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Negative Feedback and

Exponential Decay
Exponential Decay 

•	 First‐order linear neggative feedback 
systems generate exponential decay 

•	 The net outflow is proportional to theThe net outflow is proportional to the

size of the stock


••	 The solution is given by: S(t) = S e ‐dt The solution is given by: S(t) = So e dt 

Net Inflow = -Net Outflow = -d*S •	 Examples: 
d: fractional decay rate [1/time]d: fractional decay rate [1/time] 

Reciprocal of d is average lifetime 
units in stock. 

Ref: Figure 8-6, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Phase Plot for Exponential DecayPlot for Exponential	 y
Phase	 Deca

•	 IIn thhe phhase‐pllot, thhe net rate off 
change is a straight line with negative 
slope 

•	 The origin is a stable equilibrium, a 
minor perturbation in state S increases 
ththe ddecay rate tto bring systtem bb k  t ack tot b i  
zero – deviations  from the equilibrium 
are self‐correcting 

•	 The goal in exponential decay is implicit 
and equal to zero 



Negative Feedback with Explicit Goals
Negative Feedback with Explicit Goals

•	 In general, negative loops have 

non‐zero goalls 

•	 Examples: 

•	 The corrective action determining 
net flow to the state of the 
system is : Net Inflow = f (S, S*) 

•	 Simpplest formulation is: 
Net Inflow = 
Discrepancy/adjustment time = 
(S*‐S)/AT 

Net inflow rate

Discrepancy (S* - S)

B

S* desired state
of the system

AT adjustment time

-

-

+

+

General Structure

 dS/dt

S state of the
system

Ref: Figure 8-9, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 

AT: adjustment time is also known 
as time constant for the loop 
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Phase Plot for Negative Feedback 
with Non‐Zero Goal with Non Zero Goal 

•	 In the phase‐plot, the net rate of change is 
a straigght line with sloppe ‐1//AT 

•	 The behavior of the negative loop with an 
explicit goal is also exponential decay inexplicit goal is also exponential decay, in 
which the state reaches equilibrium when 
S=S* 

•	 If the initial state is less than the desired 
state, the net inflow is positive and the 
state increases (at a diminishing rate) untilstate increases (at a diminishing rate) until 
S=S*. If the initial state is greater than S*, 
the net inflow is negative and the state 
falls until it reaches S* 



• ‐
4τ e‐4 = 0.02 1‐e‐4 = 0.98

Time Constants and Settlingg Time


•	 For a first order, linear system with 
negative feedback the system negative feedback, the system 
reaches 63% of its steady‐state value 
in one time constant, and reaches 
98% of its steady state value in 4 98% of its steady state value in 4

time constants.


•	 The steady‐state is not reached The steady state is not reached 
technically in finite time because the 
rate of adjustment keeps falling as 
the desired state is approached. the desired state is approached. 

Ref: Figure 8-12, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world  McGraw Hill 

Time Fraction of Initial Gap 
Remaining 

Fraction of Initial 
Gap Corrected 

0 0 1 1 1 00 e ‐0 = 1 1‐1 = 0 

τ e ‐1 = 0.37 1‐e ‐1 = 0.63 

2τ e ‐2 = 0.14 1‐e ‐2 = 0.87 

3τ e ‐3 = 0.05 1‐e ‐3 = 0.95 

2000

5τ e ‐5 = 0.007 1‐e ‐5 = 0.993 

Thinking and Modeling for a complex world, McGraw Hill, 2000
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Multipple Loopps

•


•


Inflows and outflows are combined 
into a ‘net rate’into a net rate 

If birth rate (inflow) and death rate 
( tfl  (outflow)) are combinedd: Net Birthbi N t Bi th 
Rate = bP‐dP 

• dP/dt = (b‐d)P 

• P(t)=Po+integral[net birth rate] 

Ref: Figure 8-?, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Linear Syystems

•	 In a linear system the rate equations are weighted sums of state variables 

and any exogenous variable: 

dS 
= a1S1 + a2S2 +L anSn + b1U1 +L bmUmdt 

p	 p p•	 The super pposition propertyy allows for summingg the behavior of each 
individual loop to get overall behavior. 

•	 Linear systems can be analyzed by reduction to their components. So linearLinear systems can be analyzed by reduction to their components. So linear 
systems, no matter how complex can be solved analytically to understand 
their dynamics. 

