Transportation Management Fundamental Concepts

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Nov 2006

Agenda

Introduction to Freight Transportation
Levels of Transportation Networks

Physical
Operational
Service

Impact of Transportation on Planning

2

Case Study: Shoes from China

How should I ship my shoes from Shenzhen to Kansas City?

- Shoes are manufactured, labeled, and packed at plant
- ~4.5M shoes shipped per year from this plant
- 6,000 to 6,500 shoes shipped per container (~700-750 FEUs / year)
- Value of pair of shoes ~\$35

Map showing Shenzhen, China and Kansas City, US removed due to copyright restrictions.

Pallets vs Slipsheets

Images of pallets removed due to copyright restrictions.

48 x 40 in. pallet is most popular in US (27% of all pallets—no other size over 5%)
1200 x 800 mm "Euro-Pallet" is the standard pallet in Europe

4

Containers

Characteristics

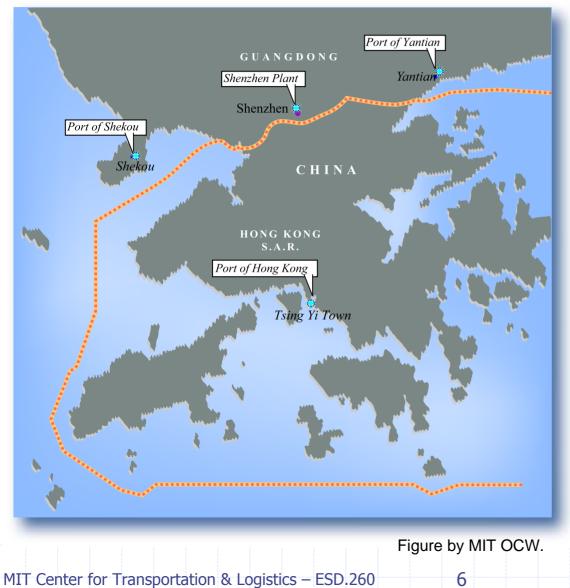
Airtight, Stackable, Lockable

♦ International ISO Sizes (8.5' x 8')

- TEU (20 ft)
 - Volume 33 M³
 - Total Payload 24.8 kkg
- FEU (40 ft)
 - Volume 67 M³
 - Total Payload 28.8 kkg
- Domestic US (~9' x 8.25')
 - 53 ft long
 - Volume 111 M³
 - Total Payload 20.5 kkg

Images removed due to copyright restrictions.

Inland Transport @ Origin



3 Port Options

- Shekou (30k)
 Truck
 - Truck
- Yantian (20k)
 - Rail
 - Truck
- Hong Kong (32k)
 - Rail
 - Truck
 - Barge
- 🚸 In Hong Kong
 - 9 container terminals

Ocean Shipping Options

- 40 shipping lines visit these ports each w/ many options
- Examples:
 - APL APX-Atlantic Pacific Express Service
 - Origins: Hong Kong (Sat) -> Kaohsiung, Pusan, Kobe, Tokyo
 - Stops: Miami (25 days), Savannah (27), Charleston (28), New York (30)
 - CSCL American Asia Southloop
 - Origins: Yantian (Sat) -> Hong Kong, Pusan
 - Stops: Port of Los Angeles (16.5 days)

