Inventory Management Extensions to EOQ

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

Agenda

Economic Order Quantity (EOQ)

Finding the order quantity Q (and frequency T) that minimizes the total relevant cost.

Assumptions: Basic EOQ Model

Extensions: Leadtime

Extensions: Finite Replenishment

Extensions: Multiple Locations

- Suppose that instead of one location satisfying all demand, there are n locations.
 - Each location serves $d_i = D/n$ units of demand
 - Identical (uniform) demand at each location

Questions

- What is my new inventory policy?
- What is my new average Inventory on Hand?
 - How much is this better or worse than a single location?

Extensions: Multiple Locations

What if I reduce number of stocking locations from M to N?

$$\frac{TRC^{*}[M]}{TRC^{*}[N]} = \frac{\sqrt{2MDAvr}}{\sqrt{2NDAvr}} = \sqrt{\frac{M}{N}}$$

What if my sub-regions do not have uniform demand?

Is this a reduction in safety stock, cycle stock, or both?

How dependent is this effect on inventory policy at each site?
 EOQ Policy (order q_{EOQ}* when IOH_i=0)
 Fixed Order Size (Always order a full truckload at a time)

Days of Supply (Always order a month's supply)

MIT Center for Transportation & Logistics – ESD.260

Extensions: Multiple Locations

Fixed Order Size, e.g. only order full truckloads

For a Sing	gle Location			Days of S	Supply, e.g. orc	ler at st	art of eac	h month
Polic	y EOQ	FOS	DOS					
Order Siz	e Q*	Q _{FOS}	Q _{DOS}	Ex	ample			
Average IO	H Q*/2	Q _{FOS} /2	Q _{DOS} /2		A =	500 \$	order	
Order Cos	st O _{EOO}	0 _{EOS}	0 ₀₀₆		D =	2000 L	Jnits/year	
Holding Cos	st H _{roo}	Hroc	Hpoc		V =	50 \$	S/unit	
Total Co	st $O_{roo} + H_{roo}$	$O_{roc} + H_{roc}$	$O_{poc} + H_{poc}$		N = Trk Cap =	4 k 500 u	ocations Inits/shipme	nt
		FUS			DOS =	0.083 y	ears lavs	
For N Loca	ations			Single	e Location			
Policy	EOQ	FOS	DOS		Policy	EOQ	FOS	DOS
Order Size	a *	0,00	d _{poc}		Average IOH	200) 500 250	83
Average IOH	√N(O*/2)	$N(O_{roc}/2)$	$O_{\rm poc}/2$		Order Cost Holding Cost	\$ 2,500 \$ 2,500	\$ 2,000 \$ 3,125	\$ 6,000 \$ 1,042
					Total Cost	\$ 5,000	\$ 5,125	\$ 7,042
Order Cost	√N(O _{EOQ})	O _{FOS}	N(O _{DOS})	4 Loc	ations	E00	EOS	DOS
Holding Cost	√N (H _{EOQ})	N(H _{FOS})	H _{DOS}		Order Size	200	FUS	42
Total Cost	$\sqrt{N(0 + H)}$	O +NH	NO +H		Average IOH	400) <u>1000</u> \$ 2,000	21 \$ 24,000
		FOS	DOS	OS		φ 5,000	ψ 2,000 Φ 40,500	ψ <u>24,000</u>
			1 1 1 1		Holding Cost	\$ 5,000	\$12,500	\$ 1,042

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Extensions: Discounts

All Units Discount

- Discount applies to all units purchased if total amount exceeds the break point quantity
- Examples?

Incremental Discount

 \odot

۲

- Discount applies only to the quantity purchased that exceeds the break point quantity
- Examples?

One Time Only Discount

- Less common but not unheard of!
- A one time only discount applies to all units you order right now (no quantity minimum or limit)
- How will different discounting strategies impact your lot sizing decision?
 - What cost elements are relevant?

