# I nventory Management Time Varying Demand Fixed Planning Horizon 

Chris Caplice

ESD.260/15.770/1.260 Logistics Systems
Oct 2006

## Assumptions: Basic FPH Model

- Demand
- Constant vs Variable
- Known vs Random
- Continuous vs Discrete
- Lead time
- Instantaneous
- Constant or Variable (deterministic/stochastic)
- Dependence of items
- Independent
- Correlated
- Indentured
- Review Time
- Continuous
- Periodic
- Number of Echelons
- One
- Multi (>1)
- Capacity / Resources
- Unlimited
- Limited / Constrained
- Discounts
- None
- All Units or Incremental
- Excess Demand
- None
- All orders are backordered
- Lost orders
- Substitution
- Perishability
- None
- Uniform with time
- Planning Horizon
- Single Period
- Finite Period
- Infinite
- Number of Items
- One
- Many
- Form of Product
- Single Stage
- Multi-Stage


## Example

## When should I order and for how much?

## Costs

$D=2000$ items per year
A $=\$ 500.00$ per order
$v=\$ 50.00$ per item
$r=24 \%$ per item per year
$C_{n m}=r v / N=1 \$ / m o n t h / i t e m$
$\mathrm{N}=$ number of periods per year

## More Assumptions



- Demand is required and consumed on first day of the period
- Holding costs are not charged on items used in that period
- Holding costs are charged for inventory ordered in advance of need


## Methods Used

## Different Approaches

1. Simple Heuristics

- The One-Time Buy
- Lot For Lot
- Fixed Order Quantity (FOQ)
- Periodic Order Quantity (POQ)

2. Optimal Procedures

- Wagner-Whitin (Dynamic Programming)
- Mixed Integer Programming

3. Specialty Heuristics

- The Silver Meal Algorithm
- Least Unit Cost (LUC)
- Part-Period Balancing (PPB)


## Simple Heuristics

- One Time Buy
- Lot for Lot
- Fixed Economic Order Quantity
-Periodic Order Quantity


## Approach: One-Time Buy



## Approach: One-Time Buy

| Month | Demand | Order <br> Quantity | Holding <br> Cost | Ordering <br> Cost | Period <br> Costs |
| :---: | :---: | :---: | ---: | ---: | ---: |
| 1 | 200 | 2000 | $\$ 1800$ | $\$ 500$ | $\$ 2300$ |
| 2 | 150 | 0 | $\$ 1650$ | $\$ 0$ | $\$ 1650$ |
| 3 | 100 | 0 | $\$ 1550$ | $\$ 0$ | $\$ 1550$ |
| 4 | 50 | 0 | $\$ 1500$ | $\$ 0$ | $\$ 1500$ |
| 5 | 50 | 0 | $\$ 1450$ | $\$ 0$ | $\$ 1450$ |
| 6 | 100 | 0 | $\$ 1300$ | $\$ 0$ | $\$ 1300$ |
| 7 | 150 | 0 | $\$ 1200$ | $\$ 0$ | $\$ 1200$ |
| 8 | 200 | 0 | $\$ 1000$ | $\$ 0$ | $\$ 1000$ |
| 9 | 200 | 0 | $\$ 800$ | $\$ 0$ | $\$ 800$ |
| 10 | 250 | 0 | $\$ 550$ | $\$ 0$ | $\$ 550$ |
| 11 | 300 | 0 | $\$ 250$ | $\$ 0$ | $\$ 250$ |
| 12 | 250 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| Totals: | 2000 | 2000 | $\$ 13100$ | $\$ 500$ | $\$ 13600$ |

## Approach: Lot for Lot



## Approach: Lot for Lot

| Month | Demand | Order <br> Quantity | Holding <br> Cost | Ordering <br> Cost | Period <br> Costs |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 200 | 200 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 2 | 150 | 150 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 3 | 100 | 100 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 4 | 50 | 50 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 5 | 50 | 50 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 6 | 100 | 100 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 7 | 150 | 150 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 8 | 200 | 200 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 9 | 200 | 200 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 10 | 250 | 250 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 11 | 300 | 300 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 12 | 250 | 250 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| Totals: | 2000 | 2000 | $\$ 0$ | $\$ 6000$ | $\$ 6000$ |

