Introduction to Engineering Systems, ESD. 00

Networks

Lecture 7

Lecturers:
Professor Joseph Sussman
Dr. Afreen Siddiqi
TA: Regina Clewlow

MIT ESD

Massachusetts Institute of Technology
Engineering Systems Division

The Bridges of Königsberg

- The town of Konigsberg in $18^{\text {th }}$ century Prussia included two islands and seven bridges over the river Pregel.
- Residents had often thought about finding a walk such that starting from any of the four places, A, B, C, D, one crosses all

Image by MIT OpenCourseWare. of the seven bridges only once and then returns to the starting place.

Figure: |http://www.transtutors.com/homework|help/Discrete+Mathematics/Graph+Theory/konisberg --multigraph-bridge.aspx

- No one could find such a walk....

Graph Theory

- Leonhard Euler, in 1736, came up with the realization that this was not a problem of traditional geometry - measurements of angles, lengths, orientations do not matter.
- The only two things that mattered were whether the islands or banks are connected by a bridge, and
 by how many bridges.
- He modeled each place (island or bank) as a 'vertex' and each bridge as an 'edge' that connected the vertices.
- He mathematically proved that no such walk existed
 for the Koningsberg problem and founded an entirely new branch of mathematics along the way.

Images by MIT OpenCourseWare.
Figure: |http://www.transtutors.com/homework-
|help/Discrete+Mathematics/Graph+Theory/konisberg
|-multigraph-bridge.aspx

Modeling Example - I

There were six people: A, B, C, D, E, and F in a party and following handshakes among them took place:

A shook hands with B, C, D, E and F
B, in addition, shook hands with D and E
C, in addition, shook hands with F

Modeling Example - II

Consider a job application problem. There are three jobs $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ for which four applicants $A_{1}, A_{2}, A_{3}, A_{4}$ have applied.
A_{1} has applied for J_{1} and J_{2}
A_{2} has applied for J_{1}, J_{2} and J_{3}
A_{3} has applied for J_{1}
A_{4} has applied for J_{2} and J_{3}

This type of graph is called a bi-partite graph.
A bi-partite graph has two types of vertices (nodes) and there are no edges between nodes of the same type.

Ref [3]

Modeling Example - III

Image by MIT OpenCourseWare.
|http://cvpr.uni-muenster.de/teaching/ws10/projektseminarwsio/

Graphs

- A graph is a finite collection of vertices (or nodes) and edges (or links).
- To indicate a graph G has vertex set V and edge set E , we write $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each edge $\{x, y\}$ of G is usually denoted by $x y$, or $y x$.
- What is the vertex set $\mathrm{V}(\mathrm{G})$ and edge set $E(G)$ of the graph G shown?

$V(G)=\{a, b, c, d, e, f, g\}$
$E(G)=\{a b, b c, a d, d e, a f, f g, f e\}$

Adjacency

- If $x y$ is an edge of G, the x and y are adjacent vertices
- Two adjacent vertices are referred to as neighbors of each other
- The set of neighbors of a vertex v is called the open neighborhood (or simply
 neighborhood) of v and is denoted as $N(v)$
- For graph G shown on the right, what is:
- $N(a)$?
- $\mathrm{N}(\mathrm{f})$?
- $N(b)$?

Order and Size

Ref [3]

- The order of G (as shown on the right) is \qquad
- The size of G (as shown on the right) is \qquad
- A graph of size 0 is called an empty graph no two vertices are adjacent.
- A graph in which every pair of two vertices are adjacent is called a complete graph

Multi-Graphs

- So far we've considered only zero or one edge between a pair of vertices
- What if there are more edges?
- Consider Euler's graph for the Köningsberg problem
- The graph K is a multigraph
- A multigraph has finite number of edges (including zero) between any two vertices

Image by MIT OpenCourseWare.