Figure by MIT OCW. © Chris Caplice, MIT

MIT Center for Transportation & Logistics – ESD.260

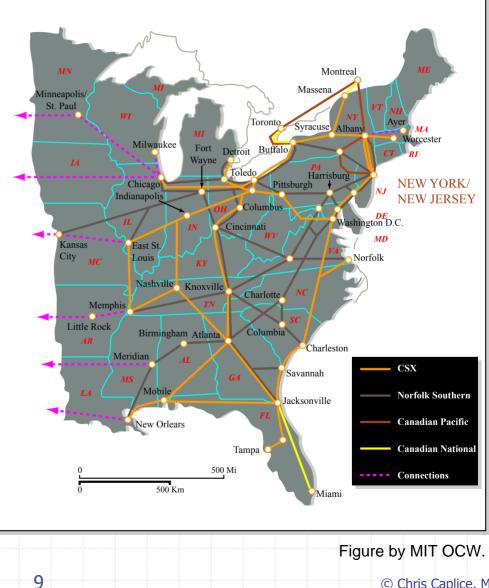
7

Inland Transportation in US

Port of New York / New Jersey

Maher Terminal

- Express Rail II NS RR
 - Double stack thru:
 - Harrisburg, Pittsburgh, Cleveland, Ft. Wayne, to Kansas City
- CSX RR (5-10 days)
 - Double stack thru:
 - Philadelphia, Baltimore, Washington, Pittsburgh, Stark, Indianapolis, to Kansas City
- Truckload (2.5 3 days)
 - NJ Turnpike to I-78W, I-81S, I-76/70 to Kansas City



Truck & Intermodal Operations

Over the Road Truck Power Unit & 53' Trailer

Photographs removed due to copyright restrictions.

Container on Flat Car (COFC) Double Stack

Trailer on Flat Car (TOFC)

MIT Center for Transportation & Logistics – ESD.260

10

© Chris Caplice, MIT

Photographs removed due to copyright restrictions.

Transport Options

So how do I ship shoes from Shenzhen to Kansas City?

What factors influence my decision?

Consider different types of networks

- Physical
- Operational
- Strategic

Transportation Networks

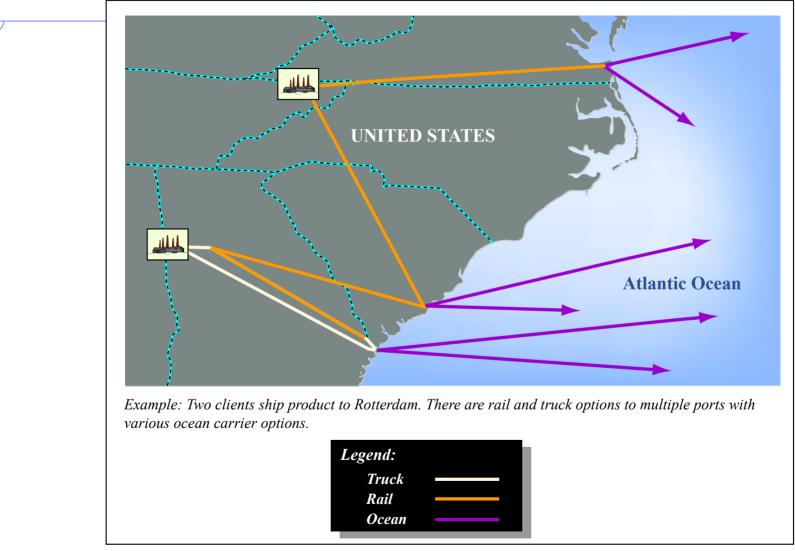


Figure by MIT OCW.

Transportation Networks

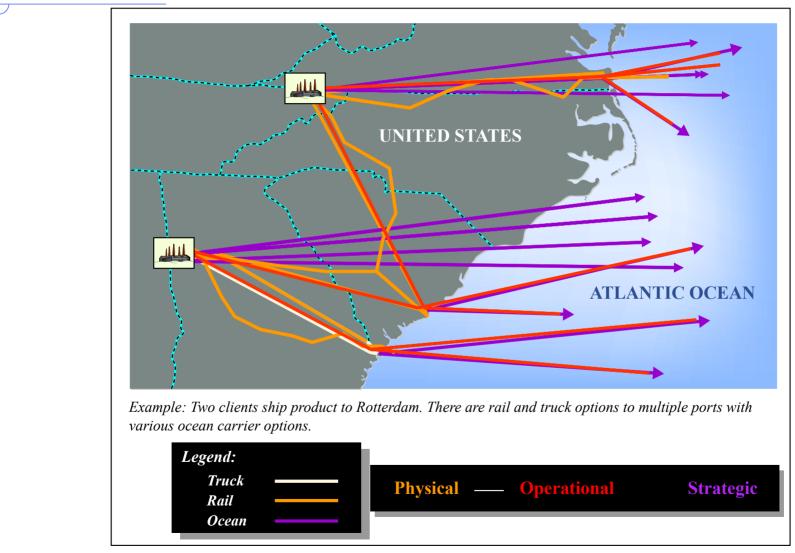
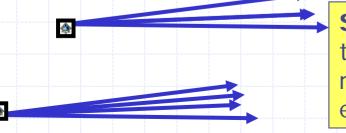