## Approach: EOQ

## Policy <br> Order $Q^{*}$ if $\mathrm{D}(\mathrm{t})>\mathrm{IOH}$



## Approach: EOQ

| Month | Demand | Order <br> Quantity | Holding <br> Cost | Ordering <br> Cost | Period <br> Costs |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 200 | 400 | $\$ 200$ | $\$ 500$ | $\$ 700$ |
| 2 | 150 | 0 | $\$ 50$ | $\$ 0$ | $\$ 50$ |
| 3 | 100 | 400 | $\$ 350$ | $\$ 500$ | $\$ 850$ |
| 4 | 50 | 0 | $\$ 300$ | $\$ 0$ | $\$ 300$ |
| 5 | 50 | 0 | $\$ 250$ | $\$ 0$ | $\$ 250$ |
| 6 | 100 | 0 | $\$ 150$ | $\$ 0$ | $\$ 150$ |
| 7 | 150 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| 8 | 200 | 400 | $\$ 200$ | $\$ 500$ | $\$ 700$ |
| 9 | 200 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| 10 | 250 | 400 | $\$ 150$ | $\$ 500$ | $\$ 650$ |
| 11 | 300 | 400 | $\$ 250$ | $\$ 500$ | $\$ 750$ |
| 12 | 250 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| Totals: | 2000 | 2000 | $\$ 1900$ | $\$ 2500$ | $\$ 4400$ |

## Approach: Periodic Order Quantity

- Similar to EOQ
- Find the optimal order cycle time, T*, for EOQ using annual demand
- Set POQ = Round up of T* to nearest integer
- Every POQ time periods, order enough to satisfy demand for that POQ periods in the future
Example
- $\mathrm{T}^{*}=0.204$ years $=2.45$ months
- POQ = 3 months


## Approach: POQ

| Month | Demand | Order Quantity | Holding Cost |  | Ordering Cost |  | Period Costs |  |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1 | 200 | 450 | $\$$ | 250 | $\$$ | 500 | $\$$ | 750 |
| 2 | 150 | 0 | $\$$ | 100 | $\$$ | - | $\$$ | 100 |
| 3 | 100 | 0 | $\$$ | - | $\$$ | - | $\$$ | - |
| 4 | 50 | 200 | $\$$ | 150 | $\$$ | 500 | $\$$ | 650 |
| 5 | 50 | 0 | $\$$ | 100 | $\$$ | - | $\$$ | 100 |
| 6 | 100 | 0 | $\$$ | - | $\$$ | - | $\$$ | - |
| 7 | 150 | 550 | $\$$ | 400 | $\$$ | 500 | $\$$ | 900 |
| 8 | 200 | 0 | $\$$ | 200 | $\$$ | - | $\$$ | 200 |
| 9 | 200 | 0 | $\$$ | - | $\$$ | - | $\$$ | - |
| 10 | 250 | 800 | $\$$ | 550 | $\$$ | 500 | $\$$ | 1,050 |
| 11 | 300 | 0 | $\$$ | 250 | $\$$ | - | $\$$ | 250 |
| 12 | 250 | 0 | $\$$ | - | $\$$ | - | $\$$ | - |
| Totals: | 2000 | 2000 | $\$$ | 2,000 | $\$$ | 2,000 | $\$$ | 4,000 |

## Policy

## Order Sum(D) every POQ time periods

## Optimal Methods

Wagner Whitin

- Mixed Integer Linear Programming


## Approach: Wagner-Whitin

Relies on 2 Key Properties

- Zero Inventory Ordering Property exists
- Upper limit on holding time for demand
- Algorithm
- Start at $\mathrm{t}=1$,
- Find cost for ordering just enough for $D(t)$
- Look at past orders (until t=1)
- Find cost for ordering enough for $\mathrm{D}(\mathrm{t})$ by adding it into the previous order for $\mathrm{D}(\mathrm{t}-1)$
- Pick lowest cost of Options - Go to next t
- At $\mathrm{t}=\mathrm{N}$ - find lowest cost option and work backwards


