Inventory Management Extensions to EOQ

Chris Caplice
ESD.260/15.770/1.260 Logistics Systems
Oct 2006

Agenda

- Review of Basic EOQ
- Non-instantaneous Leadtime
- Finite Replenishment (EPQ)
- Multiple Locations
- Discounting

Economic Order Quantity (EOQ)

Finding the order quantity Q (and frequency T) that minimizes the total relevant cost.

$$
\begin{gathered}
T R C[Q]=\frac{A D}{Q}+\frac{v r Q}{2} \\
Q^{*}=\sqrt{\frac{2 A D}{v r}} \quad T^{*}=\sqrt{\frac{2 A}{D v r}} \\
T R C^{*}=\sqrt{2 A D v r}
\end{gathered}
$$

Assumptions: Basic EOQ Model

- Demand
- Constant vs Variable
- Known vs Random
- Continuous vs Discrete
- Lead time
- Instantaneous
- Constant or Variable (deterministic/stochastic)
Dependence of items
- Independent
- Correlated
- Indentured

Review Time

- Continuous
- Periodic

Number of Echelons
$\square \quad \frac{\text { One }}{\text { Multi }}(>1)$
Capacity / Resources

- Unlimited
- Limited / Constrained
- Discounts
- None
- All Units or Incremental
- Excess Demand (Shortages)
- None
- All orders are backordered
- Lost orders
- Substitution
- Perishability
- None
- Uniform with time
- Planning Horizon
- Single Period
- Finite Period
- Infinite
- Number of Items
- One
- Many
- Form of Product
- Single Stage
- Multi-Stage

Extensions: Leadtime

- Order Leadtime
- Positive (nonzero)
- Deterministic
- Impact
- Does this change Q^{*} ?
- What is my new policy?
- What is my new avg IOH?
L = Order Leadtime
Inventory On Order

> EOQ Inventory Policy:
> Order Q* units when IOH = DL

Extensions: Finite Replenishment

- Inventory becomes available at a rate of m units/time rather than all at one time

- Does this change Q^{*} ?

- What is my new policy?
- What is my new avg IOH?

Inventory On
Slope = -D

$$
\begin{gathered}
T R C[Q]=\frac{A D}{Q}+\frac{Q\left(1-\frac{D}{m}\right) v r}{2} \\
E P Q=\sqrt{\frac{2 A D}{v r\left(1-\frac{D}{m}\right)}}=E O Q\left(\sqrt{\left(1-\frac{D}{m}\right)}\right)^{-1}
\end{gathered}
$$

Extensions: Multiple Locations

- Suppose that instead of one location satisfying all demand, there are n locations.

Each location serves $d_{i}=D / n$ units of demand

- Identical (uniform) demand at each location
- Questions
- What is my new inventory policy?
- What is my new average Inventory on Hand?
- How much is this better or worse than a single location?

$$
Q^{*}=\sqrt{\frac{2 A D}{v r}}
$$

$$
\overline{I O H}=\frac{Q^{*}}{2} \quad T R C^{*}=\sqrt{2 D A v r}
$$

$$
T R C^{*}=\sqrt{2 n D A v r}
$$

$$
\overline{I O H}=\sum_{i=1}^{n}\left(\frac{q_{i}^{*}}{2}\right)=\sqrt{n}\left(\frac{Q^{*}}{2}\right)
$$

Extensions: Multiple Locations

- What if I reduce number of stocking locations from M to N ?

$$
\frac{T R C^{*}[M]}{T R C^{*}[N]}=\frac{\sqrt{2 M D A v r}}{\sqrt{2 N D A v r}}=\sqrt{\frac{M}{N}}
$$

What if my sub-regions do not have uniform demand?

- Is this a reduction in safety stock, cycle stock, or both?
- How dependent is this effect on inventory policy at each site?
- EOQ Policy (order $\mathrm{q}_{\text {EOQ }}$ * when $\mathrm{IOH}_{\mathrm{i}}=0$)
- Fixed Order Size (Always order a full truckload at a time)
- Days of Supply (Always order a month's supply)

Extensions: Multiple Locations

Fixed Order Size, e.g. only order full truckloads

For a Single Location

Days of Supply, e.g. order at start of each month

Policy	EOQ	FOS	DOS
Order Size	Q^{*}	$\mathrm{Q}_{\text {FOS }}$	$\mathrm{Q}_{\text {DOS }}$
Average IOH	$\mathrm{Q}^{*} / 2$	$\mathrm{Q}_{\text {FOS }} / 2$	$\mathrm{Q}_{\text {DOS }} / 2$
Order Cost	$\mathrm{O}_{\text {EOQ }}$	$\mathrm{O}_{\text {FOS }}$	$\mathrm{O}_{\text {DOS }}$
Holding Cost	$\mathrm{H}_{\text {EOQ }}$	$\mathrm{H}_{\text {FOS }}$	$\mathrm{H}_{\text {DOS }}$
Total Cost	$\mathrm{O}_{\text {EOQ }}+\mathrm{H}_{\text {EOQ }}$	$\mathrm{O}_{\text {FOS }}+\mathrm{H}_{\text {FOS }}$	$\mathrm{O}_{\text {DOS }}+\mathrm{H}_{\text {DOS }}$

