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The Bridges of Königsberg
The Bridges of Königsberg


•	 The town of Konigsberg in 18th century century The town of Konigsberg in 18 
Prussia included two islands and seven 
bridges over the river Pregel. 

•	 Residents had often thought about 
finding a walk such that starting from any 
of the four places A B  C  D  one crosses all of the four places, A,B,C,D, one crosses all 
of the seven bridges only once and then 
returns to the starting place.	 Figure: http://www.transtutors.com/homework-

help/Discrete+Mathematics/Graph+Theory/konisberg 
-multigraph-bridge.aspxmultigraph bridge.aspx 

•	 No one could find such a walk…. 
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Graph Theory
Graph Theory

•	 Leonhard Euler, in 1736, came up with the 

realization that this was not a problem of traditional 
geometry measurements of angles lengths geometry – measurements of angles, lengths, 
orientations do not matter. 

•	 The only two things that mattered were whetherThe only two things that mattered were whether 
the islands or banks are connected by a bridge, and 
by how many bridges. 

•	 He modeled each place (island or bank) as a ‘vertex’ 
and each bridge as an ‘edge’ that connected the 
vertices. 

•	 He mathematically proved that no such walk existed 
for the Koningsberg problem and founded an 
entirely new branch of mathematics along the wayentirely new branch of mathematics along the way. 

Figure: http://www.transtutors.com/homework-
help/Discrete+Mathematics/Graph+Theory/konisberg 
-multigraph-bridge.aspx 
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Modeling Example Ex ‐ II
Modeling ample 
There were six people: A, B, C, D, E, and F in a party and 
following handshakes among them took place:following handshakes among them took place: 

A shook hands with B, C, D, E and F 
B, in addition, shook hands with D and E 
C, in addition, shook hands with F 

B 

AA 
C 

F D 
E 

Ref [3] Ref [3] 
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Modelingg Exampple ‐ II

Consider a job application problem. There are three jobs J1, J2, J3 
for which four applicants A1, A2, A3, A4 have applied. for which four applicants A1, A2, A3, A4 have applied. 

A1 has applied for J1 and J2 
A2 has applied for J1, J2 and J3 pp2 1 2 3 A A A A 
A3 has applied for J1 

A1 A2 A3 A4 

A4 has applied for J2 and J3 

This type of graph is called a bi-partite graph. 
J1 J2 J3 

A bi-partite graph has two types of vertices 
(nodes) and there are no edges between nodes 
of the same type. Ref [3] 
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Modeling Example ‐ III
Modeling Example III


http://cvpr.uni-muenster.de/teaching/ws10/projektseminarWS10/ 

http://www.airlineroutemaps.com/USA/American_Airlines_caribbean.shtml 
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GraphsGraphs 
Ref [3] 

•	 A graph is a finite collection of vertices (or

nodes) and edges (or links).


•	 To indicate a graph G has vertex set V and g p 

edge set E, we write G=(V,E) c


•	 Each edge {x y} of G is usually denoted by 
g 

Each edge {x,y} of G is usually denoted by

xy, or yx.


V((G))={{a,, b, ,, c, d, e, f,  g}  , g}••	 What is the vertex set V(G) and edge set What is the vertex set V(G) and edge set , , 


E(G) of the graph G shown? E(G)={ab, bc, ad, de, af, fg, fe}
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AdjacencyAdjacency 
•	 If xy is an edge of G, the x and y are G Ref [3] 

adjacent vertices a 

•	 Two adjacent vertices are referred to as

neighbors of each other


c 
•	 The set of neighbors of a vertex v is called


the open neighborhood (or simply g


neighborhood) of v and is denoted as N(v)


•	 For graph G shown on the right, what is:G shown on the right, what is:For	graph 

•	 N(a) ? 

•	 N(f) ? 

