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Probability 

Probability is key to many fields, such as econometrics, quantum mechanics, 
signal processing, and theoretical computer science. We will go through a 
gentle introduction to the basics of probability, then discuss how probability 
can be used to analyze Monopoly. We will focus on discrete probability here, 
though we could easily convert to the continuous analogs. 

Sets 

A set is a collection of items. An example of a set can be all the Course XIV 
classes offered at MIT: {14.01, 14.02, 14.04, 14.05, 14.32, 14.33, 14.36 . . . }. For 
the following definitions and examples, let A and S be arbitrary sets. 

An element of a set is something belonging to that set. We write a ∈ A if 
a is a member of the set A, and a /∈ A if a is not a member of the set A. 

A subset is a set contained within another set, in other words, if all members 
of a set belongs to another set. A is a subset of S if all members of A belong 
to S, and we write A ⊆ S. Note that: 

• A = S if and only if A ⊆ S and S ⊆ A. 
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•	 The empty set ∅, or a set with no elements, is a proper subset of every 
set. 

•	 A proper subset is a set that is strictly contained in another set. 
That is, A is a proper subset of S if and only if there is at least one 
element contained in S that is not contained in A, and all elements of 
A are contained in S. 

The cardinality of a set, denoted |A| here, is the number of elements in that 
set. If A ⊆ S, then |A| ≤ |S|. If A ⊂ S, then |A| < |S|. 

Probability and Sets 

Now that we have defined sets generally, let’s look at how sets are used when 
applied to probability. The ‘things’ or ‘items’ that we’re concerned with are 
outcomes–outcomes from flipping coins, dealing hands or cards, etc. The 
sample space is the set of all possible outcomes, denoted Ω. A subset of a 
sample space consists of the outcomes that we’re interested in, called events. 

Suppose we have the events A, B, and C. The interesction of two events 
is the event that they both occur. C = A ∩ B if the event C represents both 
A and B occuring. If A ∩ S = φ, then the two sets are called disjoint or 
mutually exclusive. The union of two events is the event that either one 
or the other occurs, denoted C = A ∪ B. 

Laws of set operations: 

•	 Commutative: 

A ∪ B = B ∪ A 

A ∩ B = B ∩ A 

•	 Associative: 

(A ∪ B) ∪ C = A ∪ (B ∪ C) 

(A ∩ B) ∩ C = A ∩ (B ∩ C) 
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• Distributive: 

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) 

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) 

The probability of an event is a mapping from the set of events to the interval 
[0,1]. When we talk about the probability of some event A in Ω, it will always 
follow these axioms: 

1. The probability of the sample space, Ω, is P (Ω) = 1; 

2. P (A) ≥ 0 for all A ∈ Ω. 

3. If A1 and A2 are disjoint, then 

P (A1 ∪ A2) = P (A1) + P (A2). 

More generally, if Ai for i = 1, 2, 3, . . . are disjoint, then � ∞ � ∞

P Ai = P (Ai). 
i=1 i=1 

The inclusion-exclusion principle is very useful in calculating probabilities. 
It states that for two events, A1 and A2, not necessarily disjoint as in the 
third axiom above, 

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|. 

The third term in in the equation above subtracts the overlap in A1 and A3, 
which was counted twice. The probability version of the inclusion-exclusion 
principle is 

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2). 

The complement of a set A, commonly denoted A�, Ac, or A, is all elements 
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in the sample space that don’t belong to that set. 

Ac = Ω − A, 

|Ac| = |Ω| − |A|, 
P (Ac) = P (Ω) − P (A) 

= 1 − P (A). 

For most problems, the goal will be to find the likelihood that an event E 
happens, or P (E), out of the set of possible outcomes S. When all the 
outcomes are equally likely, 

|E|
P (E) = . 

|S| 
We’re adding up all the elements in E and all the elements in S, then dividing 
them. This leads us to the topic of counting, which is used when dealing with 
discrete, finite sample spaces. 

Counting 

We make the assumption that all the outcomes are equally likely, also known 
as the assumption of uniform probability. All that needs to be done then is 
add up the number of outcomes that we care about and divide that by the 
number of all possible outcomes. The trickiest part is defining the event and 
sample space and making sure that we count everything the right number of 
times. 