- So all graphs are multigraphs but not vice versa
- No loops are allowed in a multigraph - a vertex cannot connect to itself

Adjacency Matrix

- In addition to set representation, we can use matrices to represent multigraphs
- We can create an adjacency matrix A such that its each (i, j) entry is the number of edges that exist between vertex i and vertex j
- For a multigraph G of order n with $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} . . \mathrm{v}_{\mathrm{n}}\right\}$, the adjacency matrix of G is $n \times n$
- $\mathrm{A}(\mathrm{G})=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{nxn}}$
- where a_{ij}, the (i,j)-entry in $\mathrm{A}(\mathrm{G})$ is the number of edges joining v_{i} and v_{j}

Ref [4]

$$
\left.A=\left\lvert\, \begin{array}{llll}
0 & 2 & 0 & 1 \\
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 3 \\
1 & 0 & 3 & 0
\end{array} ~\right.\right\rfloor
$$

there are three edges between v_{3} and v_{4}

Exercise

Draw G when $G(A)$ is:

$$
A=\left\lfloor\begin{array}{lllll}
0 & 1 & 0 & 2 & 3 \\
1 & 0 & 1 & 2 & 2 \\
0 & 1 & 0 & 1 & 1 \\
2 & 2 & 1 & 0 & 1 \\
3 & 2 & 1 & 1 & 0
\end{array}\right\rfloor
$$

Why are the elements of the diagonal always zero?
What is the order (n) of G ?
What is the size (m) of G ?
How can you determine m from A?

Incidence Matrix

- The Incidence Matrix, B is a binary, nx m matrix, where $b_{i j}=1$ if v_{i} is an endvertex of edge e_{j}, otherwise it is zero.
- The incidence matrix contains more information than an adjacency matrix since it distinguishes between edges.
- Each column has two ones if each edge has two distinct vertices (i.e. when there are no loops and the graph is connected).
Ref [4]

$$
\left.B=\left\lvert\, \begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right.\right]
$$

v_{4} is an endvertex of e_{4}, e_{5}, e_{6}, and e_{7}

Vertex Degrees

- Given a vertex v in G, the degree of v in G, denoted by $d_{G}(v)$, is defined as the number of edges incident with v.
- Which vertex has the highest degree in the Koningsberg problem? What is its degree?
- In a multigraph, the sum of the degrees of its vertices is twice its size (number of

Image by MIT OpenCourseWare.

- A vertex with the highest degree is called a hub in a graph (or network).

Degrees from A and B

- Given an adjacency matrix, A, can we determine $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)$?
- Can we determine $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)$ from incidence matrix, B ?

$$
\begin{aligned}
& A-\left\lfloor\left.\begin{array}{llll}
0 & 2 & 0 & 1 \\
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 3 \\
1 & 0 & 3 & 0
\end{array} \right\rvert\,\right. \\
& B=\left\lfloor\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right\rfloor
\end{aligned}
$$

Complete Graphs

- What is the total number of edges, m, in a complete graph?
- For a graph of order n (i.e. n vertices), what is the number of total possible combinations if we pick two vertices at a time?
- Think Combination - out of n objects, how many combinations are possible if we pick k objects at a time?

Image by MIT OpenCourseWare.

- This is given by the Binomial coefficient:

$$
\binom{n}{k}=\frac{n(n-1) \mathrm{L}(n-k+1)}{k(k-1) \mathrm{L} 1}=\frac{n!}{k!(n-k)!}
$$ size m is:

$$
k \leq n
$$

$$
m=\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)(n-2)!}{2!(n-2)!}=\frac{n(n-1)}{2}
$$

Paths and Cycles

- Paths and cycles are two classes of graphs.
- For $\mathrm{n} \geq 1$, the path P_{n} is a graph of order n and size $\mathrm{n}-1$ whose vertices are $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$, and whose edges are $v_{i} v_{i+1}$ for $i=1, \ldots, n-1$.

