
Intro to A.I. Topics


Connect Four 

March 12, 2009 

Introduction 

Connect Four is a tic-tac-toe like game in which two players drop discs into 
a 7x6 board. The first player to get four in a row (either vertically, horizon
tally, or diagonally) wins. 

The game was first known as “The Captain’s Mistress”, but was released 
in its current form by Milton Bradley in 1974. In 1988 Victor Allis solved 
the game, showing that with perfect play by both players, the first player 
can always win if he plays the middle column first, and if he chooses another 
column first the second player can always force a draw. 

Today we will explore the different strategies involved in playing connect 
four, how a computer could emulate these strategies, and how these tech
niques relate to other artificial intelligence topics involved in solving games 
with large search spaces. 

For convenience, we will call the first player white (W) and the second player 
black (B). 

Note that we initially get somewhat detailed about game situations, but 
do not get bogged down in the details. The important part is how we will 
use the fact that these details exist to make a game-winning strategy. 

1 



Connect Four / Intro to A.I. and Board Representation


Solvability 

When looking for a strong solution to a game (recall from last time that 
a strong solution means knowing the outcome of the game from any given 
board position) one strategy to try would be storing all possible game posi
tions in a database, exploring the tree of game play from each position, and 
determining the winner in each case. We will see that this strategy, at least 
at this time, is not really feasible for Connect Four (and even much less so 
for more complex games like GO and chess...). 

First we look for an upper bound on the number of possible Connect Four 
board positions. Each grid square can be in one of 3 states: black, white, 
or empty. Since there are 7x6 = 42 squares, this gives a very crude upper 
bound of 342 ≥ 1020 . A not so much closer look reveals that we can get a 
much tighter upper bound by noticing that many positions we counted before 
were illegal. For instance, if one square is empty in a column, then all the 
squares above it must also be empty. So we throw these possible positions 
out. Removing these configurations gives a better upper bound of 7.1 ∗ 1013 

possible positions. 

There are other types of illegal positions that are harder to detect. For 
instance, if we are assuming that white moves first, then some game config
urations, such as a stack in one column from bottom up of BWBWBW is 
impossible, since black would have had to move first. It turns out that no 
one has been able to weed out all of these positions from databases, but the 
best lower bound on the number of possible positions has been calculated by 
a computer program to be around 1.6 ∗ 1013 . So we would need at least that 
many positions stored to do a brute force search of the game. That would 
take an estimated 4 Terabytes of memory. Not so practical... 

As we saw last time with the tic-tac-toe example, this strategy won’t al
ways work. In general, we must classify these sorts of rules into two classes: 

•	 Rules that guarantee a certain results (and require proof that they do 
so) 

•	 Heuristic rules that are generally advantageous but are not without 
downfall (like the strategy given above) 

2 

ES.268



Connect Four / Intro to A.I. and Board Representation


We’ll explore possible strategies to follow for Connect Four below. After 
describing a set of general rules to follow, we will see a new type of search, 
conspiracy number search, related to the pn-search technique from last week. 

First we’ll learn some terminology associated with describing the strategy. 

Nomenclature We will number the 7 x 6 board with columns a to g left to right and 
numbers 1 to 6 from bottom to top. So the coveted middle bottom 
square is d1. 

Threat A threat is a square that if taken by opponent forms a game-winning 
group of four. For example, in the game board below White has threats 
at b1 and f1. 

Useless Threat A useless threat is a threat that will never be able to be carried out


3 

Courtesy of Victor Allis. Used with permission. Figure 3.9 in "A Knowledge-based Approach of 
Connect-Four. The Game is Solved: White Wins." Master's Thesis, Vrije University, 1988, pp. 22.

ES.268

http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf


Connect Four / Intro to A.I. and Board Representation


by the opponent. Note that a threat can only be carried out if the 
opponent is forced to play the square below the threat. 

The picture below illustrates the concept of a useless threat. In this 
game, it is White’s turn to move. It appears that White has threats 
at b2, b3, b4, b5, b6, f2, f3, f4, f5, and f6. But Black has threats at 
b2, b6, f2, and f6. Clearly the lower numbered squares will be filled in 
first, and so since both White and Black have threats at b2 and f2, no 
other threats matter, since they are all above threats shared between 
players. So all squares but b2 and f2 are useless threats. 

Odd and Even Threats It is clear that a threat can only be carried out if the opponent is forced 
to play the square below (or he allows you to play below the threat). 
In analyzing threats, certain patterns show up in how the squares are 
dividing among players. 

The odd/evenness of a threat is determined by the row number. So 
d1 is an odd threat, etc. If we were to just fill up the board, for the 
most part, White will get the odd squares and Black will get the evens. 
Clearly, White starts with an odd square (1). Say we have filled up 
the entire board except the last column. If play continues until the 
board is filled up, it must be true that White will get the remaining 
odd squares and Black the remaining evens: we must end with Black, 
since play alternates between players and there are an even number of 
squares, and so black must get the top (6), white must get 5, etc. This 
even/odd pattern continues throughout the game in general (of course 
it is possible for White to get some even squares and Black to get some 

4 

Courtesy of Victor Allis. Used with permission. Figure 3.1 in "A Knowledge-based Approach of Connect-Four. 
The Game is Solved: White Wins." Master's Thesis, Vrije University, 1988, pp. 16.