Counting Rules 

We’ve seen the Sum Rule already, just not labeled with the name. If 
A1, A2, . . . , An are disjoint sets, then 

|A1 ∪ A2 ∪ . . . ∪ An| = |A1| + |A2| + . . . + |An|. 

What’s the probability version of the Sum Rule? 
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Example 1 

Excuse this somewhat lame example, but its purpose is to show the sum rule 
at work. In a group of 150 students, 15 use Internet Explorer as their web 
browser of choice, 80 use Firefox, 15 use Safari, and 40 use Chrome. If being 
“cool” means you use Firefox or Chrome as your main web browser, what is 
the probability that we pick one student who is “cool?” 

Let the set C be the set of “cool” students; there are 80 + 40 students in C, 
by the sum rule. Let S be the set of all students; there are 150 students in 
total, as stated in the problem. Therefore, the probability of picking a cool 
student is: 

|C| 120 4 
P (picking a cool student) = = = . 

|S| 150 5 

The multiplication rule states that for a length-k sequence, where the first 
term is chosen out of set S1, the 2nd term is chosen out of set S2 . . . the last 
term is chosen out of Sk, then 

|Total # of sequences| = |S1 × S2 × · · · × Sk| 
= |S1| · |S2| · · · |Sk|. 

Example 2 

The Athena combination lock just got changed again. You’re far from any 
Quickstation and there’s no one else nearby. Suppose you wanted to try your 
luck at guessing the combo (and you don’t have SIPB’s hint board). How 
many possible combinations could you try? 

The athena door locks have 5 buttons, 3 on the top row and 1 on the bottom 
row (the bottom-right button is a reset, so it doesn’t count). The athena 
passcode is 5 digits. Let Di, for i = 1, 2, 3, 4, 5, represent the set of buttons 
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possible for each digit. 

|Total # of combinations| = |D1 × D2 × D3 × D4 × D5| 
= |D1| · |D2| · |D3| · |D4| · |D5|
= 5 · 5 · 5 · 5 · 5 

= 55 

Permutations 

The set of permutations on a collection of objects is an example of the 
algebraic structure called a ‘group,’ which was covered in the Rubik’s Cube 
lecture. Here we’ll use ‘a set of ordered objects’ as a working definition of 
permutations. For a collection of n objects, there are n(n−1)(n−2) · · · (1) = 
n! different orderings of the objects. 

Example 3: The Birthday Problem 

You’re in a room with a bunch of people, say n ≤ 365 people. 

a) What is the probability that two people in the room have the same birth
day? Ignore complications with leap years and assume there are 365 days 
in a year. We also assume that birthdays are random (not exactly true). 

This problem is best approached the other way around, with the proba
bility that no two people have the same birthday. 

Let A be the event that two people have the same birthday. Then Ac is 
the event that no two people have the same birthday. Note that P (A) = 
1−P (Ac). We start with person 1; this person can have any 1 of 365 days 
out of the year. A second person can only have a birthday on the 364 
days out of the year that hasn’t been ‘taken.’ By assumption of random 
birthdays, and of uniform probability, the chance that this person has any 
of the 364 birthdays is 364 . A third person can only have a birthday out 

365 
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of the 353 days not ‘taken,’ and the corresponding probability of such an 
event is 363 . This continues until we’ve covered all n people. 

365 

365 · 364 · 363 · · · (365 − n + 1) 
P (Ac) = 

365n 

P (A) = 1 − P (Ac) 
365! 

= 1 − 
365n · n! 

b) What is the probability that someone shares your birthday? 

Each person can have your birthday with probability 1 . There are n − 1
365 

people besides you, so the probability that someone shares your birthday 
n−1is .
365 

The answers to part a) and part b) are quite different, but the way the ques
tions were phrased were only slightly different. Half the work in probability 
questions is usually figuring out what the question wants from you... 

What happens if n > 365? You can answer part a) without doing any math, 
by the Pigeonhole Principle. The Pigeonhole Principle states that in a 
mapping from set X to set Y , if |X| > |Y |, then more than one element of 
X map to some element in Y . 

Combinations 

We will also want to deal with collections that are unordered. How many 
ways are there to take r objects out of a set of n objects? 

For the first object, we have n to choose from. For the 2nd object, we have 
n − 1 to choose from. For the rth object, we have n − r + 1 to choose from. 
But note that once we’ve selected r objects this way, they are in some kind 
of order, and the answer n(n − 1)(n − 2) · · · (n − r +1) = n! is not correct. 

