𝑞𝑎

0 ], we know that the center or spiral turns counterclockwise. 𝑞 , 
𝑝 

It turns out the nonlinear system has a center. (The proof of this is given below.) Here is 
a diagram: 

Volterra predator-prey: 𝑥′ = 𝑎𝑥 − 𝑝𝑥𝑦, 𝑦′ = −𝑏𝑥 + 𝑞𝑥𝑦 
𝑎 = 1, 𝑏 = 1, 𝑝 = 1, 𝑞 = 2 

30.1.2 Fancier predator-prey 

Example 30.1. Consider the following predator-prey population model 

𝑥′ =3𝑥 − 𝑥2 − 𝑥𝑦 
𝑦′ = 𝑦 − 𝑦2 + 𝑥𝑦. 

(a) Which one of the variables represents the predator population and which the prey? 

(b) Describe the population growth of each species in the absence of the other. 
(c) Analyze the critical points and use that to sketch a phase portrait. 
(d) Describe what happens to the populations over time. 
Solution: (a) We see that the presence of 𝑦, i.e., 𝑦 > 0 decreases the growth rate of 𝑥 and 
the presence of 𝑥 increases the growth rate of 𝑦. Therefore, 𝑥 represents the prey population 
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and 𝑦 the predator. 
(b) If 𝑦 = 0 then 𝑥′ = 3𝑥 − 𝑥2. This is a logistic population model with carrying capacity 
3. Likewise, if 𝑥 = 0 then 𝑦′ = 𝑦 − 𝑦2 is a logistic population model. So, in the absence of 
the other, each population stabilizes at the carrying capacity of its logistic model. 
(c) Finding the critical points is relatively easy. The two equations are 

𝑥′ = 3𝑥 − 𝑥2 − 𝑥𝑦 = 𝑥(3 − 𝑥 − 𝑦) = 0 
𝑦′ = 𝑦 − 𝑦2 + 𝑥𝑦 = 𝑦(1 − 𝑦 + 𝑥) = 0 

In each equation one of the factors must be 0. This gives four critical points 

(0, 0), (0, 1), (3, 0), (1, 2). 

[3 − 2𝑥 − 𝑦 −𝑥 We compute the Jacobian = Next we linearize at each critical 𝑦 1 − 2𝑦 + 𝑥]. 
point. You should do this yourself. The results are compiled in the following table. 

Critical points (0, 0) (0, 1) (3, 0) (1, 2) 

𝐽 

𝜆 

0[3 
1]0 

3, 1 

0 −3[2 
−1] [−3 

4 ]1 0 

2, −1 −3, 4 

[−1 −1
2 −2] 

(−3 ± 
√

7 𝑖)/2 

linear type source saddle saddle spiral sink 

v Not needed [3
1] , [0

1] [1
0] , [ 3−7] Not needed 

Structural stability stable stable stable stable 

By considering the tangent vector at (𝑢, 𝑣) = (1, 0), we see the spiral sink at (1, 2) turns in 
the counterclockwise direction. 

Hand sketch of phase portrait Computer plot of phase portrait 
(d) As long as both populations are initially positive, the model predicts they will go 
asymptotically to the dynamically stable equilibrium at (1,2). 

30.1.3 Proof the Volterra predator-model has closed trajectories 

You are not responsible for the following proof. 
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Claim: In the Volterra predator-prey model the critical point at (𝑞
𝑏 , 𝑎𝑝 ) is a center. 

More precisely, every trajectory with initial condition (𝑥0, 𝑦0) in the first quadrant is a 
closed loop in the first quadrant that circles the critical point. 
Proof: Because the positive 𝑥 and 𝑦 axis are trajectories, existence and uniqueness implies 
a trajectory that starts in the first quadrant must stay there –i.e., it can’t cross out of the 
quadrant. 
To understand the trajectory in more detail we use the following trick. 

𝑑𝑦 𝑑𝑦/𝑑𝑡 𝑦(−𝑏 + 𝑞𝑥) 
𝑑𝑥 

= 𝑑𝑥/𝑑𝑡 = 𝑥(𝑎 − 𝑝𝑦) 
. 