- For $\mathrm{n} \geq 3$, the cycle C_{n} is a graph of order n and size n whose vertices can be labeled by $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$ and whose edges are $v_{1} v_{n}$, and $v_{i} v_{i+1}$ for $i=1,2, n-1$. The cycle C_{n} is also referred to as an n -cycle.
- Note every cycle has vertices with the same number of degree: 2 , and the number of edges in the cycle = number of vertices

Walks

- In a graph, we may wish to know if a route exists from one vertex to another- two vertices may not be adjacent, but maybe connected through a sequence of edges.
- A walk in a graph G is an alternating sequence of vertices and edges :

$$
v_{0} e_{0} v_{1} e_{1} v_{2} \ldots v_{k-1} e_{k-1} v_{k}
$$

where $k \geq 1$ and e_{i} is incident with v_{i} and v_{i+1} for each $\mathrm{i}=0,1, \ldots \mathrm{k}-1$

Image by MIT OpenCourseWare.

$$
C e_{3} B e_{4} D e_{5} A
$$

what is the length of this walk?

- The vertices and edges need not be distinct
- The length of the walk W is defined as ' k ' which is the number of occurrences of edges in the sequence.

Trails and Circuits

- A trail in G is a walk with all of its edges $\mathrm{e}_{1} \mathrm{e}_{2}$... e_{k} distinct
- A path is G is a walk with all of its vertices $\mathrm{v}_{0} \mathrm{v}_{1}$...vk distinct
- For vertices u and v in G, a u, v-walk (or trail, path etc.) is one with initial vertex u and final vertex v.

Ref [4]

- A cycle is a closed walk with distinct vertices except for the initial and final vertex, which are the same.

Examples

- The walk t is a trail of length 5 :
$t=\left(v_{1}, e_{2}, v_{3}, e_{3}, v_{1}, e_{1}, v_{2}, e_{8}, v_{5}, e_{7}, v_{4}\right)$
t is not a path since v_{1} appears twice

Ref [4]

- The walk p is a path of length 4:

$$
p=\left(v_{1}, e_{2}, v_{3}, e_{4}, v_{2}, e_{8}, v_{5}, e_{7}, v_{4}\right)
$$

Examples

- The walk c is a cycle of length 4:

$$
c=\left(v_{3}, e_{4}, v_{2}, e_{8}, v_{5}, e_{7}, v_{4}, e_{5}, v_{3}\right)
$$

Ref [4]

Connectivitv

- A graph G is connected if every two vertices in G are joined by a path.
- A graph is disconnected if it is not connected.
- A path in G that includes every vertex in G is called a Hamiltonian path of G .
- A cycle in G that includes every vertex in G is called a Hamiltonian cycle of G .
- If G contains a Hamiltonian cycle, then G is called a Hamiltonian graph.

Image by MIT OpenCourseWare.

Massachusetts Institute of Technology
Engineering Systems Division

Trees

- A tree, T, is a connected graph that has no cycle as a subgraph
- A tree is a simple graph on n verticesa tree cannot have any loops or multiple edges between two vertices.
- Thas n-1 edges and is connected.
- A vertex v of a simple graph is called a leaf if $\mathrm{d}(\mathrm{v})=1$.
- Between every pair of distinct vertices in T there is exactly one path.
- Trees are useful in modeling applications such as hierarchy in a business, directories in an operating system, computer networks.

Image by MIT OpenCourseWare.

Directed Graphs

- A directed graph, or digraph G, consists of directed edges (represented with arrows).
- In a directed edge uv, the vertex u is called the tail and vertex v is called the head of the edge.
- The indegree $\mathrm{d}^{-}(\mathrm{v})$ of a vertex v is number of directed edges having v as head.
- The outdegree $\mathrm{d}^{+}(\mathrm{v})$ of v is number of directed edges having v as tail.
- For a digraph:

$$
\sum_{i=1}^{n} d^{-}\left(v_{i}\right)=\sum_{i=1}^{n} d^{+}\left(v_{i}\right)=m
$$

Weighted Graphs

- A connected graph G is called a weighted graph if each edge e in G is assigned a number $w(e)$, called the weight of e.
- Depending on the application, the weight of an edge may be a measure of physical distance, time consumed, cost, capacity, or some other quantity of interest.