(n−r)! 

We must divide by r!, which is the number of ways you can order (permute) 
r objects. 
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The number of ways that we can take r objects out of a set of n objects is 
therefore � � 

n! n 
= . 

r!(n − r)! r 

Example 4: Hands of cards 

In this example we’re using a standard 52-card deck. 

a) How many ways are there to deal a 5-card hand? 

52 52! 
= = 2598960 

5 5!(47)! 

b) How many ways are there to deal a flush, a 5-card hand with all cards 
the same suit? 

4 13There are 
1 ways to choose the suit, and 

5 ways to choose the 5 
cards out of that suit. 

13 
# of ways to deal a flush = 4 = 5148 

5 

c) How many ways are there to deal a 5-card hand with 1 pair? 

There are 13 ways to choose the card value of the pair, and 4 ways 
1 � 2 

50to choose the suits of the pair; then there are 
3 ways to choose the 

remaining 3 cards of the 5-card hand. 

4 50 
# of ways to deal a hand with 1 pair = 13 = 1528800 

2 3 

d) How many ways are there to deal a 5-card hand with only 1 pair? 

As before, there are 13 ways to choose the card value of the pair, and � 1 
4 ways to choose the suits of the pair. But the problem specifies only 
2 

1 pair. The remaining 3 cards in the hand cannot contain a pair. So 
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12there are are 
3 ways to choose 3 different values besides the value 

that’s already a pair, and they can be from any suit. 

# of ways to deal a hand with only 1 pair = 13 
4 12 

43 = 1098240 
2 3 

e) How many ways are there to deal a 3-of-a-kind? 

There are 13 ways to choose the card value of the 3-of-a-kind, and 4 
1 � 3 

48ways to choose the suits of the pair; then there are 
2 ways to choose 

the remaining 2 cards of the 5-card hand, making sure that the value of 
the 3-of-a-kind doesn’t get chosen (otherwise we’d get a 4-of-a-kind). 

4 48 
# of ways to deal a 3-of-a-kind = 13 = 58656 

3 2 

f) How many ways are there to deal a full house, a 5-card hand with 3 of 
one kind and 2 of another? 

As before, there are 13 ways to choose the card value of the 3-of-a� 1 �
kind, and 4 ways to choose the suits of the pair. Then there are 12 

3 � � 1 

ways to choose the value of the 2-of-a-kind and 4
2 ways to choose the 

suit. 

4 12 4 
# of ways to deal a full house = 13 = 3744 

3 1 2 

Conditional Probability 

If we’re interested in the probability that some event A occurs given that 
some event B has already occurred, the sample space becomes B. The prob
ability of A conditioned on B becomes a probability on the space B. 

The Multiplication Law states that P (A ∩ B) = P (A|B)P (B). 
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So we get that 
P (A ∩ B)

P (A|B) = , �for P (B) = 0. 
P (B) 

With some rearranging, we get Baye’s Rule, which is commonly seen in 
many different forms: 

P (B|A)P (A) = P (A|B)P (B). 

The Law of Total Probability gives us the ability to isolate the probability 
of one event on a partitioned probability space. Given a space Ω that is 
partitioned by Bn : n = 1, 2, . . . , and an event A, 

n

P (A) = P (A ∩ Bi) 
i=1 

Example 5 

Melissa and I are going to assign your P/F grades for this seminar by picking 
them out of a hat. We take 100 slips of paper and mark P on half of them, 
F on the other half. Then we put the slips of paper in two hats, and pick 
a slip of paper from one of the hats. Whatever we pick will be your grade. 
But, being as merciful and fair as we so obviously are, and curious how much 
you got out of this class, we’ll leave it up to you to place the slips of paper 
into the two hats any way you want. How will you do it? 

Monopoly 

The game of MONOPOLY R� came about during the Great Depression, orig
inating from Charles Darrow of Germantown, Pennsylvania. It started out 
as handmade sets sold in a shop in Philadelphia, and as people grew to love 
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the game, Darrow approached Parker Brothers to enlarge the production 
scale (he’d actually been rebuffed by the Parker Brothers the first time in 
1933 due to 52 ‘fundamental playing flaws’). Today, MONOPOLY R� is the 
best-selling board game in the world, distributed in 111 countries and 43 
languages. Some fun facts from the MONOPOLY R� website: 

•	 The longest MONOPOLY R� game ever played was 1, 680 hours long. 