ES.268

http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf


Connect Four / Intro to A.I. and Board Representation


odds). So if we get to the last column and White has an even threat 
and Black has an odd threat, the game will end in a draw. 

If White has an odd threat and Black has an even threat in the same col
umn, the lower threat will win. If the threats are in different columns, 
White’s is stronger. In general, we see the following patterns: 

–	 White has an odd threat, Black even: White wins 

–	 White and Black both have even threats: there is no column where 
an odd number of squares can be played, so both players will get 
their normal squares (as defined above), and Black will be able to 
refute White’s threat and win. 

–	 White has an even threat, Black an odd threat: draw. 

–	 White and Black both have odd threats: usually neither of these 
threats end up working and depend on other threats. 

In a careful analysis of threats it is important to make sure that taking 
care of one threat does not allow another threat to be created. 

Zugzwang The formal definition of this strange German word: a situation where 
a player is forced to make a move when he would rather make no move 
at all. 

In connect four, a player is able to “control the zugzwang” if the player 
is able to guide the way odd and even squares are divided up among 
players. 

As an example, we look at the following game situation (Allis 26), 
where White is about to move: 

5 

ES.268



Connect Four / Intro to A.I. and Board Representation


Note that all columns contain an even number of pieces, so White will 
never fill up a column since it must take only odd squares. So Black 
can just play “follow-up” and mimic White’s every move. This will 
result in the following position: 

Now White must play either b1 or f1, which Black will follow, and win 
the game with a group of four on the second row. 

So in conclusion, Zugzwang involves being able to divide up how even 
and odd squares are distributed to the two players. Black wanted only 
even squares because eventually it would be able to fulfill its threat at 
either b2 or f2. But if it had wanted odd squares, it could have just 
stopped playing follow up and played in a different column. 

Rules 

As an example of using a knowledge based approach to teach a computer 
to play a game, the following rules were used in programming VICTOR to 

6 

Courtesy of Victor Allis. Used with permission. Figure 4.2 in "A Knowledge-based Approach of 
Connect-Four. The Game is Solved: White Wins." Master's Thesis, Vrije University, 1988, pp. 25.

Courtesy of Victor Allis. Used with permission. Figure 4.3 in "A Knowledge-based Approach of
 Connect-Four. The Game is Solved: White Wins." Master's Thesis, Vrije University, 1988, pp. 26.

http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf


Connect Four / Intro to A.I. and Board Representation


win connect four. Each rule classifies threats and gives solutions to some of 
them. Each rule is valid for the player that controls the Zugzwang, which 
is assumed to be black in the following examples. Each of these “rules” is a 
possible winning connection for the player. 

Claimeven Controller of zugzwang can get all empty even squares which are not 
directly playable by letting the opponent play all empty odd squares. 

Required: Two squares, directly above each other. Both squares are 
empty, the upper square must be empty. 

Solutions: All groups which contain the upper square. 

Baseinverse Based on the fact that a player cannot play two directly playable 
squares in one turn. 

Required: Two directly playable squares 

Solutions: All groups which contain both squares. 

Vertical Based on the face that a player cannot play two men in the same col
umn in one turn, while by playing one man in the column, the square 
directly above becomes immediately playable. 

Required: two squares directly above each other. Both squares empty, 
upper square must be odd. 

Solutions: all groups which contain both squares 

Aftereven Side-effect of one or more claimevens. If a player in control of zugzwang 
can complete a group using squares from claimeven, he will eventually 
be able to finish the group. 

Required: a group which can be completed by the controller of the 
zugzwang, using only squares of a set of claimevens. 

Solutions: all groups which have at least one square in all aftereven 
column,s above the empty aftereven group in that column. Also, all 
groups which are solved by the claimevens. 

7 

ES.268



Connect Four / Intro to A.I. and Board Representation


Lowinverse Based on the face that the sum of two odd numbers is even. 

Required: two different columns, each with 2 squares lying directly 
above each other. All must be empty and the upper square must be 
odd. 

Solution: All groups which contain both upper squares, all groups 
which are solved by verticals. 

Highinverse Based on the same principle as lowinverse: 

Required: Two columns which 3 empty squares each, upper square 
is even. 

Solutions: all groups which contain the two upper squares, groups 
which contain the two middle squares, all vertical groups which contain 
the two highest squares of one of the highinverse columns 

If the lower square of the first columns is directly playable: all groups 
which contain both he lower square of the first column and the upper 
square of the second. 

If the lower square of the second column is directly playable: all groups 
which contain both the lower square of the second column and the 
upper square of the first column. 

Baseclaim Combination of two basinverses and a claimeven. 

Required:Three directly playable squares and the square above the sec
ond playable square. The non-playable square must be even. 