This is a separable equation: 

𝑑𝑦 
(𝑎 − 𝑝𝑦) = 𝑑𝑥 

(−𝑏 + 𝑞𝑥) ⇒ 𝑎 ln 𝑦 − 𝑝𝑦 = −𝑏 ln 𝑥 + 𝑞𝑥 + 𝑐. (∗)𝑦 𝑥 

This is an implicit equation: each value of 𝑐 corresponds to a different trajectory. 

x, y

w

w = −b ln(x) + qx+ c

w = a ln(y) + py
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𝑤 vs. 𝑥 and 𝑤 vs. 𝑦 Phase plane trajectory 
Now we have to show that the graph of the implicit function defined in (∗) is a closed loop. 
Using 18.01 techniques, we can show that the graphs of 

𝑤 = −𝑏 ln 𝑥 + 𝑞𝑥 + 𝑐 and 𝑤 = 𝑎 ln 𝑦 − 𝑝𝑦 

are as shown above. Equation (∗) tells us that a point (𝑥, 𝑦) is on the trajectory if the 
𝑤 = 𝑎 ln(𝑦) − 𝑝𝑦 curve and 𝑤 = −𝑏 ln(𝑥) + 𝑞𝑥 + 𝑐 curve are at the same height. 
We can translate this to the phase plane trajectory as follows: 
Draw any horizontal line in the first graph. Its points of intersection with the two curves 
give 𝑥 and 𝑦 coordinates of points on the trajectory. 
Let 𝐴1, 𝐵1, etc. be the first coordinate of 𝐴, 𝐵, etc. Then the points 𝐴, 𝐵 and 𝐶 in the 
first plot correspond to the points 𝑃 = (𝐴1, 𝐵1) and 𝑅 = (𝐶1, 𝐵1) in the second plot. The 
points 𝐷, 𝐸 and 𝐹 in the first plot correspond to the points 𝑆 = (𝐸1, 𝐷1) and 𝑄 = (𝐸1, 𝐹1)
in the second plot. 
Now pay attention, the closed loop corresponds to the following path along the two curves 
in the first graph. As the horizontal line goes down from its peak, its intersection points 
travel from 𝐴 to 𝐸 along the 𝑥 curve and from 𝐵 to 𝐹 along the 𝑦 curve. This means that 
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both 𝑥 and 𝑦 are increasing since they are the first coordinates of their respective curves. 
So this corresponds to the trajectory from 𝑃 to 𝑄 on the second graph. 
Continuing, here’s a table describing the closed trajectory (proving it’s closed). 
horizontal line 𝑥, 𝑦 curves 𝑥, 𝑦 trajectory 
top to bottom 𝐴, 𝐵 to 𝐸, 𝐹 increase, increase 𝑃 to 𝑄 
bottom to top 𝐸, 𝐹 to 𝐶, 𝐵 increase, decrease 𝑄 to 𝑅 
top to bottom 𝐶, 𝐵 to 𝐸, 𝐷 decrease, decrease 𝑅 to 𝑆 
bottom to top 𝐸, 𝐷 to 𝐴, 𝐵 decrease, increase 𝑆 to 𝑃 

Easier, indirect argument 

There is an easier indirect argument that the trajectory must be closed. 
Since, in the left-hand graph above, each horizontal line intersects each curve in at most 2 
points there are at most 2 points on a trajectory with the same 𝑦-value. This means the 
trajectory cannot be a spiral. Hence it must be a center. 

31 Applications to physics: mechanical systems 

This topic is not officially on the ES.1803 syllabus. It contains several examples 
of nonlinear physical systems. All of the examples should be accessible to 
ES.1803 students who have learned through Topic 30. 

31.1 Nonlinear pendulum 

A pendulum consists of a light rigid rod. It pivots around one end and has a mass 𝑚 at the 
other end. Let 𝜃 be the (signed) angle the pendulum makes with the vertical direction (see 
figure). The equation modeling the motion of the pendulum is 

𝜃″ + 
𝑔
𝑙 sin(𝜃) = 0 or 𝜃″ + 𝜔2 sin(𝜃) = 0, 

where 𝜔2 = 𝑔/𝑙. (Derivation given below.) 

Fgravity

T

θ

Note: For small 𝜃 we can approximate 𝜃 ≈ sin(𝜃). With this approximation, the DE 
becomes 𝜃″ + 𝜔2𝜃 = 0, i.e., for small angles, the nonlinear pendulum is well-approximated 
by a linear simple harmonic oscillator. 
Letting 𝑥 = 𝜃 and 𝑦 = 𝑥′ = 𝜃′ , the companion system of the nonlinear equation can be 
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written as 

𝑥′ = 𝑦 
𝑦′ = −𝜔2 sin(𝑥) 

It’s easy to establish that the critical points are 

(𝑛𝜋, 0), where 𝑛 = 0, ±1, ±2, … 

0 1The Jacobian is 𝐽(𝑥, 𝑦) = [ 0].−𝜔2 cos 𝑥 
Computing Jacobians and their eigenvalues, we find: 

𝑛 even 𝐽 = [ 0 1 linearized center −𝜔2 0] 

