Inventory Management Special Cases Probabilistic Demand

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

Special Inventory Cases

Class A items – worth spending more time on
 Class C items – worth spending less time on
 Fashion or Perishable items – worth handling differently

Indentured items – worth handling differently

2

What form of inventory policy?

No hard and fast rules, but some rules of thumb

When & how to spend more time to manage A' inventory

	Type of Item,	Continuous Review	Periodic Review	
	A Items	(s, S)	(R, s, S)	\triangleright
	B Items	(s,Q)	(R, S)	
<	C Items		Manual ~ (R,S)	

When & how to spend less time to manage or reduce 'C' inventory

MIT Center for Transportation & Logistics – ESD.260

Comparison of Approaches

	A Items	B Items	C Items
Type of records	Extensive, Transactional	Moderate	None – use a rule
Level of Management Reporting	Frequent (Monthly or more)	Infrequently - Aggregated	Only as Aggregate
Interaction with Demand	Manual input Ascertain predictability Manipulate (pricing etc.)	Modified Forecast (promotions etc.)	Simple Forecast at best
Interaction with Supply	Actively Manage	Manage by Exception	None
Initial Deployment	Minimize exposure (high v)	Steady State	Steady State
Frequency of Policy Review	Very Frequent (monthly or more)	Moderate – Annually or Event Based	Very Infrequent
Importance of Parameter Precision	Very High – accuracy worthwhile	Moderate – rounding & approximation is ok	Very Low
Shortage Strategy	Actively manage (confront)	Set service levels & manage by exception	Set & forget service levels
Demand Distribution	Consider alternatives to Normal as situation fits	Normal	N/A

MIT Center for Transportation & Logistics – ESD.260 4

© Chris Caplice, MIT

Managing Class A Inventory

When does it make sense to spend more time?

- Tradeoff between complexity and `other' costs
- Is the savings worth the extra effort?

Adding precision

- Finding 'optimal' parameters
- Using more complex policies

Dictates whether item is Class A or not

$$TC = vD + A\left(\frac{D}{Q}\right) + vr\left(\frac{Q}{2} + k\sigma_L\right) + B_1\left(\frac{D}{Q}\right)P[SO]$$
$$TC = vD + A\left(\frac{D}{Q}\right) + vr\left(\frac{Q}{2} + k\sigma_L\right) + B_2v\left(\frac{D}{Q}\right)\sigma_LG_u(k)$$

5

Managing Class A Inventory

Two Types of Class A items: • Fast moving but cheap (big D little $v \rightarrow Q > 1$) • Slow moving but expensive (big v little $D \rightarrow Q=1$) Impacts the probability distribution used Fast Movers - Normal Distribution Good enough for B items • OK for A items if $x_1 \ge 10$ or $x_{1+R} \ge 10$ Slow Movers – Poisson Distribution (& others) More complicated to handle • Ok for A items if $x_1 < 10$ or $x_{1+R} < 10$

Fast Moving A Items

Finding Better (s,Q) Parameters

- Solve for k* and Q* simultaneously (why?)
- Assume ~Normal & B₁ (Cost per Stockout Occasion)

$$TRC = A\left(\frac{D}{Q}\right) + vr\left(\frac{Q}{2} + k\sigma_L\right) + B_1\left(\frac{D}{Q}\right)p_{x\geq}(k)$$

$$\frac{\partial TRC}{\partial Q} = 0 \qquad \frac{\partial TRC}{\partial k} = 0$$
$$\frac{\partial TRC}{\partial Q} = -A\left(\frac{D}{Q^2}\right) + \frac{vr}{2} - B_1\left(\frac{D}{Q^2}\right)p_{k\geq}(k) = 0$$
$$\frac{\partial TRC}{\partial k} = 0 + vr\sigma_L - B_1\left(\frac{D}{Q}\right)f_x(k) = 0$$

MIT Center for Transportation & Logistics – ESD.260

Note that:

 $\frac{\partial p_{k\geq}(k)}{\partial k} = -f_x(k)$

 $f_x(k) = \frac{e^{\left(\frac{-x^2}{2}\right)}}{\sqrt{2\pi}}$

Fast Moving A Items

Finding Better (s,Q) Parameters

- End up with two equations
- How do we solve for (s*, Q*)?
- Will the new optimal Q* be > or < than the EOQ?</p>
- Will the optimal k* be > or < than the old k?</p>
- What is the impact on safety stock? Cycle stock?

$$Q^* = EOQ\sqrt{1 + \frac{B_1 p_{x\geq}(k)}{A}}$$
$$k^* = \sqrt{2\ln\left(\frac{DB_1}{\sqrt{2\pi}Qvr\sigma_L}\right)}$$

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Fast Moving A Items

Establish an (s,S) policy

- If IP<s then order up to S items (=S-IP)</p>
- More complicated due to `undershoots'
- See SPP Section 8.5
- Establish an (R,s,S) policy
 - Every R time units, if IP<s then order up to S items (=S-IP)</p>
 - Even more complicated but can be programmed