•	 Realistic systems are far from linear. 
•	 Linear system theory has dominated historically due to analytical tractability, 

but computers can now be readily used to simulate non linear behavior but computers can now be readily used to simulate non‐linear behavior 
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Non‐Linear First Order Syystems

•	 Population of real beings grow and 

stabilize,, fluctuate or even collappse. 
•	 The dominance of loops shifts over 

time – the  behavior is non‐linear 
•	 In real systems the fractional birth In real systems, the fractional birth 

and death rates change as 
population approaches the carrying 
cappacityy. 

•	 Carrying capacity is the population 
that can just be supported by the 
environment. b =

⎛ P ⎞ P: population f11⎜⎝⎝ CC 
⎟
⎠⎠ C: carrying capacity C: carrying capacity 

b: fractional birth rate •	 Assume C is constant (neither ⎛ P ⎞ d: fractional death rate 
consumed nor augmented), and d = f2⎜ ⎟

⎝ C ⎠model b and d to be functions of C.	 Reff: Figure 8-15, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Non‐Linear Rates:

b• Draw your estimate of b, d and net rate 
d 
(b-d))( Ref: Figure 8 17  J  Sterman  Business Dynamics: Systems Ref: Figure 8-17, J. Sterman, Business Dynamics: Systems 


Thinking and Modeling for a complex world, McGraw Hill, 2000
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Phase‐Plots for Non‐Linear Model
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Time‐Domain Plot 
for Population Growthfor Population Growth

•	 Top Figure: Initially P<<C. 

Population follows an S shapedPopulation follows an S shaped

trajectory, with inflection point at

(P/C inf). Net birth rate is maximum

at that point.


•	 Bottom Figure: Initially P>>C. P will 
decayy until it reaches C. 

•	 The P=C is a stable equilibrium 
pointpoint. 

Ref: Figure 8-20, J. Sterman, Business Dynamics: Systems 
Thinkingg  and Modelingg for a compplex world,, McGraw Hill,, 2000 

2

1

0
0

0

1

0
0 Time

0

(P/C)inf

tinf

N
et b

irth
 rate

Po
p
u
la

ti
o
n
/C

ar
ry

in
g
 c

ap
ac

it
y

N
et b

irth
 rate

Po
p
u
la

ti
o
n
/C

ar
ry

in
g
 c

ap
ac

it
y

Population Net Birth Rate

Image by MIT OpenCourseWare.



⎜ ⎟

Loggistic Growth

•	 A special case of S‐shaped growth is 

known as logistic growth or Verhulst 
growth (first developed in 1938) 

•	 In this model,, the net fractional ggrowth 
rate, g, is a linear function of the 
population. ⎛ P ⎞ 

g =	g *⎜1 − ⎟
⎝⎝ CC ⎠⎠ 

g*: maximum fractional growth 

•	 The net growth rate is then: 
dPdP	 ⎛⎛ PP ⎞⎞ 

= gP = g *⎜1 − ⎟P
dt	 ⎝ C ⎠ 

= g * P − g * P 2 

CC 



⎡ ⎤

Loggistic Growth

•	 The logistic model can be 

represented in a non‐linear analytic 
expression: 

P t( ) = ⎡ C
C 

⎤ 
1 + ⎢ 

C
− 1⎥e − g ** t 

⎣ P0 ⎦ 

••	 It has the property that maximum It has the property that maximum 
net growth rate occurs at exactly 
when population is at half the 
carrying capacitycarrying capacity. 



Spread of Infectious Disease: 
Ref: Figure 9 4  J  Sterman  Business Dynamics: Systems SI Model Ref: Figure 9-4, J. Sterman, Business Dynamics: Systems SI Model 
Thinking and Modeling for a complex world, McGraw Hill, 2000 

Total Population: N = S + I [people] 

dI I
Infection rate: IR = = Sc⋅ ⋅ i

dtdt NN 
dI I 

= (N − I)c⋅ ⋅ i
dt N 
dIdI ⎛⎛ II ⎞⎞ 

= ciI ⎜1− ⎟ Key assumptions:dt ⎝ N ⎠ 

dI I2 Total Population is constant (no migration, births, deaths etc) 

= ciIiI − cii No recovery – patients infected indefinitelyNo recovery patients infected indefinitely 
dt N Constant contact rate 

Key implication: 
A single infected individual causes everyone in the community 
conttract th  t the diseasedi  

[people/day] 
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population I
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Spread of Infectious Disease: 
Ref: Figgure 9-5,, J. Sterman,, Business D yynamics: Syystems SIR ModelSIR Model Thinking and Modeling for a complex world, McGraw Hill, 2000 

t f 

S =  N  - Io − R0 ∫ -IR dt( )+ 
tt0 

t f 

I = Io + ∫ (IR − RR )dt 
t0 

t f 

R = Ro + ∫ RR dt 
t0 

I Recovery rate: RR = 
I [people/day]
d 

d: average length of time people are infectious 

Key assumption:
Key assumption:

Patients remain sick for limited time then 

recover and develop immunity


Key implication:

Some people may not contract the disease


G  t  th  b  f i  f t dGreater the number of infected 
individuals, greater the recovery 
rate and then lower the total 
number of infected individuals – 
we gget a balancingg loo pp 

Infection rate
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RRB BR

RecoveryContagionDepletion

Average duration
of infectivity d

Infectivity i
Total

population N

Contact rate c

+
+ + + + --

Recovered
population R

Susceptible
population S

Infectious
population I

Image by MIT OpenCourseWare.



The Tipping Point

•	 The SIR model is second‐order (two independent stocks) 

•	 Unlike the SI model, the disease may die out without causing an epidemic – if  
recovery rate is faster than infection rate, infectious population will fall causing 
infection rate to fall. I may go to zero before everyone catches the disease. 

•	 When does an epidemic occur? 



Path Dependence


•	 Path dependence is a pattern of behavior in which small chance events, early 
iin ththe hihisttory of the systtem determiine ththe ultiltimate endd state, even whhen allllf th d t  t t t 

end states are equally likely at the beginning.


•	 Path dependence arises in systems whose dynamics are dominated by positive 
feedback processes. 

•	 A series of early random events essentially ‘lock’ the system into a particular 
equilibrium state. The theory of feedback and lock‐in has been extensively 
researched for a variety of socio‐technical systems in the context of business, 
technology and economics. 



The Polya Process
The Polya Process

•	 Consider a jar that is to be filled with stones – black  stones and white stones 

•	 Stones are added one at a time. 

•	 The color of stone added to the jar each time is determined by chance. 

•	 The likelihood of selecting a black stone in the jar depends on the proportionThe likelihood of selecting a black stone in the jar depends on the proportion 
of black stones already in the jar. 

••	 This rule makes the system path dependent This rule makes the system path‐dependent. 

•	 This process is called the ‘Polya’ process, after its inventor George Polya. 



The Polya Process

•	 Suppose the jar initially contains one black and one white stone. 
•	 The likelihood of choosing a black stone in the next step is then proportion of 

black stones already present i.e. ½ (or 50% chance) 
•	 Suppose, the next stone that gets picked does turn out to be black. 
•	 Now the proportion of black stones is 2//3. The chance of the next stone that is p p 


picked being black is now 66.6%.

•	 Again, suppose that the next stone does turn out to be black. There are now 

four stones in the jjar, and proportion of black stones is ¾, so the chance of the p p 

next stone being black is now 75%.


•	 Most likely, once we are through picking a number of stones and following the 
rule, the jjar will mostlyy have black stones. 

•	 Now, think what would have happened if initially we had turned up a white 
stone instead…. 

•	 The trajectory of the system and its end state depends on its early historyThe trajectory of the system and its end state depends on its early history 



The Polya Process


•	 The Polya process contains two 
feedback loops one positive feedback loops, one positive 
and one negative for each type 
of stone. 

•	 The greater the number of oneThe greater the number of one 
type of stone, the greater the 
chance of adding another stone 
of that type (positive yp (p

feedback).


• However, the greater the 
number of total stones, the , 
smaller the impact of adding 
another stone of that type on 
total proportion of that type 
(negative feedback). 

Ref: Figure 10-2, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Ten Realizations of the Polya Process


•	 Polya proved that the process always converges to a fixed proportion of black 
stones, and the particular proportion depends on early history. 

•	 He also proved that all proportions of black stones are equally likely in the 
long run!long run! Ref: Figure 10-3  J  Sterman  Business Dynamics: Systems Ref: Figure 10 3, J. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a complex world, McGraw Hill, 2000 
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• ‐

The Non‐Linear Polya Process


• In general In general,	 the rules determining flow are non‐linear functions the rules determining flow are non linear functions. 

•	 Suppose the likelihood of choosing a black stone is determined by a non‐linear 
f nction  s ch  that hen proportion of black stones rises abo e one half thefunction such that when proportion of black stones rises above one‐half, the 
likelihood of choosing a black stone rises by more than 50%, and if proportion 
is lower than one half, then the chance of choosing a black stone is much lower 
than 50%than 50% 



Dynamics of the Nonlinear 
Polya ProcessPolya Process 

System tends toward all one color or all the other depending on early history-
Winner takes all!Winner takes all! 

Ref: Figure 10-7, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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A run of black stones changes an initial largely white 
stone proportion to black stone dominance 
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