•	 N(b) ?N(b) ? 
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Order and Sizeder and eOr	 Siz
Ref [3] 

•	 The number of vertices in a graph G is the G a 

order of G 

•	 The number of edges in G is the size of G 
cc 

•	 The order of G (as shown on the right) is __ g 
•	 The size of G (as shown on the right) is ___ 

•	 A graph of size 0 is called an empty graph –

no two vertices are adjacent.


•	 A graph in which every pair of two vertices

are adjacent is called a complete graph
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Multi‐Graphs

•	 So far we’ve considered only zero or one 

edge between a pair of vertices 
•	 What if there are more edges? 

•	 Consider Euler’s graph for the 
Köninggsberg problem g p 

•	 The graph K is a multigraph 

•	 A multigraph has finite number of edges 
(including zero) between any two (including zero) between any two

vertices


•	 So all graphs are multigraphs but not 
vice versa vice versa 

•	 No loops are allowed in a multigraph – a  
vertex cannot connect to itself 

10 
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Adjacency Matrix


v1 v4 

Ref [4] 

0 2 0 1⎡ ⎤ 

v2 v3 

•	 In addition to set representation, we can 
use matrices to represent multigraphs 

•	 We can create an adjacency matrix A 
such that its each (i,j) entryy is the number ( ,j)  
of edges that exist between vertex i and

vertex j


•	 For a multigraph G of order n with A = 
⎢⎢ 
⎢2 0 1 0  ⎥⎥ 

⎥ 

V(G)={v1, v2, v3..vn}, the adjacency matrix ⎢0 1 0 3⎥ 

of G is n x n ⎣
⎢1 0 3 0⎦

⎥ 

•	 A(G) = [aij]nxn 

•	 where aij, the (i,j)‐entry in A(G) is there are three 
edges betweenthe number of edges joining vi and vj	 and the number of edges joining vi and vj v3 and v4 
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⎢ ⎥

Exercise
Exercise

Draw G when G(A) is: 

⎡0 1 0 2 3  ⎤ 

⎢ ⎥ 

⎢1 0 1 2 2⎥ 


A = 0 1 0 1 1⎥
A	 ⎢ 

⎢ ⎥ 

⎢2 2 1 0 1⎥ 

⎣⎢3 2 1 1 0  ⎥⎦


Whhy are thhe ellements off thhe ddiagonall allways zero?


What is the order (n) of G? 


What is the size (m) of G?


How can you determine How can you determine mm from A?
from A? 
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Incidence Matrix

•	 The Incidence Matrix, B is a binary, n x m Ref [4] 

matrix,, where bijij = 1 if vii is an endvertex of v1 v4 

edge ej, otherwise it is zero. 

e1 
•	 The incidence matrix contains more The incidence matrix contains more 

e4 

e2 

4 

e5 
e6 e7 

v2 v3 
e3information than an adjacency matrix since


it distinguishes between edges.

⎡⎡ 11	 11 00 11 00 00 00 ⎤⎤ 

•	 Each column has two ones if each edge has 
B = 

⎢ 
⎢1 1 1 0 0 0 0⎥

⎥ 
two distinct vertices (i.e. when there are no ⎢0 0 1 0 1 1 1⎥ 
loops and the graph is connected). loops and the graph is connected). ⎣⎣ 

⎢00 00 00 11 11 11 11 ⎦⎦ 
⎥ 

v4 is an endvertex of e4, e5, e6, and e7 

13 



-

Vertex Degrees

•	 Given a vertex v in G, the degree of v in G, 

denoted by dG (v), is defined as the number 
of edges incident with v. 

•	 Which vertex has the highest degree in the 
Koningsberg problem? What is its degree? 

•	 In a multigraph, the sum of the degrees of 
its vertices is twice its size (number of 
edges). 

