Inventory Management: Fundamental Concepts & EOQ

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

Wrap up of Demand Forecasting Fundamentals of Inventory Management Economic Order Quantity (EOQ) Model

2

Wrap Up Of Demand Forecasting

How do you think this will influence our inventory policy?

MIT Center for Transportation & Logistics – ESD.260

Why Hold Inventory?

Three Levels of Inventory Decisions

Supply Chain Decisions (strategic)

- What are the potential alternatives to inventory?
- How should the product be designed?
- Deployment Decisions (strategic)
 - What items should be carried as inventory?
 - In what form should they be maintained?
 - How much of each should be held and where?

Replenishment Decisions (tactical/operational)

- How often should inventory status be determined?
- When should a replenishment decision be made?
- How large should the replenishment be?

Total Relevant Costs (TRC)

- TC = Purchase + Order + Holding + Shortage
- What makes a cost relevant?
- Four Standard Cost Components
 - Purchase (Unit Value) Cost
 - Ordering (Set Up) Cost
 - Holding (Carrying) Cost
 - Shortage Cost

Purchase (Unit Value) Costs

- Units?
- What does it contain?
- How do we determine this number?
- When is it relevant?

Ordering (Set Up) Costs

- Units?
- What does it contain?

How do we determine this number?

When is it relevant?

Holding (Carrying) Costs rv Units?

What does it contain?

How do we determine this number?

When is it relevant?

\diamond Shortage (Stock-Out) Costs $B_{\#}$

- Units?
- What does it contain?

How do we determine this number?

When is it relevant?

Classification of Inventory

Financial / Accounting Categories

- Raw Materials
- Work in Process (WIP)
- Finished Goods
- Components, Semi-Finished Goods
- Functional Classifications
 - Cycle Stock
 - Safety Stock
 - Pipeline Inventory
 - Decoupling Stock
 - Congestion Stock
 - Anticipation Inventory

MIT Center for Transportation & Logistics – ESD.260

Time

11

© Chris Caplice, MIT

What factors influence inventory replenishment models?

Demand

- Constant vs Variable
- Known vs Random
- Continuous vs Discrete
- Lead time
 - Instantaneous
 - Constant or Variable (deterministic/stochastic)
- Dependence of items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous
 - Periodic
- Number of Echelons
 - One
 - Multi (>1)
 - Capacity / Resources
 - Unlimited
 - Limited / Constrained

MIT Center for Transportation & Logistics – ESD.260

- Discounts
 - None
 - All Units or Incremental
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One

12

- Many
- Form of Product
 - Single StageMulti-Stage

© Chris Caplice, MIT

Assumptions: Basic EOQ Model

Demand

- <u>Constant</u> vs Variable
- Known vs Random
- <u>Continuous</u> vs Discrete
- Lead time
 - Instantaneous
 - Constant or Variable (deterministic/stochastic)
- Dependence of items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous
 - Periodic
- Number of Echelons
 - <u>One</u>
 - Multi (>1)
 - Capacity / Resources
 - Unlimited
 - Limited / Constrained

MIT Center for Transportation & Logistics - ESD.260

Discounts

None

- All Units or Incremental
- Excess Demand (Shortages)
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - <u>One</u>
- Many
 Form of Product
 - <u>Single Stage</u>
 - Multi-Stage

Notation

D = Average Demand (units/unit time) $A = C_0 = Fixed Ordering Cost$ (dollar/order) $r = C_h = Carrying or Charge (dollars/dollars held/time)$ v = Cp = Variable (Purchase) Cost (dollars/unit) Q = Replenishment Order Quantity (units/order) T = Order Cycle Time (time/order) TRC(Q) = Total Relevant Cost (dollar/time)

TC(Q) = Total Cost (dollar/time)

Inventory Charts

Lot Sizing: Many Potential Policies

What is the total cost?

TC = Purchase + Order + Holding + Shortage Costs

$$TC(Q) = vD + A\left(\frac{D}{Q}\right) + rv\left(\frac{Q}{2}\right) + B_{Short}D_{Short}$$

Which costs are relevant to the order quantity decision?

