Inventory Management Special Cases Probabilistic Demand

Chris Caplice
ESD.260/15.770/1.260 Logistics Systems
Oct 2006

Special Inventory Cases

Class A items - worth spending more time on

- Class C items - worth spending less time on
- Fashion or Perishable items - worth handling differently
- Indentured items - worth handling differently

What form of inventory policy?

- No hard and fast rules, but some rules of thumb

| | When \& how to spend more
 time to manage A^{\prime} inventory |
| :---: | :---: | :---: |
| Type of
 Item, Continuous
 Review
 A Items Periodic
 Review
 B Items (s, S)
 (R, Q) (S, S)
 C Items | |

When \& how to spend less time to manage or reduce ' C^{\prime} inventory

Comparison of Approaches

	A ltems	B Items	C Items
Type of records	Extensive, Transactional	Moderate	None - use a rule
Level of Management Reporting	Frequent (Monthly or more)	Infrequently Aggregated	Only as Aggregate
I nteraction with Demand	Manual input Ascertain predictability Manipulate (pricing etc.)	Modified Forecast (promotions etc.)	Simple Forecast at best
I nteraction with Supply	Actively Manage	Manage by Exception	None
I nitial Deployment	Minimize exposure (high v)	Steady State	Steady State
Frequency of Policy Review	Very Frequent (monthly or more)	Moderate - Annually or Event Based	Very Infrequent
I mportance of Parameter Precision	Very High - accuracy worthwhile	Moderate - rounding \& approximation is ok	Very Low
Shortage Strategy	Actively manage (confront)	Set service levels \& manage by exception	Set \& forget service levels
Demand Distribution	Consider alternatives to Normal as situation fits	Normal	N/A

Managing Class A Inventory

- When does it make sense to spend more time?
- Tradeoff between complexity and 'other' costs
- Is the savings worth the extra effort?
- Adding precision
- Finding 'optimal’ parameters
- Using more complex policies

$$
T C=\begin{aligned}
& \text { Dictates whether item is Class A or not } \\
& T C=A\left(\frac{D}{Q}\right)+v r\left(\frac{Q}{2}+k \sigma_{L}\right)+B_{1}\left(\frac{D}{Q}\right) P[S O] \\
& v D+A\left(\frac{D}{Q}\right)+v r\left(\frac{Q}{2}+k \sigma_{L}\right)+B_{2} v\left(\frac{D}{Q}\right) \sigma_{L} G_{u}(k)
\end{aligned}
$$

Managing Class A Inventory

Two Types of Class A items:

- Fast moving but cheap (big D little $v \rightarrow \mathrm{Q}>1$)
- Slow moving but expensive (big v little $\mathrm{D} \rightarrow \mathrm{Q}=1$)
- Impacts the probability distribution used
- Fast Movers - Normal Distribution
- Good enough for B items
- OK for A items if $x_{L} \geq 10$ or $x_{L+R} \geq 10$
- Slow Movers - Poisson Distribution (\& others)
- More complicated to handle
- Ok for A items if $X_{L}<10$ or $X_{L+R}<10$

Fast Moving A Items

- Finding Better (s,Q) Parameters

- Solve for k^{*} and Q^{*} simultaneously (why?)
- Assume ~Normal \& B_{1} (Cost per Stockout Occasion)

$$
T R C=A\left(\frac{D}{Q}\right)+v r\left(\frac{Q}{2}+k \sigma_{L}\right)+B_{1}\left(\frac{D}{Q}\right) p_{x \geq}(k)
$$

$$
\begin{gathered}
\frac{\partial T R C}{\partial Q}=0 \quad \frac{\partial T R C}{\partial k}=0 \\
\frac{\partial T R C}{\partial Q}=-A\left(\frac{D}{Q^{2}}\right)+\frac{v r}{2}-B_{1}\left(\frac{D}{Q^{2}}\right) p_{k \geq}(k)=0 \\
\frac{\partial T R C}{\partial k}=0+v r \sigma_{L}-B_{1}\left(\frac{D}{Q}\right) f_{x}(k)=0
\end{gathered}
$$

Note that:
$\frac{\partial p_{k>}(k)}{\partial k}=-f_{x}(k)$
$f_{x}(k)=\frac{e^{\left(\frac{-x^{2}}{2}\right)}}{\sqrt{2 \pi}}$

Fast Moving A Items

- Finding Better (s, Q) Parameters
- End up with two equations
- How do we solve for (s^{*}, Q^{*})?
- Will the new optimal Q* be > or < than the EOQ?
- Will the optimal k^{*} be > or < than the old k ?
- What is the impact on safety stock? Cycle stock?

