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From Last Time: Systems Thinking
From Last Time: Systems Thinking

•	 “we can’t do just one thing” – things are 

interconnected and our actions have 
numerous effects that we often do not 
anticipate or realize. 

•	 Many times our policies and efforts aimed 
towards some objective fail to produce the 
desired outcomes, rather we often make 
matters worsematters worse 

Ref: Figure 1-4, J. Sterman, Business Dynamics: Systems 

•	 Systems Thinking involves holistic Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Dynamic Complexity
Dynamic Complexity

•	 Dynamic (changing over time) 
•	 Governed by feedback erned by f (actions feedback on themselves) eedback on themselvGov eedback (actions f es) 
•	 Nonlinear (effect is rarely proportional to cause, and what happens locally often doesn’t 

apply in distant regions) 
•	 History‐dependent (taking one road often precludes taking others and determines your 

destination, you can’t unscramble an egg) 
•	 Adaptive (the capabilities and decision rules of agents in complex systems change over 

time) 
•	 Counterintuitive (cause and effect are distant in time and space) 
•	 Policy resistant (many seemingly obvious solutions to problems fail or actually worsen the 

situation) 
•	 Ch i d b d ff ( h l i f diff f hCharacterized by trade‐offs (the long run is often different from the shhort‐run response, 

due to time delays. High leverage policies often cause worse‐before‐better behavior while 
low leverage policies often generate transitory improvement before the problem grows 
worse. 



Modes of Behavior
Modes of Behavior


Ref: Figure 4-1, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 

Exponential Growth Goal Seeking

Time

Time

Time

Time

Time

Time

S-shaped Growth

Overshoot and CollapseGrowth with OvershootOscillation

Image by MIT OpenCourseWare.



e

Exponential Growth
Exponential Growth

•	 Arises from positive (self‐reinforcing) 

feedback.feedback. 
•	 In pure exponential growth the state of 

the system doubles in a fixed period of 
time. 
•	 Same amount of time to grow from


1 to 2, and from 1 billion to 2

billion!


•	 Self‐reinforcing feedback can be a 
declining loop as well (e.g. stock prices) 

•	 Common example: compound interestCommon example: compound interest, 
population growth 

Ref: Figure 4-2, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Exponential Growth: Examples
Exponential Growth: Examples
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Some Positive Feedbacks

underlying Moore’s Law
underlying Moore s Law


Ref: Exhibit 4-7  J  Sterman  Instructor’s Manual 
7 

Ref: Exhibit 4 7, J. Sterman, Instructor s Manual, 
Business Dynamics: Systems Thinking and Modeling for a 
complex world, McGraw Hill, 2000 
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a e s cou e ac e o

Goal Seeking
Goal Seeking

•	 Negative loops seek balance, and 

equilibrium, and try to bring the systemequilibrium, and try to bring the system

to a desired state (goal).


•	 Positive loops reinforce change, while 
negative loops counteract change oreg oop c a g 

disturbances.


•	 Negative loops have a process to 
comppare desired state to current state 
and take corrective action. 

•	 Pure exponential decay is characterized 
byy its half life – the time it takes for half 
the remaining gap to be eliminated. 

Ref: Figure 4-4, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world  McGraw Hill 2000Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Oscillation
Oscillation

•	 This is the third fundamental mode of 

behavior.vior.beha

•	 It is caused by goal‐seeking behavior, 
but results from constant ‘over‐shoots’but results from constant over shoots 
and ‘under‐shoots’ 

••	 The over shoots and under shoots result The over‐shoots and under‐shoots result 
due to time delays‐ the corrective action 
continues to execute even when system 
reaches desired state giving rise to thereaches desired state giving rise to the 
oscillations. 

Ref: Figure 4-6, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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•

Interpreting BehaviorInterpreting Behavior 
•	 Connection between structure and behavior helps in generating hypotheses 

•	 If exponential growth is observed ‐> some reinforcing feedback loop is dominant 
over the time horizon of behavior 

•	 If oscillations are observed, think of time delays and goal‐seeking behavior. 

•	 Past data shows historical behavior, the future maybe different. Dormantshows historical behavior future maybe different. Dormant Past data , the

underlying structures may emerge in the future and change the ‘mode’


•	 It is useful to think what future ‘modesmodes’ can be how to plan and manage them It is useful to think what future	 can be, how to plan and manage them 

•	 Exponential growth gets limited by negative loops kicking in/becoming dominant 
l tlater on 

10 



Limits of Causal Loop Diagrams
Limits of Causal Loop Diagrams

• Causal loop diagrams (CLDs) help 

– in capturing mental models, and 

– showing interdependencies and 

– feedback processes. 