•	 The MONOPOLY �R man isn’t a Parker Brother. His name is Mr.
 
Monopoly.
 

•	 Parker Brothers once sent an armored car with a million MONOPOLY R� dollars 
to Pittsburgh because a marathon game there had run out of money. 

•	 MONOPOLY R� comes in a Braille version. 

•	 The four most-landed-on squares are Jail, Illinois Avenue, “Go”, and
 
the B&O Railroad.
 

The last in the list of fun facts above is more than meets the eye. What makes 
certain game squares more likely to be landed-on than others? Illinois Avenue 
doesn’t seem to be special compared to other properties. . . It turns out that 
we can model the MONOPOLY R� game board to calculate the probability of 
landing on a certain square. 

Rules 

The objective of the game is to bankrupt all opponents, though most games 
played with family and friends end when it is apparent that someone will 
win. A typical game of MONOPOLY R� uses the following items: 

•	 1 game board 

•	 2 dice 

•	 token for players (11 official MONOPOLY R� ones) 
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• 32 houses 

• 12 hotels 

• 16 Chance cards 

• 16 Community Chest cards 

• property deeds for each of the 22 MONOPOLY R� properties 

• $15140 in MONOPOLY R� money 

The Chance and Community Chest cards are placed face down on the game 
board, and a player must pick one of the cards when he lands on the Chance 
or the Community Chest game squares. Each player is given $1500 to be
gin the game. All remaining money, game piece, houses, hotels, and deeds 
of unsold property go to the Bank. The Bank collects all taxes, fines, 
loans, and interest. The Bank never goes ‘broke.’ If the Bank runs out 
of MONOPOLY R� money, then more can be issued (see fun fact above). 

Players begin on the Go square, roll two dice, and advance as many steps as 
dots displayed on the the two dice. A player can buy any property, utility, 
or railroad that isn’t already owned by another player, or must to draw 
Chance/Community Chest cards, pay rent, fines, or go to Jail as dictated 
by the square he lands on. If a player throws a double, then he moves his 
token the number of steps, is subject to whatever privileges or penalties of 
the square he lands on, and then tosses the dice again. If a player tosses 
three doubles in a single turn, he must go to Jail. 

Landing on the Jail square is just ‘visiting Jail’, while landing on the ‘Go to 
Jail’ square, drawing a ‘Go to Jail’ card, and tossing doubles 3 times during 
a turn are actual Jail sentences. Any Jail term lasts 3 turns. A player tosses 
dice at each turn, and if he tosses a double, then he is free to get out of jail 
and advances the number of steps as his double shows. That player does not 
take another turn. A player gets out of Jail if he has a ‘Get out of Jail Free’ 
card, or if another player is willing to sell him a ‘Get out of Jail Free’ card 
at a negotiated price, or if the player pays a $50 fine. 
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If a player lands on a property owned by another player, then the owner 
collects rent based on the information on the property deed. Rents are much 
higher for properties with houses or hotels. When a player owns all the 
MONOPOLY R� properties in a color group, then he has the option to build 
houses on those properties. If he buys one house, he can put them on any 
one of those properties. The next house he buys must be erected on one of 
the unimproved properties of that or any other complete color group, and so 
on. Thus, players must build evenly across all his properties in a color group. 

More details of the rules of the game will unfurl as we analyze the game. 
First, a bit of linear algebra. 

Matrices, Eigenvalues, and Eigenvectors 

The linear equation Ax = b is at the heart of most introductory linear 
algebra courses. A is a matrix, and x and b are vectors; the matrix A 
‘operates’ on x to give b; x and b lie on the same vector space but are in 
different directions unless A is the identity matrix I. 

Eigenvectors are special vectors associated with every operating matrix. 
These vectors don’t change directions when multiplied by the matrix, and 
we get the equation Ax = λx. Each eigenvector has its own eigenvalue 
λ. Most 2 × 2 matrices have two eigenvectors and their two corresponding 
eigenvalues. 

What happens when A operates on x more than once? As in, what’s A2x? 
A3x? A100x? 