1𝑛 odd 𝐽 = [ 0 
0] linearized saddle 𝜔2 

Physically, we can describe the equilibria as follows: 
𝑛 even 𝑛 odd 
(hanging down, dynamically (Pointing up, dynamically un-
stable) stable) 

31.1.1 Derivation of the pendulum equation 

There are many ways to derive this. We do it using rotational mechanics. Energy conser-
vation is another good method. 
Consider 𝜃 to be positive in the counterclockwise direction. So, in the picture, 𝜃″ < 0. We 
compute the torque about the pivot point. 
Torque = � ⃗= l ⃗ × Fgravity has magnitude 𝑙𝑚𝑔 sin 𝜃 and points straight down into the page. 
We also know that |�|⃗ = −𝑚2 𝜃″ . (The minus sign is because 𝜃″ < 0). 
This implies 𝑙𝑚𝑔 sin 𝜃 = −𝑚2 𝜃″ ⇒ 𝜃″ = −𝑔

𝑙 sin 𝜃. QED 

l

F = mg

mg sin(θ)

θ

θ
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1

2

3

4

5

The labeled trajectories represent: 
1. Round and round in a clockwise direction. 
2. Just enough energy to asymptotically to the unstable equilibrium. 
3. Back and forth (like a, well, pendulum). 
4. Like (2) in the opposite direction. 
5. Like (1) in the opposite direction. 
There are also the equilibria –solid pink dots on the plot; 
(6) Marginally stable (centers). (unlabeled) 
(7) Unstable (saddles). (unlabeled) 
Note: 
The following useful trick allows us to solve for the trajectories exactly. 

𝑑𝑦 𝑦′ 
= −𝜔2 sin 𝑥 .𝑑𝑥 

= 𝑥′ 𝑦 

This is separable and leads to 𝑦 𝑑𝑦 = −𝜔2 sin 𝑥 𝑑𝑥. 
𝑦2 

Integrating both sides: = 𝜔2 cos 𝑥 + 𝐸 ⇒ 
𝑦
2
2 

− 𝜔2 cos 𝑥 = 𝐸. 2 
We use 𝐸 as the constant of integration to stand for energy, since this is the usual conser-
vation of total energy equation. 
We see that the motion of the pendulum depends on its total energy. We give the possibilities 
in the following list. 
1. 𝐸 > 𝑤2: Trajectory is round and round (trajectories 1, 5). 
2. −𝜔2 < 𝐸 < 𝜔2: Trajectory is back and forth (trajectory 3). 
3. 𝐸 = 𝜔2: At or asymptotically approaching the unstable equilibrium (trajectories 2, 4, 
7). 
4. 𝐸 = −𝜔2: At the stable equilibrium (trajectory 6). 
5. 𝐸 < −𝜔2: No trajectory. 
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31.2 Damped nonlinear pendulum 

We can add damping to the pendulum: 

𝜃″ + 𝑏𝜃′ + 𝜔2 sin 𝜃 = 0. 
The companion system with 𝑥 = 𝜃, 𝑦 = 𝑥′ = 𝜃′ is 

𝑥′ = 𝑦 
𝑦′ = −𝜔2 sin 𝑥 − 𝑏𝑦. 

As before, the critical points are at (𝑛𝜋, 0) for any integer 𝑛. 
⎧ 𝑛 even 𝐽 = [ 0 1 linearized sink0 1 { −𝜔2 −𝑏]

𝐽(𝑥, 𝑦) = [−𝜔2 cos 𝑥 −𝑏] ⇒ ⎨ 1
{ 𝑛 odd 𝐽 = [ 0 linearized saddle⎩ 𝜔2 −𝑏] 

The type of linearized sink depends on the sign of the discriminant: 
𝑏2 − 4𝜔2 < 0 ⇒ spiral sink 

𝑏2 − 4𝜔2 > 0 ⇒ nodal sink 

The pictures below show two underdamped nonlinear pendulums. 

Damped pendulum Lightly damped pendulum 

31.3 Nonlinear Spring 

If we add a cubic term to Hooke’s law, we get a nonlinear spring: 

⎧{hard if 𝑐 < 0 (cubic term adds to linear force)
𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 

⎨{soft if 𝑐 > 0 (cubic term opposes linear force).⎩ 

The companion system for these equations is 

𝑥̇ = 𝑦 
𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 
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Example 31.1. Sketch a phase portrait of the system for both the hard and soft springs. 
You can use the fact that the linearized centers are also nonlinear centers. (This follows 
from energy considerations.) 
Solution: Case 1. Hard spring (𝑐 < 0): One critical point at (0, 0) 

The Jacobian 𝐽(𝑥, 𝑦) = [ 0 
0
1]−𝑘/𝑚 + 3𝑐𝑥2/𝑚 

𝐽(0, 0) = [ 0 1
0] ⇒ 𝜆 = 𝑖√𝑘/𝑚. So we have a linearized center. The problem−𝑘/𝑚

statement tells us that this is also a nonlinear center. 

