Introduction to Engineering Systems, ESD.00

Lecture 5

Lecturers:

Professor Joseph Sussman

Dr. Afreen Siddiqi

TA: Regina Clewlow

Massachusetts Institute of Technology **Engineering Systems Division**

Uncertainty-- outline

- Introduction
- Examples of uncertainty from the three projects
- Fundamentals
- Queuing
- "How little mistakes lead to big differences in outcomes?"--snowstorms, tsunamis and global climate change
- Lotteries-- utility
- Annuities
- □ Bayes' theorem

CSS characteristics

- Nonlinearity
- ☐ Feedback
- ☐ Uncertainty
- □ Emergent properties

- ☐ "Life is uncertain; eat dessert first
 - Anonymous (a refrigerator magnet)

☐ There is no such thing_{as} past possibilities and no such thing as future facts.

de Jouvenal (French philosopher)

- The goal of forecasting is not to predict the future but to tell you what you need to know to take meaningful action in the present.
- Example 1 Forecasting looks at how hidden currents in the present signal possible changes in direction for companies, societies and the world at large...... a forecast must have a logic to it.

Paul Saffo (HBR article entitled "Six Rules for Effective Forecasting")

- Complex, sociotechnical systems (CSSs) are dynamic and internally interconnected, as well as interconnected with other complex dynamic systems (e.g., the environment, the econom y).
- ☐ They vary in space and time (at different time scales for different components). Service is provided on complex networks. CSSs are stochastic in nature.

Joseph Sussman, Introduction to Transportation Systems

Uncertainty in your projects

- □ Internet Governance
- ☐ Air/HSR
- □ The Stroke Care Chain

Internet Governance

Uncertainties Demand

Air/HSR

Uncertainties Demand

Stroke Care Chain

Uncertainties Demand

Random Variables

Discrete-- Discrete probability distribution

Continuous-- probability density function (pdf)

Moments

Mean

Variance

Independence

Y= X1+X2, where X1 and X2 are random variables

Mean Y= Mean X1 + Mean X2 (always true whether or not X1 and X2 are independent)

Variance Y = Variance X1 + Variance X2 (true *only if* X1 and X2 are independent)

The Normal Distribution Central Limit Theory

Some examples: distribution of heights and weights in the U. S.

Engineering Systems Division

But not everything can be characterized by a normal distribution

A good example: Wealth

"Fat tails"-- you have Bill Gates and Warren Buffet out there at \$50 Billion

If heights had "fat tails", in the U.S. with its 300 Million people, you would expect to find a few people 50 feet tall.....

Queuing Theory
Interarrival times
Service times
Traffic intensity
Examples

"How little mistakes lead to big differences in outcomes?"--snowstorms and tsunamis

See two teaching notes

Engineering Systems Division

Lecture 6, # 2 on uncertainty

Uncertainty: Global Climate Change

Global Climate Change

People disagree, but everyone agrees there is a lot of uncertainty

Let's think about the kinds of uncertainty and how we could decide what to do

Engineering Systems Division

Decision-making under uncertainty

```
Decision-making under uncertainty
Lottery
I give you a choice:
$10
or nothing with probability = .5 and $20
with probability = .5
What do you pick?
```


Decision-making under uncertainty

```
Decision-making under uncertainty

Lottery
I give you a choice:
$10,000
or nothing with probability = .5 and $20,000 with probability = .5
What do you pick?
```

The concept of utility-- for most people, it's non-linear and it's asymmetric

What would the probability of \$20,000 have to be for you to accept the lottery and not the \$10,000 with certainty?

Uncertainty: Annuities

Annuities

Buy an annuity for \$X

You get \$Y/ year for the rest of your life....

Why it is a [good, bad] deal for you?
Why it is a [good, bad] deal for the company that sold you're the annuity?

What might you do instead of buying an annuity?

Uncertainty: High-impact, low probability events

Very high-impact, Very low-probability events Example--meteor strikes the earth

What should/can we do about that? It could be an extinction event

Uncertainty: Bayes' Theorem

Bayes' Theorem
Conditional probabilities

P(event A happens)= [P(event A/given B occurs) for all possible outcomes of B] * P(each possible outcome of B)]

Uncertainty: Bayes' Theorem

The MIT Snow Day example

Uncertainty: Bayes' Theorem

The birthday example: How many birthdays until a match?

More on Decision-making Under Uncertainty:

Decision-making under uncertainty

Decision trees

MIT OpenCourseWare http://ocw.mit.edu

ESD.00 Introduction to Engineering Systems Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.