Figure by MIT OCW.

Three Layers of Networks

Physical Network: The actual path that the product takes from origin to destination. Basis for all costs and distance calculations – typically only found once.

Operational Network: The route the shipment takes in terms of decision points. Each arc is a specific mode with costs, distance, etc. Each node is a decision point.



Strategic Network: A series of paths through the network from origin to destination. Each represents a complete option and has end to end cost, distance, and service characteristics.

The Physical Network

Guideway

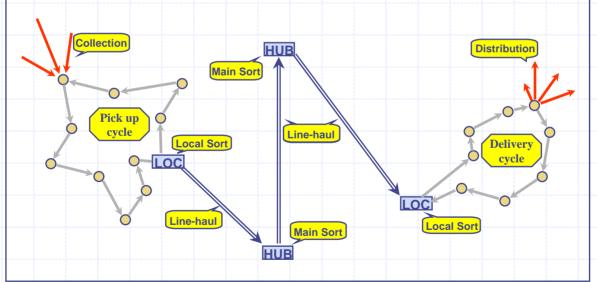
- Free (air, ocean, rivers)
- Publicly built (roads)
- Privately built (rails, pipelines)
- Terminals
 - Publicly built (ports, airports)
 - Privately built (trucking terminals, rail yards, private parts of ports and airports)
- Controls
 - Public (roads, air space, rivers)
 - Private (rail, pipelines)

The physical network is the primary differentiator between transportation systems in established versus remote locations.