Solutions:Solutions: All groups which contain the first playable square 
and the square above the second playable square. All groups which 
contain the second and third playable square. 

Before Based on a combination of claimevens and verticals 

Required: A group without men of the opponent, which is called the 
Before group. All empty squares of the Before group should not lie in 

8 

ES.268



Connect Four / Intro to A.I. and Board Representation


the upper row of the board. 

Solutions:All groups which contain all squares which are successors of 
empty squares in the Before group. All groups which are solved by the 
Verticals which are part of the Before. All groups which are solved by 
the Claimevens which are part of the Before 

Specialbefore A version of the before 

Required: A group without men of the opponent, which is called the 
Specialbefore group. A directly playable square in another column. 
All empty squares of the Specialbefore group should not lie in the up
per row of the board. One empty square of the Before group must be 
playable. 

Solutions: All groups which contain all successors of empty squares 
of the Specialbefore group and the extra playable square. All groups 
which contain the two playable squares. All groups which are solved 
by one of the Claimevens. All groups which are solved by one of the 
Verticals. 

Computer Solution Implementation 

Victor Allis’s program VICTOR developed a method of finding an optimal 
strategy based on the 9 rules given above. The position evaluator (white or 
black) is given a description of the board and comes up with an optimal next 
move. 

First all possible instances of the nine rules above are found and checked 
against all 69 possibilities to connect winning groups. The rule applications 
that solve at least one problem are stored in a list of solutions with a list of 
the groups solved by the solution and a list of other solutions that can be 
used to solve the problem. 

The next step is finding which solutions can work together. First all so

9 

ES.268



Connect Four / Intro to A.I. and Board Representation


lutions are assembled as nodes into an undirected graph, where two nodes 
are connected if and only if they can’t be used simultaneously. These con
nections are stored in an adjacency matrix. Then, the problems (threats) are 
added as nodes, and solutions are connected with problems if they solve the 
problem (no problems are connected). 

Note that two rules might not necessarily be able to be used at the same 
time. The following table describes the relationships between rules (taken 
from Allis, section 7.4): 

Then we solve the following problem: 

Given: Two sets of nodes, S(olutions) and P (roblems). Try to find an in
dependent subset C of S with the property that P is contained in the set 
of all neighbors of C, B(C). (Note this is a potentially NP-complete problem) 

The following recursive algorithm was used by Allis: 

10 

Courtesy of Victor Allis. Used with permission. In "A Knowledge-based Approach of Connect-Four. 
The Game is Solved: White Wins." Master's Thesis, Vrije University, 1988, pp. 50. 

ES.268

http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf


Connect Four / Intro to A.I. and Board Representation


if (P == EmptySet) { 
Eureka() /* We have found a subset C which meets all constraints. */ 

} else { 
MostDifficultNode = NodeWithLeastNumberOfNeighbours(P); 
for (all neighbours of MostDifficultNode) { 

FindChosenSet(P - { MostDifficultNode }, 
S - AllNeighboursOf(ChosenNeighbour)); 

} 
} 

} 

Conspiracy Number Search 

The actual solution to connect four was arrived at using the above methods 
combined with search tables storing the values of different game positions 
as well as using traditional game search methods. In particular, Allis used 
conspiracy-number search, which is very closely related to the proof num
ber search that we talked about last week. In the instance of connect four, 
consider three types of nodes: -1 black can at least draw the game, 1 the 
game is a win for white, or 0 the game is as yet undecided. Now any node 
that has as a child a node with a value of 1 can be colored 1. Any node that 
has all nodes colored -1 can be colored -1. Note it is much easier to change 
a node to a 1 than a -1. 

The conspiracy number of a node is a tuple of counts for the number of 
children needed to “conspire” to change the value of the node to each of the 
possible values. Let (x, y) be the conspiracy number of a node, with x the 
number of nodes that need to conspire to change the value to 1, and y to 
-1. We know x will always be 1, since we only need one child of value 1 to 
change our value to 1. But y is the number of ones of the node yet to be 
evaluated if all those evaluated so far have been -1. If sons have already been 
evaluated to 1, then y is ∞. 

The purpose of conspiracy number search, like pn-search is to evaluate as 
few nodes as possible to find the result of the game tree. Therefore, we try 
to avoid evaluating nodes with large conspiracy numbers. If we want to eval
uate a node at the top of the tree, we choose the neighbors with the lowest 

11 

FindChosenSet(P, S) 
{ 

Courtesy of Victor Allis. Used with permission. In "A Knowledge-based Approach of Connect-Four. 

The Game is Solved: White Wins." Master's Thesis, Vrije University, 1988, pp. 59. 

ES.268

http://www.connectfour.net/Files/connect4.pdf
http://www.connectfour.net/Files/connect4.pdf


Connect Four / Intro to A.I. and Board Representation


conspiracy numbers to evaluate until we are sure of their value. We move up 
the tree in this way, whenever possible avoiding evaluating nodes with large 
conspiracy numbers. 

12 

ES.268



MIT OpenCourseWare
http://ocw.mit.edu

ES.268 The Mathematics in Toys and Games
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