- Purchase Costs?
- Ordering Costs?
- Holding Costs?
- Shortage Costs?

$$TRC(Q) = A\left(\frac{D}{Q}\right) + rv\left(\frac{Q}{2}\right)$$

17

Example

Annual demand of widgets is 2,000. The cost of placing an order is \$500. Widgets are procured for \$50 each and are sold for \$95 each. Holding cost for the company is estimated to be 25%.

Find the following:

- a) Optimal Order Quantity (EOQ)
- b) Total cost under the EOQ policy? (relevant and total)
- c) Optimal Cycle Time for replenishment under EOQ?

Approaches:

- 1. Solve for all possible values of Q and pick lowest TC
- 2. Graph each component and pick the minimum value
- 3. Solve analytically

Economic Order Quantity (EOQ)

Find Q that minimizes total relevant cost Set derivative wrt Q to zero (1st order conditions) Check that 2nd derivative is >0 (2nd order conditions)

20

How sensitivity is my inventory policy to …

- Order size (larger or smaller than optimal)?
- Demand (higher or lower than expected)?
- Order Cycle Time (shorter or longer than optimal)?

We will take an analytical approach to quantify the impact

How sensitive is total cost to order quantity?

Q	Ordering Costs (DA/Q)	Inventory Costs (rvQ/2)	Total Relevant Costs	Q/Q*	TRC/TRC*
2000	\$500	\$12,500	\$13,000	500%	260%
500	\$2,000	\$3,125	\$5,125	125%	102.5%
Q*=400	\$2,500	\$2,500	\$5,000		
200	\$5,000	\$1,250	\$6,250	50%	125%
20	\$50,000	\$125	\$50,125	5%	1002.5%

Would you rather order Q>Q* or Q<Q*?

MIT Center for Transportation & Logistics – ESD.260

How sensitive is TRC to change in actual demand?
That is, after the fact, how well did my policy hold up?

Notation:

- E = Actual Demand / Estimated Demand
- Q' = Estimated EOQ
- Q* = Actual EOQ, given actual demand that occurred

So, for D' = 2000 units/year, if the actual demand was ...

D	E	Q*/Q'	TC'/TC*
200	0.10	0.32	1.74
1,000	0.50	0.71	1.06
1,500	0.75	0.87	1.01
1,800	0.90	0.95	1.00
2,000	1.00	1.00	1.00
3,000	1.50	1.22	1.02
4,000	2.00	1.41	1.06
20,000	10.00	3.16	1.74

This also indicates the sensitivity to parameters A, v, and r.

How sensitive is TRC to T*?

- Why do we care?
- How do I find the "best" T that is also practical?

Power of Two Policies

- Order in intervals of powers of two
- Select a realistic base period, T_{Base} (day, week, month)
- Find the smallest k that satisfies:

$$\frac{1}{2^{k}} \qquad 2^{k}\sqrt{2} \qquad 2^{k+1}$$

$$\frac{T^{*}}{\sqrt{2}} \leq T_{Base} 2^{k} \leq \sqrt{2}T^{*} \quad for \ k \in [0, 1, 2, ...] \qquad \frac{TRC(T_{Base} 2^{k})}{TRC(T^{*})} \leq \frac{1}{2} \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right) \approx 1.06$$

A Power of Two time interval is guaranteed to be within 6% of the costs with the optimal time interval.

MIT Center for Transportation & Logistics – ESD.260

 $\frac{TRC(T)}{TRC(T^*)} = \frac{1}{2} \left(\frac{T}{T^*} + \frac{T^*}{T} \right)$

Insights from EOQ

- There is a direct trade off between order size and average inventory
- Total cost is relatively insensitive to changes in . . .
 - Q rounding of order quantities
 - D errors in forecasting
 - A, r, v errors in cost parameters
- Thus, EOQ is widely used despite its highly restrictive assumptions
- EOQ is a good starting point in most inventory systems
- It also helps to focus management attention on process improvements
 - How do I lower A
 - How do I lower v?
 - How do I lower r?

Questions? Comments? Suggestions?