Traveling Salesman Problem

A traveling salesman wants to make a round trip through n cities, $\mathrm{c}_{1} . . \mathrm{c}_{\mathrm{i}} . . \mathrm{c}_{\mathrm{n}}$. He starts in c_{1}, visits each remaining city c_{i} exactly once, and ends in c_{1} where he started the trip.

If he knows the distances between every pair of cities c_{i} and c_{j}, how should he plan his round trip to make the total round-trip distance as short as possible?

- Given a walk W in a weighted graph, the weight of W, is the sum of the weights of the edges contained in W.

The problem of finding the shortest route is that of finding a minimum weight Hamiltonian cycle of the weighted complete graph K_{n}.

Application Example:
 Project Graphs and Critical Paths

- A project consists of a collection of tasks.
- Each task has an associated completion time.
- A task may depend on other tasks to be completed before it can be initiated.
- A project graph can be constructed, such that the vertices represent tasks, and edges represent task dependencies.
- The total time of a path is the sum of completion time of each task on that path.
- The path with longest total time is the critical path
- The critical path determines project completion time.

Job \#	Immediate Predecessors	Time [min]
A		0
B	A	10
C	A	20
D	B,C	30
E	B,C	20
F	E	40
G	D,F	20
H	G	0

k-regular graphs

- A graph g is called k-regular if $d\left(v_{i}\right)=k$ for all v_{i} in G.
- The null graph is a 0-regular graph.
- The cycle C_{n} is a 2-regular graph.
- A complete graph is an (n-1) regular graph.

Image by MIT OpenCourseWare.

Distance

- The distance from vertix v_{1} to $\mathrm{v}_{2}, \mathrm{~d}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ in a connected graph G is the smallest length of all $v_{1}-v_{2}$ paths in G.
- The shortest path through the network from one vertex to another is also called the 'geodesic path'.
- There maybe and often is more than one geodesic path between two vertices.

Diameter

- The greatest distance (longest path) between any two vertices in a graph G is called the diameter of G.
- The diameter is the longest geodesic path between any two vertices in the network.
- The diameter of a graph is an indication of how far apart are its vertices.

Diameter of our World

- We may model our world as a collection of people - each person is a vertex (node) and two people (vertices) are connected if they are acquainted. What will be the diameter of this graph (or social network)?

Image by MIT OpenCourseWare.

Small World Networks

- Small world networks are 'highly clustered', yet have small characteristic path lengths.
- Neural networks, power grids, collaboration graphs of film actors, and many other systems form 'small world' networks.
- In small world networks there are 'short cuts' that shorten the distance between vertices.
- Signal propagation speed is enhanced in such systems; rumors can spread quickly, the number of legs in an air or train journey is small, infectious diseases spread more easily in a population etc.

Image by MIT OpenCourseWare.
Duncan J. Watts \& Steven H. Strogatz, "Collective dynamics of ‘small world’ networks’, Nature, Vol. 393, 4 June 1998

Massachusetts Institute of Technology
Engineering Systems Division

References

[1]M.E.J. Newman, "The structure and function of complex networks", SIAM review, 2003
[2] Duncan J. Watts \& Steven H. Strogatz, "Collective dynamics of 'small world’ networks’, Nature, Vol. 393, 4 June 1998
[3] Introduction to Graph Theory, Koh Khee Menget. al
[4] Graph Theory: Modeling, Applications, and Algorithms, Geir Agnarsson, Raymond Greenlaw

MIT OpenCourseWare
|http://ocw.mit.edu

ESD. 00 Introduction to Engineering Systems

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