$$
\begin{aligned}
& Q^{*}=E O Q \sqrt{1+\frac{B_{1} p_{x>}(k)}{A}} \\
& k^{*}=\sqrt{2 \ln \left(\frac{D B_{1}}{\sqrt{2 \pi} Q v r \sigma_{L}}\right)}
\end{aligned}
$$

Fast Moving A Items

- Establish an (s, S) policy
- If IP<s then order up to S items (=S-IP)
- More complicated due to 'undershoots'
- See SPP Section 8.5
- Establish an ($\mathrm{R}, \mathrm{s}, \mathrm{S}$) policy
- Every R time units, if IP <s then order up to S items (=S-IP)
- Even more complicated - but can be programmed
- See SPP Section 8.6

Slow Moving A Items

- Normal distribution may not make sense - why?
- Poisson distribution
- Probability of x events occurring w/in a time period
- Mean = Variance $=\lambda$

$$
\begin{aligned}
& p_{k}\left(x_{0}\right)=\frac{e^{-\lambda} \lambda^{x_{0}}}{x_{0}!} \quad \text { for } x_{0}=0,1,2, \ldots \\
& p_{k \leq}\left(x_{0}\right)=\sum_{k=0}^{x_{0}} \frac{e^{-\lambda} \lambda^{k}}{k!}
\end{aligned}
$$

```
In Excel:
    pk(x
    p
```


Example

- Suppose demand $\sim P(\lambda=0.8)$ items per week. We want to set an (R, S) policy for an IFR=. 90 where $\mathrm{R}=1 \mathrm{wk}$
* We know that
- IFR $=1-(E[U S] / E[D e m a n d ~ i n ~ P e r i o d])=1-(E[U S] / \lambda)$
- $E[U S]=(1-\mathrm{IFR}) \lambda=(1-.90)(.8)=0.08$ units
- How do I find an S so that EUS ≤ 0.08 ?

x	$P[x]$	$F[x]$	$L[x]$
0	44.9%	44.9%	
1	35.9%	80.9%	
2	14.4%	95.3%	
3	3.8%	99.1%	
4	0.8%	99.9%	
5	0.1%	100.0%	
6	0.0%	0.0%	

Loss Function for Discrete Function

- We find the loss function, $L\left(X_{i}\right)$, for each value of X given the cumulative probability $\mathrm{F}\left(\mathrm{X}_{\mathrm{i}}\right)$.
- Start with first value
- $\mathrm{L}\left(\mathrm{X}_{1}\right)=$ mean $-\mathrm{X}_{1}$
- $L\left(X_{2}\right)=L\left(X_{1}\right)-\left(X_{2}-X_{1}\right)\left(1-F\left(X_{1}\right)\right)$
- $L\left(X_{3}\right)=L\left(X_{2}\right)-\left(X_{3}-X_{2}\right)\left(1-F\left(X_{2}\right)\right)$
- $\mathrm{L}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{L}\left(\mathrm{X}_{\mathrm{i}-1}\right)-\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}-1}\right)\left(1-\mathrm{F}\left(\mathrm{X}_{\mathrm{i}-1}\right)\right)$

x	$P[x]$	$F[x]$	$\mathrm{L}[\mathrm{x}]$
0	44.9%	44.9%	0.80
1	35.9%	80.9%	0.25
2	14.4%	95.3%	0.06
3	3.8%	99.1%	0.01
4	0.8%	99.9%	0.009
5	0.1%	100.0%	0.0088
6	0.0%	0.0%	0.00878

- So, set $\mathrm{S}=2$ since $\mathrm{L}(2)=0.06$
- Policy is order up to 2 units every week

More methods in SPP Section 8.3

Managing "C" Inventory

Establish simple reorder rules

- Periodic rather than continuous
- Set for all C items collectively (if possible)
- Look to reduce the number of order cycles
- Identify \& Dispose of Dead Inventory
- Which items to dispose?
- Look at DOS (days of supply) for each item = IOH/D
- Consider getting rid of items that have DOS > x years
- How much to get rid of?
- Decision rule: IOH - EOQ - D(v-salvage)/(vr)
- What do you do with it?
- When can you not never get rid of C or D or FF items?

Managing "C" Inventory

To Stock or Not to Stock?

- Buy-to-order versus buy-to-stock decision
- Factors
- System cost for stocking an item
- Variable cost differential for buy-to-order vs buy-to-stock
- Cost of temporary backorder
- Decision Rule in SPP Section 9.5
- Essentially trade off between cost to order and frequency of demand

Questions? Comments? Suggestions?