• CLDs cannot 
– capture accumulations (stocks) and flowscapture accumulations (stocks) and flows 
– help in determining detailed dynamics 

Stocks, Flows and Feedback are central 
concepts in System Dynamics 



Stockss
Stock

•	 Stocks are accumulations, aggregations, 

summations over time 

•	 Stocks characterize/describe the state of the 
system 

•	 Stocks change with inflows and outflows 

•	 Stocks provide memory and give inertia by 
accumulating past inflows; they are the sources 
of delays. 

•	 Stocks, by accumulating flows, decouple the 
inflows and outflows of a system and cause 
variations such as oscillations over time. variations such as oscillations over time. 
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Mathematics of Stocksthema of Stocks
Ma	 tics 
•	 Stock and flow diagramming were based 

on a hydraulic metaphor 

•	 Stocks integrate their flows: 

• The net flow is rate of change of stock:


Ref: Figure 6-2, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Stocks and Flows Examples
Stocks and Flows Examples


Ref: Table 6-1, J. Sterman, Business Dynamics: Systems 
Snapshot Test: Thinking and Modeling for a complex world, McGraw Hill, 2000 

Freeze the system in time – things that are measurable in 
the snapshot are stocksthe snapshot are stocks. 
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Example
Example


Ref: Figure 7-2, J. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a complex world  McGraw Hill 2000
Thinking and Modeling for a complex world, McGraw Hill, 2000


15 

20

10

0

N
et

 f
lo

w
(u

n
it
s/

se
co

n
d
)

Image by MIT OpenCourseWare.



Example
Example


Ref: Figure 7-4, J. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a complex world  McGraw Hill 2000
Thinking and Modeling for a complex world, McGraw Hill, 2000
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Flow Rates
Flow Rates

•	 Model systems as networks of stocks 

and flows linked by information and flows linked by information

feedbacks from the stocks to the

rates.


•	 Rates can be influenced by stocks, 
other constants (variables that change 
very slowly) and exogenous variablesvery slowly) and exogenous variables 
(variables outside the scope of the 
model). 

•	 Stocks only change via inflows and 
outflows. 

17 
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Auxiliary Variables
Auxiliary Variables


Ref: Figure 8-?, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 

•	 Auxiliary variables are 
neither stocks nor flows, 
but intermediate 
conceppts for clarityy 

• Add enough structure to

make polarities clear


18 
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Aggregation and Boundaries ation and Boundaries ‐ II
Aggreg

• Identifyy main stocks in the syystem

and then flows that alter them.


•	 Choose a level of aggregation and 
b d i f th tboundaries for the system 

•	 Aggregation is number of internal 
stocks chosen 

•	 Boundaries show how far 
upstream and downstream (of the 
flflow)) the system iis modeledh	 d l d  

19 



Aggregation and Boundaries ation and Boundaries ‐ IIII
Aggreg
•	 One can ‘challenge the clouds’, i.e. 

make previous sources or sinks explicit make previous sources or sinks explicit. 
•	 We can disaggregate our stocks further 

to capture additional dynamics. 
•	 Stocks with short ‘residence time’ 

relative to the modeled time horizon 
can be lumped togethercan be lumped together 

•	 Level of aggregation depends on 
purpose of model 

•	 It is better to start simple and then add 
details. 

20 



From Structure to Behavior
From Structure to Behavior

•	 The underlying structure of the 

system defines the time‐based 
behavior. 

•	 Consider the simplest case: the 
state of the system is affected by its 
rate of change. 

Ref: Figure 8-1, & 8-2 J. Sterman, Business Dynamics: 
Systems Thinking and Modeling for a complex worldSystems Thinking and Modeling for a complex world, McGraw 
Hill, 2000 
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Population Growth
Population Growth


• 

• 

Ref: Figure 8-2, J. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a complex world  McGraw Hill 2000
Thinking and Modeling for a complex world, McGraw Hill, 2000 

Note: units of ‘b’, fractional 
growth rate are 1/time 
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Phase‐Plots for Exponential Growth
Phase Plots for Exponential Growth

•	 Phase plot is a graph of system state 

vs. rate of change of state vs. rate of change of state 

•	 Phase plot of a first‐order, linear 
positive feedback system is a straightpositive feedback system is a straight

line


•	 If the state of the system is zero If the state of the system is zero, the•	 the 
rate of change is also zero 

•	 The origin however is an unstable 
equilibrium. 
Ref: Figure 8-3, J. Sterman, Business Dynamics: Systems 
Thinkingg  and Modelingg for a compplex world,, McGraw Hill,, 2000 
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Time Plots Time Plots 
•	 Fractional growth rate g = 

0.7%/time unit 0.7%/time unit 

•	 Initial state state = 1. 