Operational Network

Four Primary Components

- Loading/Unloading
 - Local-Routing (Vehicle Routing)
- Line-Haul
- Sorting

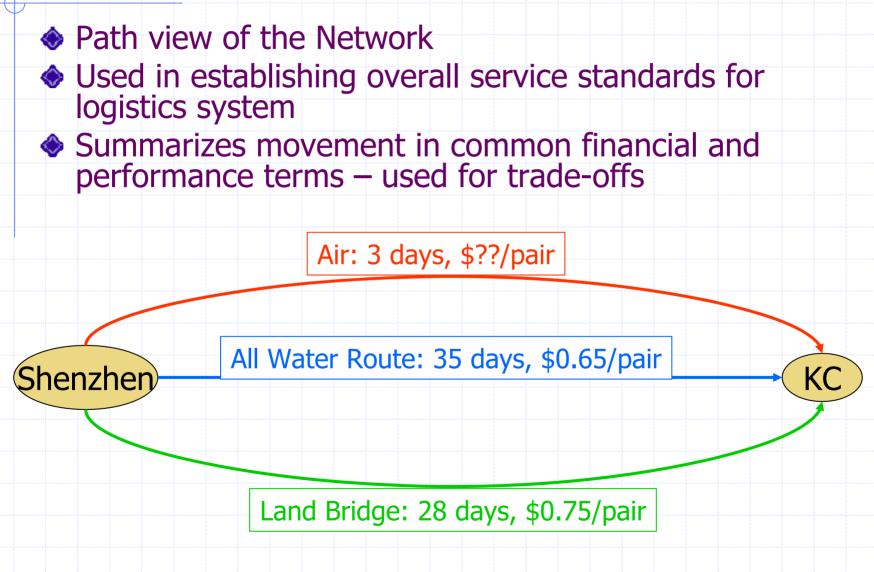


Node & Arc view of network Each Node is a decision point

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Strategic Network



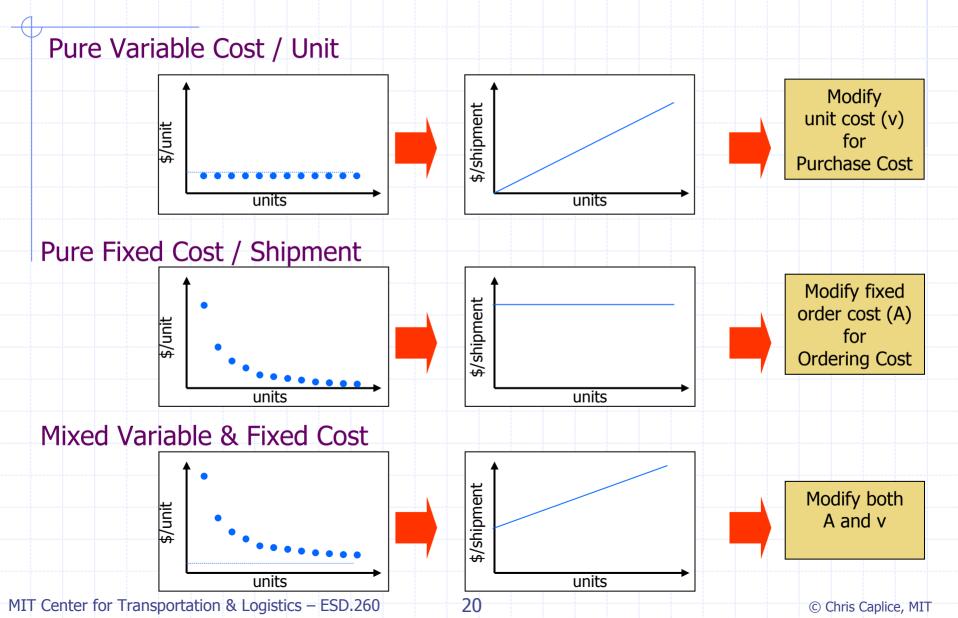
Transportation Impact on TC

$$TC(Q) = vD + A\left(\frac{D}{Q}\right) + rv\left(\frac{Q}{2} + k\sigma_L\right) + B_{SO}\left(\frac{D}{Q}\right) \Pr[SO]$$

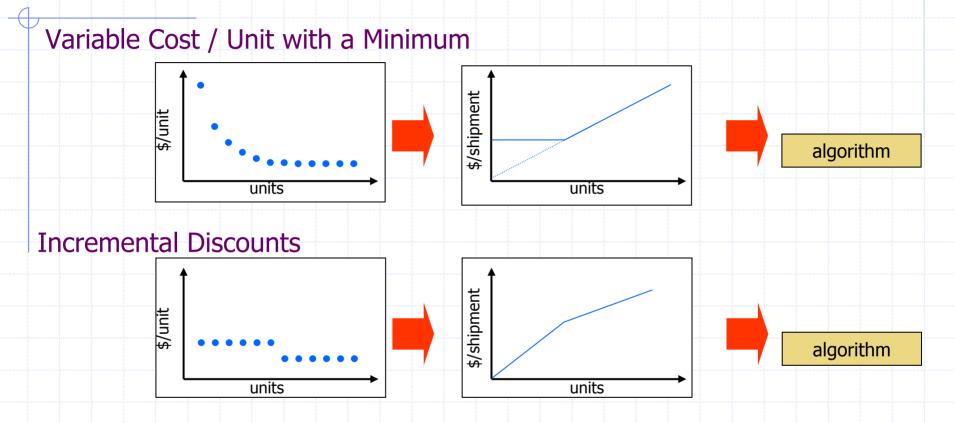
How does transportation impact our total costs?