This is also known as the ‘Hand-Shaking Theorem’This is also known as the Hand Shaking Theorem 

•	 A vertex with the highest degree is called a 
hub in a graph (or network) hub in a graph (or network). 
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⎢ ⎥
=

Degrees from A and B

v1 v4e4 

e2 e5 
e6 e7 

• Given an adjacency matrix A Given an adjacency matrix, A, can wecan we 
determine d(vi) ? e1 

e v2
e3 v3 

• Can we determine d(vi) from incidence	 ⎡0 2 0 1⎤ 
matrix, B?	 ⎢2 0 1 0⎥ 


A = ⎢ ⎥ 
A 
⎢0 1 0 3  ⎥ 
⎢ 	 ⎥
⎣1 0 3 0  ⎦ 

⎡1 1 0 1 0 0 0⎤ 
⎢⎢ ⎥⎥ 
⎢1 1 1 0 0 0 0⎥B = 
⎢0 0 1 0 1 1 1⎥ 
⎢ ⎥
⎣0 0 0 1 1 1 1⎦ 



( ) ( )
( )

 
n n −1( )
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Complete Graphs
Complete Graphs

•	 What is the total number of edges, m, 

in a complete graph?in a complete graph? 

•	 For a graph of order n (i.e. n vertices), 
what is the number of total possible 
combinations if we pick two vertices atcombinations if we pick two vertices at 
a time? 

•	 Think Combination – out  of n objects, 
how many combinations are possible ifhow many combinations are possible if 
we pick k objects at a time? 

•	 This is given by the Binomial coefficient: 

⎛n (	 n⎛ ⎞⎞ n n −1)L ( n − k +1) ! 
⎜ ⎟ 	= = 
⎝k⎠ k(k −1)L 1 k!(n − k)! m

k ≤	n 

For a complete graph with order n, Kn, the 
size m is: 

⎛n⎞ n! ( (n n 	−1) n − 2)! 
= ⎜ ⎟ =	 = 

⎝2 ⎠ 2!(n − 2)! 2!(n − 2)! =

16 

K1: 0 K2: 1 K3: 3 K4: 6

K5: 10 K6: 15 K7: 21 K8: 28

Image by MIT OpenCourseWare.



Paths and Cycles
Paths and Cycles

•	 Paths and cycles are two classes of graphs. 

•	 For n ≥ 1, the path Pn is a graph of order n and size 
n‐1 whose vertices are v1, v2, …vn , and whose 
edges are vivi+1 for i=1,…, n‐1. 

P4 

•	 For n ≥ 3, the cycle Cn is a graph of order n and 
size n whose vertices can be labeled by v1, v2, …vn 

andd whhose eddges are v1vn, andd vivi+1 ffor i=1,2,n‐1. 
The cycle Cn is also referred to as an n‐cycle. C3 

••	 Note every cycle has vertices with the same Note every cycle has vertices with the same

number of degree: 2, and the number of edges in

the cycle = number of vertices C4
 C5 

P1 P2 

PP3 



Walks
Walks

•	 In a graph, we may wish to know if a route exists 

from one vertex to another‐ two vertices may not 
b dj t b t  b t d th be adjacent, but maybe connected throughh a 
sequence of edges. 

•	 A walk in a graph G is an alternating sequence of 
vertices and edges : vertices and edges :


v0 e0 v1 e1 v2…vk‐1 ek‐1 vk


where k ≥ 1 and ei is incident with vi and vi 1  for where k ≥ 1 and ei is incident with vi and vi+1 for 
each i = 0, 1, …k‐1 

•	 The vertices and edgges need not be distinct 
•	 The length of the walk W is defined as ‘k’ which is 

the number of occurrences of edges in the 
sequence. 

C e3 B e4 D e5 A 

what is the length of this walk? 

D
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C
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Trails and CircuitsTrails and Circuits 
•	 A trail in G is a walk with all of its edges e1 e2 

…ek distinct walks 

•	 A path is G is a walk with all of its vertices v0 v1 

…vk distinct 
•	 For vertices u and v in G a u v‐walk (or trail For vertices u and v in G, a u, v walk (or trail, 

path etc.) is one with initial vertex u and final 
vertex v. 

•	 A walk or trail of length at least 1 is closed if 
the initial and final vertex are the same. A 
closed trail is also called a circuit. 

trails 

i i 

closed 
walks 

paths 

circuits 

cycles 

Ref [4] 

•	 A cycle is a closed walk with distinct vertices 
except for the initial and final vertex, which 
are the same are the same. 