•	 State doubles every 100 time units 

•	 Every time state of the system

doubles, so too does the absolute

rate of increase


Ref: Figure 8-4, J. Sterman, Business Dynamics: Systems 
Thinkingg  and Modelingg for a compplex world,, McGraw Hill, 2000, 
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Rule of 70
Rule of 70


•	 Exponential growth is one of the most powerful processes. 
•	 The rate of increase grows as the state of the system grows. 
•	 It has the remarkable property that the state of the system doubles in fixed 

period of time. 
•	 If the doubling time is say 100 time units, it will take 100 units to go from 2 

to 4, and another 100 units to go from 1000 to 2000 and so on. 
•	 To find doubling time: 



Negative Feedback and

Exponential Decay
Exponential Decay 

•	 First‐order linear neggative feedback 
systems generate exponential decay 

•	 The net outflow is proportional to theThe net outflow is proportional to the

size of the stock


••	 The solution is given by: S(t) = S e ‐dt The solution is given by: S(t) = So e dt 

Net Inflow = -Net Outflow = -d*S •	 Examples: 
d: fractional decay rate [1/time]d: fractional decay rate [1/time] 

Ref: Figure 8-6, J. Sterman, Business Dynamics: Systems Reciprocal of d is average lifetime 
Thinking and Modeling for a complex world, McGraw Hill, 2000 units in stock. 
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Phase Plot for Exponential DecayPlot for Exponential	 y
Phase	 Deca

•	 IIn thhe phhase‐pllot, thhe net rate off 
change is a straight line with negative 
slope 

•	 The origin is a stable equilibrium, a 
minor perturbation in state S increases 
ththe ddecay rate tto bring systtem bb k  t ack tot b i 

zero – deviations  from the equilibrium

are self‐correcting


•	 The goal in exponential decay is implicit 
and equal to zero	 Ref: Figure 8-7, J. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a complex world  McGraw Hill 2000Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Negative Feedback with Explicit Goals
Negative Feedback with Explicit Goals

•	 In general, negative loops have 

non‐zero goalls 

•	 Examples: 

•	 The corrective action determining 
net flow to the state of the 
system is : Net Inflow = f (S, S*) 

•	 Simpplest formulation is: 
Net Inflow = 
Discrepancy/adjustment time = 
(S*‐S)/AT 

AT: adjustment time is also known 
as time constant for the loop 

Ref: Figure 8-9, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Phase Plot for Negative Feedback 
with Non‐Zero Goal with Non Zero Goal 

•	 In the phase‐plot, the net rate of change is 
a straight line with slope ‐1/AT 

•	 The behavior of the negative loop with an 
explicit goal is also exponential decay, in 
which the state reaches equilibrium when 
S=S* 

•	 If the initial state is less than the desired 
state, the net inflow is positive and the 
state increases (at a diminishing rate) until 
S=S*. If the initial state is greater than S*, 
the net inflow is negative and the state 
falls until it reaches S*	 Ref: Figure 8-10, J. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a complex world  McGraw Hill 2000Thinking and Modeling for a complex world, McGraw Hill, 2000 
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Half‐Lives
Half Lives

•	 Exponential decay cuts quantity remaining in half in fixed period of time 

•	 The ‘half‐life’ is calculated in similar way as doubling time. 
•	 The system state as a function of time is given by: 

State of 	 Initial Gap
system

S(t) = SS* − (SS* − SS0 )e− t /τ S(t)	 ( )e 

•	 Thhe exponenti lial term ddecays ffrom 1 to zero 
as t tends to infinity. 

•	 Half life is given by value of time th : 

Gap Remaining 

Desired 
State 



• ‐
4τ e‐4 = 0.02 1‐e‐4 = 0.98

Time Constants and Settlingg Time


•	 For a first order, linear system with 
negative feedback the system negative feedback, the system 
reaches 63% of its steady‐state value 
in one time constant, and reaches 
98% of its steady state value in 4 98% of its steady state value in 4 
time constants. 

•	 The steady‐state is not reached The steady state is not reached 
technically in finite time because the 
rate of adjustment keeps falling as 
the desired state is approached. the desired state is approached. 

Time Fraction of Initial Gap 
Remaining 

Fraction of Initial 
Gap Corrected 

0 0 1 1 1 00 e ‐0 = 1 1‐1 = 0 

τ e ‐1 = 0.37 1‐e ‐1 = 0.63 

2τ e ‐2 = 0.14 1‐e ‐2 = 0.87 

3τ e ‐3 = 0.05 1‐e ‐3 = 0.95 

5τ e ‐5 = 0.007 1‐e ‐5 = 0.993 

Ref: Figure 8-12, J. Sterman, Business Dynamics: Systems 
Thinking and Modeling for a complex world, McGraw Hill, 2000 
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