- Cost of transportation
 - Value & Structure
- Lead Time
 - Value & Variability & Schedule
- Capacity
 - Limits on Q
- Miscellaneous Factors
 - Special Cases

Simple Transportation Cost Functions



More Complex Cost Functions



 Note that approach will be similar to quantity discount analysis in deterministic EOQ

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Lead Time & Lead Time Variability

Source	XL	σ
3PL	55	45
US	25	25
Pac Rim	85	35
EU	75	40

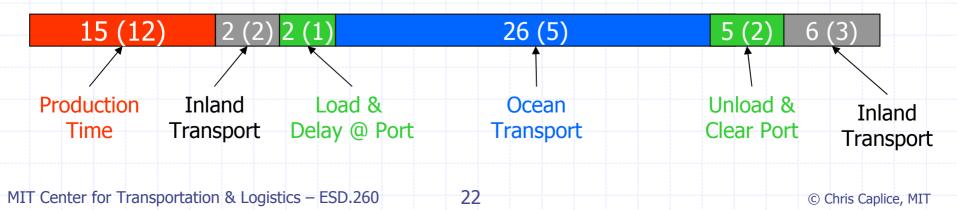
Major Packaged Consumer Goods Manufacturer

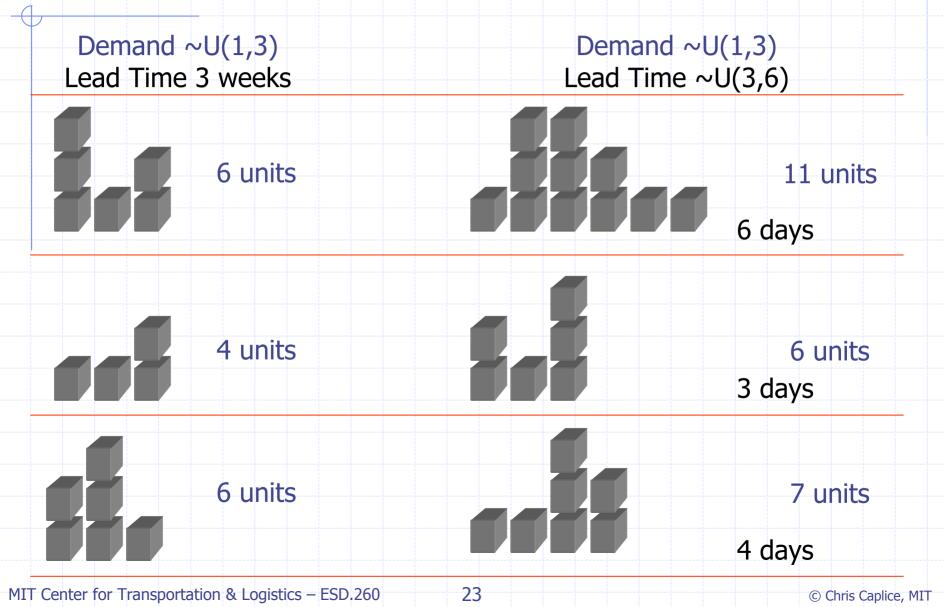
What is impact of longer lead times?

What is impact of lead time variability?

What are the sources of the lead time & variability?

Avg (std dev) Total Lead Time = 56 days





This is essentially the random sum of random numbers

- $D \sim (x_D, \sigma_D)$ items demanded / time, iid
- L~(x_L , σ_L) number of time periods

We want to find the characteristics of a new variable, y:

$$y = \sum_{i=1}^{L} d_i = d_1 + d_2 + d_3 + d_4 + \dots + d_L$$

Note that any observation of demand, d_i, consists of both a deterministic and a stochastic component:

$$\begin{vmatrix} d_i = E[D] + \tilde{d} \\ where \quad E[\tilde{d}] = 0 \quad and \quad \sigma_D^2 = 0 + \sigma_{\tilde{d}}^2 \end{vmatrix}$$