Example

DATA		
$\mathrm{A}=$	500	$\$ /$ order
$\mathrm{D}=$	2000	Units/year
$\mathrm{r}=$	0.25	\$/\$/year
$\mathrm{v}=$	50	$\$ /$ unit
$\mathrm{N}=$	4	locations
Trk Cap $=$	500	units/shipment
DOS $=$	0.083	years
	30	days

For N Locations

Policy	EOQ	FOS	DOS
Order Size	q^{*}	$\mathrm{Q}_{\text {FOS }}$	$\mathrm{q}_{\text {DOS }}$
Average IOH	$\sqrt{ }\left(\mathrm{Q}^{*} / 2\right)$	$\mathrm{N}\left(\mathrm{Q}_{\text {FOS }} / 2\right)$	$\mathrm{Q}_{\text {DOS }} / 2$
Order Cost	$\sqrt{ }\left(\mathrm{O}_{\text {EOQ }}\right)$	$\mathrm{O}_{\text {FOS }}$	$\mathrm{N}\left(\mathrm{O}_{\text {DOS }}\right)$
Holding Cost	$\sqrt{ } \mathrm{N}\left(\mathrm{H}_{\text {EOQ }}\right)$	$\mathrm{N}\left(\mathrm{H}_{\text {FOS }}\right)$	$\mathrm{H}_{\text {DOS }}$
Total Cost	$\sqrt{ }\left(\mathrm{O}_{\text {EOQ }}+\mathrm{H}_{\text {EOQ }}\right)$	$\mathrm{O}_{\text {FOS }}+\mathrm{NH}_{\text {FOS }}$	$\mathrm{NO}_{\text {DOS }}+\mathrm{H}_{\text {DOS }}$

Single Location				
Policy	EOQ	FOS		DOS
Order Size	400	500		167
Average IOH	200	250		83
Order Cost	\$ 2,500	\$ 2,000	\$	6,000
Holding Cost	\$ 2,500	\$ 3,125	\$	1,042
Total Cost	\$ 5,000	\$ 5,125	\$	7,042
4 Locations				
Policy	EOQ	FOS		DOS
Order Size	200	500		42
Average IOH	400	1000		21
Order Cost	\$ 5,000	\$ 2,000	\$	24,000
Holding Cost	\$ 5,000	\$ 12,500	\$	1,042
Total Cost	\$ 10,000	\$ 14,500	\$	25,042

Extensions: Discounts

- All Units Discount
- Discount applies to all units purchased if total amount exceeds the break point quantity
- Examples?
- Incremental Discount
- Discount applies only to the quantity purchased that exceeds the break point quantity
- Examples?
- One Time Only Discount
- Less common - but not unheard of!
- A one time only discount applies to all units you order right now (no quantity minimum or limit)
- How will different discounting strategies impact your lot sizing decision?
- What cost elements are relevant?

Extensions: All Units Discounts

Two Cases to Examine . . .

$$
v= \begin{cases}v_{0} & 0 \leq Q \leq Q_{b} \\ v_{0}(1-d) & Q_{b} \leq Q\end{cases}
$$

$$
T R C=\left\{\begin{array}{lr}
D v_{0}+\frac{A D}{Q}+\frac{v_{0} r Q}{2} & 0 \leq Q \leq Q_{b} \\
D v_{0}(1-d)+\frac{A D}{Q}+\frac{v_{0}(1-d) r Q}{2} & Q_{b} \leq Q
\end{array}\right.
$$

Where
d = Discount
$\mathrm{v}_{0}=$ Base unit price
$\mathrm{Q}_{\mathrm{b}}=$ Break quantity

Typically, $\mathrm{Q}^{*}<\mathrm{Q}_{\mathrm{b}}$ but what if $\mathrm{Q}^{*}>\mathrm{Q}_{\mathrm{b}}$?