## Approach: Wagner-Whitin

Example:

- Period 1:
- Order 200 at a cost of $A=\$ 500$
- Period 2:
- Option 1: Best Period 1 Plan plus new order in period 2 Cost $=F(1)+A=\$ 1000$

- Option 2: Order enough in period 1 to cover demand up to period 2

Cost $=A+C_{h m} D(2)=\$ 500+(1 \$)(150)=\$ 650$

- Period 3:
- Option 1: Best Period 2 Plan plus new order in period 3

Cost $=F(2)+A=\$ 650+\$ 500=\$ 1,150$

- Option 2: Best Period 1 Plan plus Period 2 Order to cover demand up to period 3 Cost $=F(1)+A+C_{h m} D(3)=\$ 500+\$ 500+(\$ 1)(100)=\$ 1,100$
- Option 3: Order enough in period 1 to cover demand up to period 3

Cost $=A+C_{h m} D(2)+2 C_{h m} D(3)=\$ 500+(1 \$)(150)+2(1)(100)=\$ 850$

- Easy to build a Spreadsheet model

Note that if Demand of any period, j , is greater than $\mathrm{A} / \mathrm{C}_{\mathrm{hm}}$ then we know that it is best to order in that period. Why?

## Approach: Wagner-Whitin

| Period 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Demand 200 | 150 | 100 | 50 | 50 | 100 | 150 | 200 | 200 | 250 | 300 | 250 |
| Order 1\|500 | 650 | 850 | 1,000 | 1,200 | 1,700 | 2,600 | 4,000 | 5,600 | 7,850 | 10,850 | 13,600 |
| Order 2 | 1,000 | 1,100 | 1,200 | 1,350 | 1,750 | 2,500 | 3,700 | 5,100 | 7,100 | 9,800 | 12,300 |
| Order 3 |  | 1,150 | 1,200 | 1,300 | 1,600 | 2,200 | 3,200 | 4,400 | 6,150 | 8,550 | 10,800 |
| Order 4 |  |  | 1,350 | 1,400 | 1,600 | 2,050 | 2,850 | 3,850 | 5,350 | 7,450 | 9,450 |
| Order 5 |  |  |  | 1,500 | 1,600 | 1,900 | 2,500 | 3,300 | 4,550 | 6,350 | 8,100 |
| Order 6 |  |  |  |  | 1,700 | 1,850 | 2,250 | 2,850 | 3,850 | 5,350 | 6,850 |
| Order 7 |  |  |  |  |  | 2,100 | 2,300 | 2,700 | 3,450 | 4,650 | 5,900 |
| Order 8 |  |  |  |  |  |  | 2,350 | 2,550 | 3,050 | 3,950 | 4,950 |
| Order 9 |  |  |  |  |  |  |  | 2,750 | 3,000 | 3,600 | 4,350 |
| Order 10 |  |  |  |  |  |  |  |  | 3,050 | 3,350 | 3,850 |
| Order 11 |  |  |  |  |  |  |  |  |  | 3,500 | 3,750 |
| Order 12 |  |  |  |  |  |  |  |  |  |  | 3,850 |

Optimal Order Policy:
Order 550 in period 1, 450 in period 6, 450 in period 9, and 550 in period 11

## Approach: Wagner-Whitin



## Approach: Optimization (MILP)

Decision Variables:
$\mathrm{Qi}=$ Quantity purchased in period i
$\mathrm{Zi}=$ Buy variable $=1$ if $\mathrm{Q}_{\mathrm{i}}>0,=0 \mathrm{o} . \mathrm{w}$.
$\mathrm{Bi}=$ Beginning inventory for period I
$\mathrm{Ei}=$ Ending inventory for period I

Data:
$D_{i}=$ Demand per period, $i=1, n$
$\mathrm{C}_{0}=$ Ordering Cost
$\mathrm{C}_{\mathrm{hp}}=$ Cost to Hold, \$/unit/period
$\mathrm{M}=$ a very large number....