First, let's find the expected value, E[y]

$$E[y] = E[d_1 + d_2 + d_3 + ...d_L]$$

= $E[(E[d_1] + E[d_2] + E[d_3] + ...E[d_L]) + (\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + ...\tilde{d}_L)]$
= $E[LE[D]] + E[\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + ...\tilde{d}_L]$
= $E[D]E[L] + 0$
 $E[y] = E[D]E[L]$

What is the impact of lead time variability? Assumptions

- Lead Time and Demand are independent RVs
- D_{Leadtime} = Demand over lead time
- σ_{Leadtime} = Standard deviation of demand over L

$$E(D_{Leadtime}) = E(L)E(D)$$

$$\sigma_{Leadtime} = \sqrt{E(L)\sigma_D^2 + (E(D))^2 \sigma_D^2}$$

Questions we can answer:

- 1. What is the impact of lead time variability on safety stock?
- 2. What is the trade-off between length of lead time and variability?

Transportation Options

When is it better to use a cheaper more variable transport mode? Air – higher ν, smaller σ

• Rail – lower v, larger σ $\Delta TRC = TRC_a - TRC_r$

where,

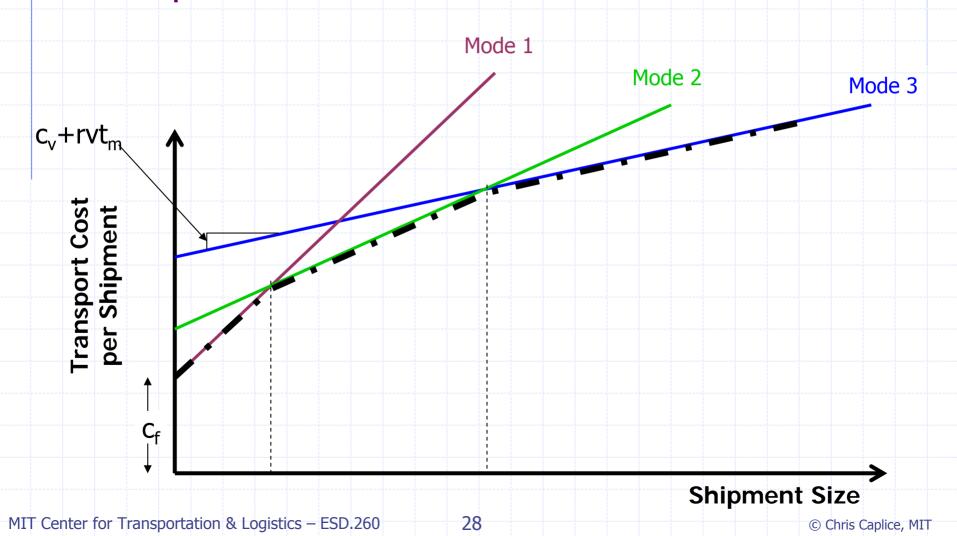
$$\Gamma RC_a = \sqrt{2A_a Dv_a r} + k_a \sigma_{L,a} v_a r + Dv_a$$