Case 2. Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): 𝐽(0, 0) is the same as for the hard spring. This is a linearized center. The problem 
statement says it is also a nonlinear center. 

(±√𝑘/𝑐, 0): 𝐽(±√𝑘/𝑐, 0) = [ 0 
0
1] (same for both). Thus we have linearized saddles 2𝑘/𝑚 

and, by structural stability, nonlinear saddles. (You should find the eigenvectors to aid in 
sketching the phase portrait.) 

1

2

2

3 3

Soft spring: 𝑐 > 0 Hard spring: 𝑐 < 0 

Example 31.2. ((Challenge! For anyone who is interested. This is not part of the ES.1803 
syllabus.) Find equations for the trajectories of the system. 
Solution: We use a standard trick to get trajectories: 

𝑑𝑦 𝑦 ̇ −𝑘𝑥 + 𝑐𝑥3 
.𝑑𝑥 

= 𝑥̇ = 𝑚𝑦 

This is separable: 𝑚𝑦 𝑑𝑦 = (−𝑘𝑥 + 𝑐𝑥3) 𝑑𝑦. Integrating we get 

𝑚𝑦2 
+ 

𝑘𝑥 
2 

2 
− 

𝑐𝑥4 
= 𝐸⏟ .⏟2 4⏟⏟⏟⏟⏟ total energy = constant 

kinetic energy potential energy 

If 𝑐 < 0 (hard spring), then both energy terms on the right are positive, so 𝑥 and 𝑦 must be 
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bounded. Then, for fixed 𝑥, there are at most two points on the trajectory. Thus we must 
have closed trajectories. 
If 𝑐 > 0 (soft spring), then, we can define 𝑤1 and 𝑤2 by 

𝑘𝑥 
2

2 
− 

𝑐𝑥4 
𝑤2(𝑦) = 𝐸 − 

𝑚𝑦2
𝑤1(𝑥) = 4 

, 2 

Using 𝑘 > 0, 𝑚 > 0, we have the graphs of 𝑤1, 𝑤2 given below. Using the same graphical 
ideas as in the proof in the Topic 30 notes that the Volterra predator-prey equation has 
closed trajectories, this shows the phase plane for the soft spring is as shown above. 

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/2

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/1

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/2

Plots of 𝑤1 = 𝑘𝑥2 

2 − 𝑐𝑥4 

4 , 𝑤2 = 𝐸 − 𝑦2 

Similar to the nonlinear pendulum, for the soft spring, different energy levels correspond to 
different types of trajectories. At the unstable equilibrium we compute 𝐸 = 𝑘

4𝑐
2 . We have 

the following correspondence between energy level and trajector (using the labels on the 
soft-spring phase portrait above): 
𝐸 = 0: Stable equilibrium. 

0 < 𝐸 < 
𝑘2 

Trajectories 1. 4𝑐 
: 

𝑘2
𝐸 = Unstable equilibrium, or a trajectory going asymptotically to or from the unstable 4𝑐 

: 
equilibrium. 
𝑘
4𝑐

2 
< 𝐸: Trajectories 2. 

𝐸 < 
𝑘
4𝑐

2 
(including 𝐸 < 0): Trajectories 3 

31.4 Damped nonlinear spring 

We can add damping to the nonlinear spring: 𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 − 𝑏𝑥.̇ As usual we can 
convert it to a system: 

𝑥̇ = 𝑦 
𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 − 𝑏𝑦/𝑚 

Also as usual, we can do a critical point analysis. 
Hard spring (𝑐 < 0): One critical point at (0, 0) 



31 APPLICATIONS TO PHYSICS: MECHANICAL SYSTEMS 272 

0 1 −𝑏 ± 
√

𝑏2 − 4𝑘𝑚 𝐽(0, 0) = [ . So we have 3 possiblities: −𝑘/𝑚 −𝑏/𝑚] ⇒ 𝜆 = 2𝑚 
(i) underdamped = linearized spiral sink; 
(ii) overdamped = linearized nodal sink; 
(iii) critically damped = defective sink. 
In all cases we have a nonlinear sink. In case (iii), because it’s not structurally stable, we 
would need to do more work to see what type of nonlinear sink we have. 

Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): linearized sink (spiral, nodal or defective), so we have a nonlinear sink. 
(±√𝑘/𝑐, 0): linearized saddles, so we have nonlinear saddles. 
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