Extensions: All Units Discounts

- Simple efficient algorithm

1. Find EOQ with discount $\left(\mathrm{EOQ}_{\mathrm{d}}\right)$
2. If $E O Q_{d} \geq Q_{b}$ then pick $E O Q_{d}$

Otherwise, go to 3
3. Solve for $\operatorname{TRC}\left(Q^{*}\right)$ and $\operatorname{TRC}\left(Q_{b}\right)$ If $\operatorname{TRC}\left(Q^{*}\right)<\operatorname{TRC}\left(Q_{b}\right)$ then pick Q^{*}

Otherwise, pick Q_{b}

- Can be extended to more than one break point

Example:
D=2000 Units/yr
r=. 25
$\mathrm{A}=\$ 500$
$\mathrm{v}_{0}=\$ 50$
Discount of 2% off if $\mathrm{Q} \geq 500$

Extensions: Incremental Discounts

- Discount only applies to quantity above breakpoint
- Trade-off between lower purchase cost and higher carrying costs
- Cost of units ordered below each breakpoint are essentially 'fixed'

Extensions: Incremental Discounts

Efficient algorithm

1. Find Fixed Cost per breakpoint, F_{i}, for each break
2. Find $E O Q_{i}$ for each range - including the F_{i}
3. If $\mathrm{EOQ}_{\mathrm{i}}$ is not within allowable range, go to next I Otherwise, find TRC ${ }_{i}$ using effective cost per unit, v_{ei}
4. Pick $\mathrm{EOQ}_{\mathrm{i}}$ with lowest TRC

Can be extended to more than one break point

$$
\begin{gathered}
F_{i}=F_{i-1}+\left(v_{i-1}-v_{i}\right) Q_{i} \quad F_{0}=0 \\
E O Q_{i}=\sqrt{\frac{2 D\left(A+F_{i}\right)}{r v_{i}}}
\end{gathered}
$$

$$
v_{i}^{e}=\frac{v_{i} E O Q_{i}+F_{i}}{E O Q_{i}}
$$

Example: Incremental Discounts

Price Breaks:
10% off for 500 to < 1000 units 20% off for 1000 or more units
$\mathrm{D}=2000$ Units/yr
r=. 25
$\mathrm{A}=\$ 500$
$\mathrm{v}_{0}=\$ 50$

	i=2	i=1	$\mathrm{i}=0$
V_{i}	\$40	\$45	\$50
$\mathrm{Q}_{\text {bi }}$	1,000	500	0
F_{i}	7,500	2,500	0
$\mathrm{EOQ}_{\mathrm{i}}$	$\begin{gathered} 1,789 \\ \text { OK } \end{gathered}$	$\begin{gathered} 1,033 \\ X \end{gathered}$	$\begin{aligned} & 400 \\ & \text { OK } \end{aligned}$
V_{ej}	\$44.19		\$50
Purch TRC $_{i} \quad$Order Hold	$\begin{array}{rr} \$ 88,384 \\ \$ & 559 \\ \$ 9,882 \\ \$ 98,825 \end{array}$		$\begin{array}{rr} \$ 100,000 \\ \$ & 2,500 \\ \$ & 2,500 \\ \$ 105,000 \end{array}$

Extensions: One Time Discount

Extensions: One Time Discount

Compare Options: Not Special Price vs. Special Price

- Find TC for normal price

$$
\begin{aligned}
T C & =(\text { CycleTime })\left(T C^{*}+\text { PurchaseCost }\right) \\
T C & =\left(\frac{Q_{g}}{D}\right) \sqrt{2 A r v D}+\left(\frac{Q_{g}}{D}\right) v D
\end{aligned}
$$

- Find the Savings (TC-TC ${ }_{\text {SP }}$)

$$
\begin{gathered}
\text { Savings }=\text { TC }-T C_{S P} \\
=\left(\left(\frac{Q_{g}}{D}\right) \sqrt{2 A r v D}+\left(\frac{Q_{g}}{D}\right) v D\right)-\left(v_{g} Q_{g}+r v_{g}\left(\frac{Q_{g}}{2}\right)\left(\frac{Q_{g}}{D}\right)+A\right)
\end{gathered}
$$

Extensions: One Time Discount

- Finding 1st and 2nd order conditions (Maximize Savings)

$$
\begin{gathered}
\frac{d S}{d\left(Q_{g}\right)}=0=\left(\frac{1}{D}\right) \sqrt{2 A v r D}+\left(v-v_{g}\right)-\left(\frac{2 r v_{g} Q_{g}}{2 D}\right) \\
\frac{d^{2} S}{d^{2}\left(Q_{g}\right)}=-\left(\frac{2 r v_{g}}{2 D}\right)<0
\end{gathered}
$$

- So that the Optimal Quantity to buy is

$$
Q_{g}^{*}=\left(\frac{D}{D r v_{g}}\right) \sqrt{2 A r v D}+\frac{D\left(v-v_{g}\right)}{r v_{g}}
$$

- Cleaning this up gives: $Q_{g}^{*}=Q^{*}\left(\frac{v}{v_{g}}\right)+\frac{D\left(v-v_{g}\right)}{r v_{g}}$

Take-Aways

- EOQ is a good place to start for most analysis
- EOQ can be extended to cover
- Non-zero leadtimes

■ Finite replenishment systems

- Multiple locations
- Square Root law rests on implicit assumptions
- Distribution of demand and inventory policy will impact results
- Discounts
- Purchase price (v) becomes relevant
- Common in practice (economies of scale)

Questions? Comments? Suggestions?