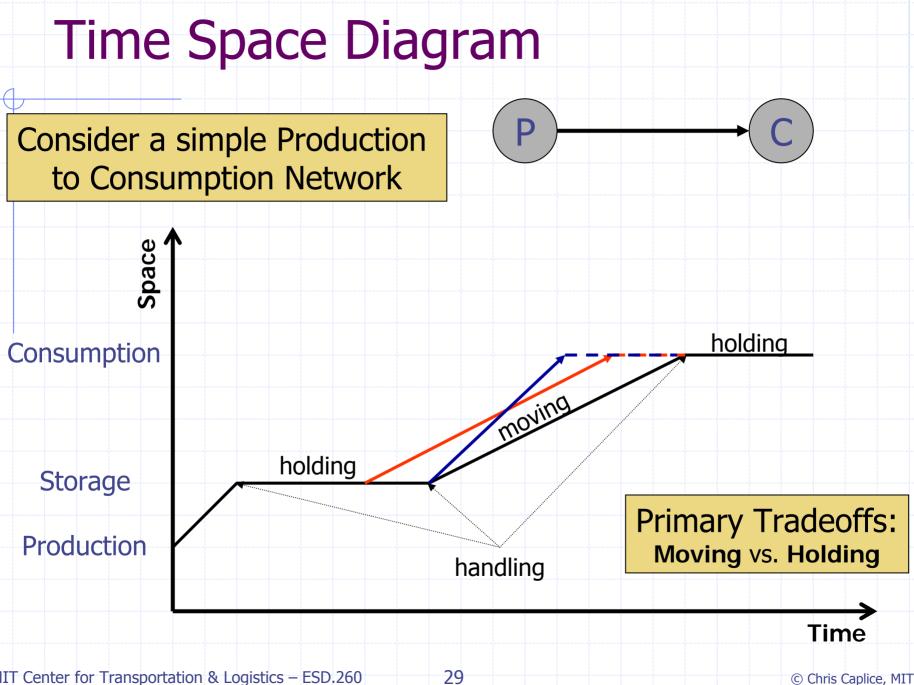
$$\mathrm{TRC}_{r} = \sqrt{2A_{r}Dv_{r}r} + k_{r}\sigma_{L,r}v_{r}r + Dv_{r}$$

Pick mode with smaller TRC

Transport vs. Inventory Costs

Multiple Modes





Mode Comparison Matrix

	Truck	Rail	Air	Water
Operational Cost	Moderate	Low	High	Low
Market Coverage	Pt to Pt	Terminal to Terminal	Terminal to Terminal	Terminal to Terminal
Degree of competition	Many	Few	Moderate	Few
Traffic Type	All Types	Low to Mod Value, Mod to High density	High value, Low density	Low value, High density
Length of haul	Short – Long	Medium — Long	Long	Med - Long
Capacity (tons)	10 – 25	50 – 12,000	5 – 12	1,000 – 6,000

Mode Comparison Matrix

	Truck	Rail	Air	Water
Speed	Moderate	Slow	Fast	Slow
Availability	High	Moderate	Moderate	Low
Consistency (delivery time)	High	Moderate	Moderate	Low
Loss & Damage	Low	High	Low	Moderate
Flexibility	High	Low	Moderate	Low

	Truck	Rail	Air	Water	Pipeline
BTU/ Ton-Mile	2,800	670	42,000	680	490
Cents / Ton-Mile	7.50	1.40	21.90	0.30	0.27
Avg Length of Haul	300	500	1000	1000	300
Avg Speed (MPH)	40	20	400	10	5

This is essentially the random sum of random numbers

- $D \sim (x_D, \sigma_D)$ items demanded / time, iid
- L~(x_L , σ_L) number of time periods

We want to find the characteristics of a new variable, y:

$$y = \sum_{i=1}^{L} d_i = d_1 + d_2 + d_3 + d_4 + \dots + d_L$$

Note that any observation of demand, d_i, consists of both a deterministic and a stochastic component:

$$\begin{vmatrix} d_i = E[D] + \tilde{d} \\ where \quad E[\tilde{d}] = 0 \quad and \quad \sigma_D^2 = 0 + \sigma_{\tilde{d}}^2 \end{vmatrix}$$

First, let's find the expected value, E[y]

$$E[y] = E[d_1 + d_2 + d_3 + ...d_L]$$

= $E[(E[d_1] + E[d_2] + E[d_3] + ...E[d_L]) + (\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + ...\tilde{d}_L)]$
= $E[LE[D]] + E[\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + ...\tilde{d}_L]$
= $E[D]E[L] + 0$
 $E[y] = E[D]E[L]$