The number λ is an eigenvalue of A if and only if A−λI (which is a matrix) is 
singular, or det (A − λI) = 0. A singular matrix is a square matrix that has 
no inverse, or det A = 0. Then, for each eigenvalue, we solve (A − λI)x = 0, 
or Ax = λx to find the eigenvector x. 
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Example 6 

Find the eigenvalues and eigenvectors of A = 1 2 .2 4 

1−λ 2A − λI = 2 4−λ 

Take the determinant of this matrix. 

1−λ 2det = (1 − λ)(4 − λ) − (2)(2) = λ2 − 5λ.2 4−λ 

Set the determinant to 0, and solve for λ. 

λ2 − 5λ = 0 gives λ1 = 0 and λ2 = 5. 

Solve (A − λI)x = 0 separately for λ1 = 0 and λ2 = 5. 

1 2 x1 0 2(A − 0I) = 2 4 x2 = 0 gives eigenvector −1 

1 2 x1 0 1(A − 5I) = x2 = gives eigenvector 2 4 0 2 

As a side note, because the vectors that make up A are constant multiples of 
each other, we know that A itself is a singular matrix. The determinant of 
a matrix can be found by taking the product of all its eigenvalues, so if the 
determinant is zero, then we know one of the eigenvalues must be zero. 

Markov Chains 

Markov chains are the probabilistic versions of deterministic finite automata. 
For our � ,analysis of MONOPOLY R we’ll consider each of the 40 game 
squares to be a state H. At each time step n, the probabilistic state dis
tribution Xn will be a 40 × 1 vector, with each element representing the 
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probability that a player ends his turn in that state. Our state, H, belongs 
to the set S of the state space of size 40. The Markov chain is described 
in terms of its transition probabilities pij , which is the probability that 
we’ll go from state i to state j at a time step. The transition probabilities 
sum to 1. 

pij = P (Hn+1 = j|Hn = i), i, j ∈ S 

pij = 1 
j 

The probability that we’re in a certain state at time step n depends only 
on our state at time step n − 1, and is independent of all states besides the 
previous state: 

P (Hn+1 = j|Hn = i, Hn−1 = i − 1, . . . , Ho = io) = P (Hn+1 = j|Hn = i) = pij 

The transition matrix captures all the transition probabilities and operates 
on our state distribution vector. Such a matrix is called a Markov matrix, 
and it is also a square matrix. ⎤⎡ T ⎢⎢⎢⎣
 

p00 p01 . . . p0m 

p10 p11 . . . p1m 
. . ... . . ... . . 

pm0 pm1 . . . pmm 

⎥⎥⎥⎦
 

Special matrices will have special eigenvalues and eigenvectors, and for Markov 
matrices, all entries are positive and every column sums to 1. Can you see 
why they must add to 1? The largest eigenvalue is 1, and the corresponding 
eigenvector is the state that comes out at the end. The eigenvectors of other 
eigenvalues fall to 0 over time. 

Example 7 

The ESG elevator has two states: SLOW and BROKEN. If it is SLOW 
today, then the probability that it becomes BROKEN tomorrow is 0.6, and 
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the probability that it stays SLOW the next day is 0.4. If it is BROKEN, 
then the probability that MIT Facilities comes to try to fix it (making it 
SLOW) is 0.2, but most likely, with probability 0.8, it’ll just stay BROKEN. 
If we start the school year in the fall with a SLOW elevator, what kind of 
elevator will we have at the end of the school year? 

Our initial state distribution is x
x
2
1 , with x1 representing the probability of 

having a BROKEN elevator, and x2 representing the probability of having a 
SLOW elevator. 

.6 .8Our transition matrix is A = . It has eigenvalues 1 and -.2, but over .4 .2 

time, the eigenvector associated with -.2 will be multiplied by (−.2)n → 0. 
We consider the eigenvector with eigenvalue 1. 

(A − I)x = 0 =⇒ (normalized) x =
 
2 
3
1 
3 

We are twice as likely to end up with a BROKEN elevator. 

MONOPOLY R

Ian Stewart, a math professor at the University of Warwick, wrote a column 
in the April, 1996 issue of Scientific American seeking to answer the question: 
‘Is Monopoly fair?’ In other words, is every MONOPOLY R� square equally 
likely to be occupied? His initial analysis was only a mathematical exercise, 
and his model abstracted many of the realistic playing rules. 