Examples
Examples

•	 The walk t is a trail of length 5: • The walk p is a path of length 4: 

t ( ) p = ((v1, e2, v3, e4, v2, e8 , v5, e7, v4)t = (v1, e2, v3, e3, v1, e1, v2, e8, v5, e7, v4) ) 
t is not a path since v1 appears twice 

e5 

e6 

e7 

v4 

e2 
e3 

e8 

e7 

e4 
v5 

v3 

e1 

e8 v1 v2	 e1 

e 

e5 

e6 

e7 

v4 

e2 
e4 

v5 
e3 

e8 v v2 v 

v3 

v1 

Ref [4]	 Ref [4] 



Examples
Examples

• The walk c is a cycle of length 4: 

c = ((v3, e4, v2, e8, v5, e7, v4, e5, v3)) 

e6 

e3 

v1 

e5 
v4 

e2 
e4 

v3 

e7 

e8 

e7 

v5 

Ref [4] 
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Connectivity
Connectivity


•	 A graph G is connected if every two 
vertices in G are joined by a path. 

•	 A graph is disconnected if it is not 
connected. 

•	 A path in G that includes every vertex in 
G is called a Hamiltonian path of G. 

•	 A cycle in G that includes every vertex in 
G is called a Hamiltonian cycle of G. G is called a Hamiltonian cycle of G. 

•	 If G contains a Hamiltonian cycle, then G 
is called a Hamiltonian graph is called a Hamiltonian graph. Image by MIT OpenCourseWare.



Trees
Trees

•	 A tree, T, is a connected graph that has 

no cycle as a subgraph 

•	 A tree is a simple graph on n vertices‐
a tree cannot have any loops or 
multiple edges between two vertices. 

•	 T has n‐1 edges and is connected. 
•	 A vertex v of a simple graph is called a 

leaf if d(v) = 1. ( )  

•	 Between every pair of distinct vertices 
in T there is exactly one path. 

•	 Trees are useful in modelingTrees are useful in modeling 
applications such as hierarchy in a 
business, directories in an operating 
syystem, compputer networks. 
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i=1i=1 1i 1 

d− vi( )= d+ vi( )=
i 1
∑ m

i 1
∑

i=1i=1

Directed Graphs
Directed Graphs

•	 A directed graph, or digraph G, consists of 

directed edges (represented with arrows) directed edges (represented with arrows). 

e
6v

v3	

v4e Ref [4] •	 In a directed edge uv, the vertex u is called 
the tail and vertex v is called the head of 5 

the edge the edge. 

2
3

v1 v2

e 
e ee v5 v5 

4e 
•	 The indegree d‐(v) of a vertex v is number 

1
of directed edges having v as head of directed edges having v as head. 

•	 The outdegree d+(v)of v is number of 
directed edges having v as tail. 

•	 For a digraph: 

i 

d ( ) d ( )d‐(vi) d+(vi) 

v1 

v2 

v5 

v3 

v4 

v5 

nn



Weighted Graphs
Weighted Graphs

•	 A connected graph G is called a 

weighted graph if each edge e in G is weighted graph if each edge e in G is 
assigned a number w(e), called the 
weight of e. 

•	 Depending on the application, the 
weight of an edge may be a measure of 
physical distance time consumed cost physical distance, time consumed, cost, 
capacity, or some other quantity of 
interest. 

•	 Given a walk W in a weighted graph, 
the weight of W, is the sum of the 
weights of the edges contained in W .weights of the edges contained in W

Traveling Salesman Problem 

The problem of finding the shortest route is that of 
finding a minimum weight Hamiltonian cycle of the 

weigghted compplete ggrapph Knn. 

25 

A traveling salesman wants to make a 
round trip through n cities, c1..ci..cn. 
He starts in 

tl
c1, visits each remaining 

d d i h h
city ci

exactly once, and ends in c1 where he 
started the trip. 