Finding V[y]

$$y = E[d_1] + E[d_2] + E[d_3] + \dots E[d_L] + (\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + \dots \tilde{d}_L)$$

= $LE[D] + (\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + \dots \tilde{d}_L)$

Both terms are independent random variables – note that E[D] is a constant, and V[aX] = a²V[x] and that V[X+Y] = V[X]+V[Y], so that $\sigma_y^2 = \left(E[D]\right)^2 \sigma_L^2 + V\left[\left(\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + ...\tilde{d}_L\right)\right]$

Substituting $\lambda = \tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 + ... \tilde{d}_L$ We get $\sigma_y^2 = (E[D])^2 \sigma_L^2 + \sigma_\lambda^2$

By definition, we know that $\sigma_X^2 = E[X^2] - (E[X])^2$

Which gives us
$$\sigma_{\lambda}^2 = E[\lambda^2] - (E[\lambda])^2 = E[\lambda^2] - 0 = E[\lambda^2]$$

Substitute in so that,
$$\sigma_{\lambda}^{2} = E\left[\lambda^{2}\right] = E\left[\left(\tilde{d}_{1} + \tilde{d}_{2} + \tilde{d}_{3} + ...\tilde{d}_{L}\right)^{2}\right]$$

Recalling that, $(x_{1} + x_{2} + x_{3} + ... + x_{n})^{2} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + ... + x_{n}^{2} + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} x_{i}x_{j}$
We get that, $\sigma_{\lambda}^{2} = E\left[\lambda^{2}\right] = E\left[\tilde{d}_{1}^{2} + \tilde{d}_{2}^{2} + \tilde{d}_{3}^{2} + ...\tilde{d}_{L}^{2} + 2\sum_{i=1}^{L} \sum_{j=i+1}^{L} \tilde{d}_{i}\tilde{d}_{j}\right]$
 $= E\left[\tilde{d}_{1}^{2} + \tilde{d}_{2}^{2} + \tilde{d}_{3}^{2} + ...\tilde{d}_{L}^{2}\right] + 2E\left[\sum_{i=1}^{L} \sum_{j=i+1}^{L} \tilde{d}_{i}\tilde{d}_{j}\right]$

Recalling that if random variables X and Y are independent, then E[XY]=E[X]E[Y], and the E(d~)=0, the second term goes to 0, thus,

$$\sigma_{\lambda}^{2} = E\left[\lambda^{2}\right] = E\left[\tilde{d}_{1}^{2} + \tilde{d}_{2}^{2} + \tilde{d}_{3}^{2} + ...\tilde{d}_{L}^{2}\right]$$

$$= E\left[\mu_{1} + \mu_{2} + \mu_{3} + ...\mu_{L}\right] \quad where \ \mu_{i} = \tilde{d}_{i}^{2}$$

$$= E\left[L\right]E\left[\mu\right] = E\left[L\right]E\left[\tilde{d}_{i}^{2}\right]$$

$$Which, again, is a random sum of random numbers! (I substituted in the μ to make it read easier)$$

Starting with, $\sigma_{\lambda}^2 = E[L]E[\tilde{d}_i^2]$

We recall that for any random variable X, $\sigma_X^2 = E[X^2] - E[X]^2$ or $E[X^2] = \sigma_X^2 + E[X]^2$

We get,
$$E\left[\tilde{d}^2\right] = \sigma_{\tilde{d}}^2 + E\left[\tilde{d}\right]^2 = \sigma_{\tilde{d}}^2 + 0 = \sigma_D^2$$

So that, $\sigma_{\lambda}^2 = E[L]E[\tilde{d}_i^2] = E[L]\sigma_D^2$

Combining terms, $\sigma_y^2 = (E[D])^2 \sigma_L^2 + \sigma_\lambda^2$ $\sigma_y^2 = (E[D])^2 \sigma_L^2 + E[L] \sigma_D^2$

Questions?