Extensions: All Units Discounts

Extensions: All Units Discounts

Simple efficient algorithm

- 1. Find EOQ with discount (EOQ_d)
- 2. If $EOQ_d \ge Q_b$ then pick EOQ_d Otherwise, go to 3
- 3. Solve for TRC(Q*) and TRC(Q_b) If TRC(Q*) < TRC(Q_b) then pick Q* Otherwise, pick Q_b
- Can be extended to more than one break point

Example: D=2000 Units/yr r=.25 A=\$500v₀ = \$50Discount of 2% off if Q \geq 500

Extensions: Incremental Discounts

۵

۲

۲

Discount only applies to quantity above breakpoint Trade-off between lower purchase cost and higher carrying costs Cost of units ordered below each breakpoint are essentially 'fixed'

Extensions: Incremental Discounts

Efficient algorithm

- 1. Find Fixed Cost per breakpoint, F_i, for each break
- 2. Find EOQ_i for each range including the F_i
- 3. If EOQ_i is not within allowable range, go to next I Otherwise, find TRC_i using effective cost per unit, v_{ei}
- 4. Pick EOQ_i with lowest TRC
- Can be extended to more than one break point

$$F_{i} = F_{i-1} + (v_{i-1} - v_{i})Q_{i} \qquad F_{0} = 0$$

$$EOQ_{i} = \sqrt{\frac{2D(A + F_{i})}{rv_{i}}} \qquad v_{i}^{e} = \frac{v_{i}EOQ_{i} + F_{i}}{EOQ_{i}}$$

Example: Incremental Discounts

10 ⁰ 20 ⁰	Price Breaks: % off for 500 to <10 % off for 1000 or m	000 units ore units	D=2000 Units/yr r=.25 A=\$500 $v_0 = 50
	i=2	i=1	i=0
V _i	\$40	\$45	\$50
Q _{bi} 1,000		500	0
F _i 7,500		2,500	0
EOQ _i	1,789	1,033	400
	OK	Х	ОК
V _{ei}	\$44.19		\$50
Purch	\$ 88,384		\$100,000
Order	\$ 559		\$ 2,500
Hold	\$ 9,882		\$ 2,500
TRC	\$ 98,825		\$ 105,000

Extensions: One Time Discount

Extensions: One Time Discount

Compare Options: Not Special Price vs. Special Price
 Find TC for normal price

$$TC = (CycleTime)(TC^* + PurchaseCost)$$
$$TC = \left(\frac{Q_g}{D}\right)\sqrt{2ArvD} + \left(\frac{Q_g}{D}\right)vD$$
Find the Savings (TC-TC_{SP})
$$Savings = TC - TC_{SP}$$

$$=\left(\left(\frac{Q_g}{D}\right)\sqrt{2ArvD} + \left(\frac{Q_g}{D}\right)vD\right) - \left(v_gQ_g + rv_g\left(\frac{Q_g}{2}\right)\left(\frac{Q_g}{D}\right) + A\right)$$

Extensions: One Time Discount

Finding 1st and 2nd order conditions (Maximize Savings)

$$\frac{dS}{d(Q_g)} = 0 = \left(\frac{1}{D}\right)\sqrt{2AvrD} + \left(v - v_g\right) - \left(\frac{2rv_gQ_g}{2D}\right)$$

$$\frac{d^2 S}{d^2(Q_g)} = -\left(\frac{2rv_g}{2D}\right) < 0$$

So that the Optimal Quantity to buy is

$$Q_g^* = \left(\frac{D}{Drv_g}\right)\sqrt{2ArvD} + \frac{D(v - v_g)}{rv_g}$$

Cleaning this up gives:

$$Q_g^* = Q^* \left(\frac{v}{v_g}\right) + \frac{D(v - v_g)}{rv_g}$$

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Take-Aways

EOQ is a good place to start for most analysis

EOQ can be extended to cover

- Non-zero leadtimes
 - Finite replenishment systems
 - Multiple locations
 - Square Root law rests on implicit assumptions
 - Distribution of demand and inventory policy will impact results
 - Discounts
 - Purchase price (v) becomes relevant
 - Common in practice (economies of scale)

Questions? Comments? Suggestions?