Initial Analysis 

We abstract away the rules about rolling doubles, Chance/Community Chest 
squares, and the complications involving going to Jail. Then on each roll of 
our dice the number of steps we could possibly take (sum of rolling two dice) 
is distributed as follows: 
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Number on the two dice Probability 
7 6 

36 
6, 8 5 

36 
5, 9 4 

36 
4, 10 3 

36 
3, 11 21 

36 
2, 12 1 

36 

The initial position probability vector, H0, is a 40-dimensional-vector with 
1 as the 0th element and 0 everywhere else. If we index the board from 0 
through 39, beginning at ‘Go’, then after the first turn, the vector of position 
probabilties H1 would be: 

1 2 3 4 5 6 5 4 3 2 1 
[0, 0, , , , , , , , , , , , 0, 0, 0, . . . , 0]� . 

36 36 36 36 36 36 36 36 36 36 36 � �� � 
27 zeros 

The 1st column of our 40 × 40 Markov transition matrix M would be H1. 
The second column of the matrix would be this vector with 3 zeros before 
the beginning of the fractions and 27 zeros after, in essence, the same vector 
‘shifted’ over by 1. The third row would be shifted over again, so on until 
we’ve completed all 40 rows of the matrix. 

To get our state probability vector after moving n times, we would just 
calculate AnH0. For sufficiently large n, our state probability vector would 
be the eigenvector of A that corresponds to eigenvalue 1. The eigenvector 
for the simple model of Monopoly has all entries equal to 1, because the 
transition from any square on the board is the same. 

The Real Game 

We made a few simplifying assumptions in the last section: tossing doubles, 
the “Go to Jail” square, and Chance/Community Chest cards. 

To deal with the rule about tossing doubles, we can modify the initial vector 
and the transition matrix. The maximum number of spaces a player can 
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move is 35, (if a player rolls a {(6,6),(6,6),(6,5)}). If a player lands on ‘Go 
to Jail’, then he would go immediately to Jail and end his turn there. If a 
player rolls three doubles in row, then he would also have to go to jail. 

The transition at each turn would be a vector of probabilities allowing up 
to 2 tosses with doubles. The transition matrix will have this vector for 
each column (with appropriate offsets). Then we adjust the probabilities for 
the Jail square, which is the sum of what it had from routine tossing, the 
probability of the “Go to Jail” square, and probability of tossing 3 doubles 
in a row (63/363 = 1/63). 

The Chance/Community Chest cards are actually not as complicated as 
they seem. There are 16 Chance cards, 10 of which tell the player to 
move to another square. The probability of staying in Chance is thus 1

8 
the probability it had before, and each of the 10 destinations is increased 

1by 
10 × P (probability of landing on Chance). The same goes for Commu

nity Chest, which only has 2 cards that send players to other squares. The 
probabilities would be adjusted accordingly. 

As a consequence of the “Go to Jail” square, tossing doubles, and Chance and 
Community Chest cards sending players to different squares, the probability 
distribution is no longer uniformly distributed over all 40 squares. Instead, 
it is skewed toward certain squares. Players are almost twice as likely to be 
in Jail than in any other square; the next-most-frequented square is Illinois 
Avenue, and GO is the third most likely square. B&O Railroad is the most-
often occupied railroad. 

Where and When to Build? 

Rent-collecting is when things actually start to get interesting. After all, the 
whole point of the game is to bankrupt the other players. What strategy 
should we take in building houses and hotels? What can we use from our 
probabilistic analysis? If we take the actual decimal values of the probabil
ities and analyze the time of the break-event point (total cost of buildings 
divided by expected earnings from property per turn; how would you calcu
late the expected earnings?) which is when rents collected becomes greater 
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than the cost of building the houses and hotels, we find that with 2 houses 
or fewer, it typically takes 20 moves or more to break even. With 3 houses, 
the chances are significantly better. It is even better than building 4 houses 
or a hotel. This is preferable strategy because one of the principle strategies 
of MONOPOLY R� is to deplete accounts of other players fast while accumu
lating fast yourself (so that you can purchase more property and build more 
buildings). If the break-even point takes too long, then we are wasting valu
able resources that could have been allocated to buildings on other properties 
and raising the rents of those properties. 

Remarks 

Other similar board games can be modeled in the same way. The premesis of 
Markov chains is that the next state is independent of all previous states–it 
ony depends on the current state. 

19 

ES.268



MIT OpenCourseWare
http://ocw.mit.edu

ES.268 The Mathematics in Toys and Games
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