If he knows the distances between every 
pair of cities c

y
i and cj, how should he plan 

his round trip to make the total round-trip 
distance as short as possible?

http:c1..ci..cn


•
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Application Example:

Project Graphs and Critical Paths
Project Graphs and Critical Paths

•	 A project consists of a collection of tasks. 
•	 Each task has an associated completion time Each task has an associated completion time. 
•	 A task may depend on other tasks to be completed 

before it can be initiated. 
• A project graph can be constructed A project graph can be constructed, such that thesuch that the 

vertices represent tasks, and edges represent task 
dependencies. 

•	 The total time of a path is the sum of completion The total time of a path is the sum of completion 
time of each task on that path. 

•	 Th th ith l  t t t  l ti i th iti l thThe path with longest total time is the critical path 

•	 The critical path determines project completion 
time. 

Job # Immediate 
Predecessors 

Time 
[min] 

A 0 

BB AA 1010 

C  A  20  

DD B,CB,C 3030 

E  B,C  20  

F  E  40  

G  D,F  20  

H G 0 
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kk‐regular graphsregular graphs


•	 A graph g is called k‐regular if d(vi) = k for all k for allA graph g is called k regular if d(vi) 
vi in G. 

•	 The null graph is a 0 regular graph The null graph is a 0‐regular graph. 

•	 The cycle Cn is a 2‐regular graph. 

•	 A complete graph is an (n‐1) regular graph. 
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Distance


•	 The distance from vertix v1 to v2, d(v1, v2) 
in a connected graph G is the smallest g p 

length of all v1 ‐ v2 paths in G.


u 

•	 The shortest path through the network The shortest path through the network

from one vertex to another is also called

the ‘geodesic path’. 

x y z


•	 There maybe and often is more than one 
geodesic path between two vertices. 

d((x, w)) = 

t Ref [3] 

wv 

x-w path length 



Diameter
Diameter

•	 The greatest distance (longest path) 

between any two vertices in a graph G is 
called the diameter of G. 

•	 The diameter is the longest geodesic path 
between any two vertices in the network. 

•	 The diameter of a graph is an indication of 
how far apart are its vertices. 

Diameter of our World 
•	 We may model our world as a collection of 

people – each pperson is a vertex (node)) andp p  (

two people (vertices) are connected if they

are acquainted. What will be the diameter of

this graph (or social network)?


u

V

Image by MIT OpenCourseWare.



Small World Networks
Small World Networks

•	 Small world networks are ‘highly clustered’, 

yet have small characteristic path lengths. 

•	 Neural networks, power grids, collaboration 
graphs of film actors, and many other systems 
fform ‘‘small  ll world’ld’ networkks. 

•	 In small world networks there are ‘short cuts’ 
Duncan J. Watts & Steven H. Strogatz, “Collective that shorten the distance bet een ertices 
dynamics of ‘small world’ networks’, Nature, Vol. 393, 

that shorten the distance between vertices. 

4 June 1998 
•	 Signal propagation speed is enhanced in such 

systems; rumors can spread quickly the systems; rumors can spread quickly, the

number of legs in an air or train journey is

small, infectious diseases spread more easily

in a population etc.


Regular Small-world Random

Image by MIT OpenCourseWare.



References
References


[1]M E J Newman The structure and function of complex networks SIAM[1]M.E.J. Newman, “The structure and function of complex networks”, SIAM 
review, 2003 

[2] Duncan J. Watts & Steven H. Strogatz, “Collective dynamics of ‘small[2] Duncan J. Watts & Steven H. Strogatz, Collective dynamics of small 
world’ networks’, Nature, Vol. 393, 4 June 1998 

[3] Introduction to Grapph Theory, Koh Khee Mengg et. al[ ]  y  

[4] Graph Theory: Modeling, Applications, and Algorithms, Geir Agnarsson, 
Raymond Greenlaw 



MIT OpenCourseWare
http://ocw.mit.edu 

ESD.00 Introduction to Engineering Systems
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