9

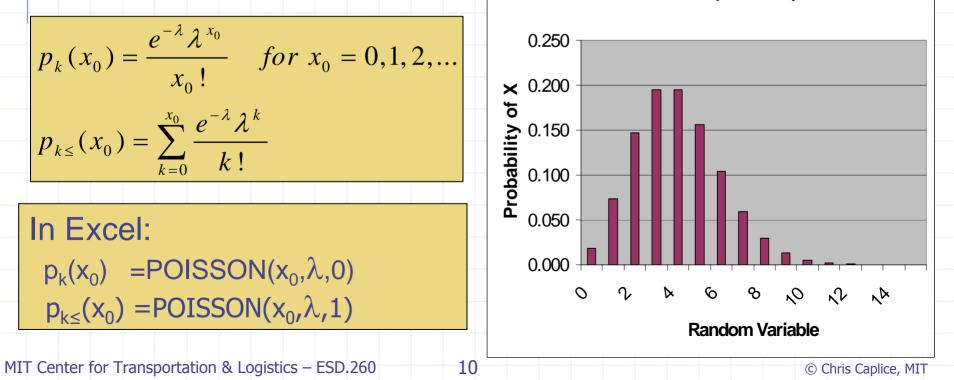
See SPP Section 8.6

Slow Moving A Items

Normal distribution may not make sense – why?
 Poisson distribution

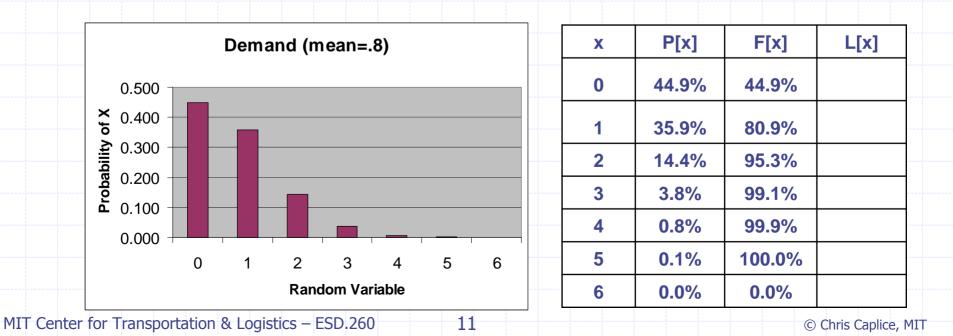
- Probability of x events occurring w/in a time period
- Mean = Variance = λ

~Poisson(mean=4)



Example

- ♦ Suppose demand ~P(\lambda=0.8) items per week. We want to set an (R,S) policy for an IFR=.90 where R=1 wk
- We know that
 - IFR = 1-(E[US]/E[Demand in Period])=1-(E[US]/ λ)
 - $E[US] = (1-IFR)\lambda = (1-.90)(.8) = 0.08$ units
- ♦ How do I find an S so that $EUS \le 0.08$?



Loss Function for Discrete Function

- We find the loss function, $L(X_i)$, for each value of X given the cumulative probability $F(X_i)$.
- Start with first value **P**[x] F[x] L[x] Χ • $L(X_1) = mean - X_1$ 44.9% 44.9% 0.80 0 • $L(X_2) = L(X_1) - (X_2 - X_1)(1 - F(X_1))$ 35.9% 80.9% 0.25 1 2 14.4% 95.3% 0.06 • $L(X_3) = L(X_2) - (X_3 - X_2)(1 - F(X_2))$ 3.8% 99.1% 3 0.01 0.8% 99.9% 0.009 4 • $L(X_i) = L(X_{i-1}) - (X_i - X_{i-1})(1 - F(X_{i-1}))$ 5 0.1% 100.0% 0.0088 0.0% 6 0.0% 0.00878 ♦ So, set S=2 since L(2)=0.06

Policy is order up to 2 units every week
 More methods in SPP Section 8.3

Managing "C" Inventory

Establish simple reorder rules

- Periodic rather than continuous
- Set for all C items collectively (if possible)
- Look to reduce the number of order cycles
- Identify & Dispose of Dead Inventory
 - Which items to dispose?
 - Look at DOS (days of supply) for each item = IOH/D
 - Consider getting rid of items that have DOS > x years
 - How much to get rid of?
 - Decision rule: IOH EOQ D(v-salvage)/(vr)
 - What do you do with it?
 - When can you not never get rid of C or D or FF items?

Managing "C" Inventory

To Stock or Not to Stock?

- Buy-to-order versus buy-to-stock decision
 Factors
 - System cost for stocking an item
 - Variable cost differential for buy-to-order vs buyto-stock
 - Cost of temporary backorder
- Decision Rule in SPP Section 9.5
 - Essentially trade off between cost to order and frequency of demand

Questions? Comments? Suggestions?