## MILP Model

Objective Function:

- Minimize total relevant costs

Subject To:

- Beginning inventory for period $1=0$
- Beginning and ending inventories must match
- Conservation of inventory within each period
- Nonnegativity for Q, B, E
- Binary for Z


## Approach: Optimization (MI LP)



## Approach: Optimization (MI LP)



## Special Heuristics

Silver-Meal (Least Period Cost) - Least Unit Cost

人 Part-Period Balancing

## Approach: Silver-Meal Algorithm

- Objective
- Minimize total relevant cost per unit time (TRCUT)
- $\operatorname{TRCUT}(T)=\operatorname{TRC}(T) / T=($ Order + Carrying $) / T$ Decision Rule:
- Add next period's demand to the order if the average cost per period is reduced
Algorithm

1. Start at first period
2. Set $T=1$
3. If TRCUT(T) > TRCUT(T-1) then

- Previous order goes for T-1 periods with $\mathrm{Q}=\mathrm{sum}(\mathrm{D})$ for T ,
- Start new order and go to 2

4. Else, $T=T+1$ and go to 3

## Approach: Silver-Meal Algorithm

| Mon | Dmd | Lot <br> Qty | Order <br> Cost | Holding Cost | Lot <br> Cost | TRCUT |
| ---: | ---: | ---: | ---: | :--- | ---: | ---: |
| 1st | Buy: |  |  |  |  |  |
| 1 | 200 | 200 | $\$ 500$ | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| 2 | 150 | 350 | $\$ 500$ | $\$ 150$ | $\$ 650$ | $\$ 325$ |
| 3 | 100 | 450 | $\$ 500$ | $\$ 150+\$ 200$ | $\$ 850$ | $\$ 283$ |
| 4 | 50 | 500 | $\$ 500$ | $\$ 150+\$ 200+\$ 150$ | $\$ 1000$ | $\$ 250$ |
| 5 | 50 | 550 | $\$ 500$ | $\$ 150+\$ 200+\$ 150+\$ 200$ | $\$ 1200$ | $\$ 240$ |
| 6 | 100 | 650 | $\$ 500$ | $\$ 150+\$ 200+\$ 150+$ | $\$ 1700$ | $\$ 283$ |
| $2 n d$ | Buy: |  |  |  |  |  |
| 6 | 100 | 100 | $\$ 500$ | $\$ 0$ |  | $\$ 500$ |

## Approach: Silver-Meal Algorithm

| Mon | Dmd | Lot Qty | Order Cost |  | Holding Cost |  | Lot Cost | TRCUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3rd | Buy: |  |  |  |  |  |  |  |
| 8 | 200 | 200 | \$500 | \$0 |  |  | \$500 | \$500 |
| 9 | 200 | 400 | \$500 | \$200 |  |  | \$700 | \$350 |
| 10 | 250 | 650 | \$500 | \$200+\$500 |  |  | \$1200 | \$400 |
| 4th | Buy: |  |  |  |  |  |  |  |
| 10 | 250 | 250 | \$500 | \$0 |  |  | \$500 | \$500 |
| 11 | 300 | 550 | \$500 | \$300 |  |  | \$800 | \$400 |
| 12 | 250 | 800 | \$500 | \$300+\$500 |  |  | \$1300 | \$433 |
| 5th | Buy: |  |  |  |  |  |  |  |
| 12 | 250 | 250 | \$500 | \$0 |  |  | \$500 | \$500 |
|  |  |  |  |  |  |  |  |  |

## Approach: Silver-Meal Algorithm

| Month | Demand | Order <br> Quantity | Holding <br> Cost | Ordering <br> Cost | Period <br> Costs |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 200 | 550 | $\$ 350$ | $\$ 500$ | $\$ 850$ |
| 2 | 150 | 0 | $\$ 200$ | $\$ 0$ | $\$ 200$ |
| 3 | 100 | 0 | $\$ 100$ | $\$ 0$ | $\$ 100$ |
| 4 | 50 | 0 | $\$ 50$ | $\$ 0$ | $\$ 50$ |
| 5 | 50 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| 6 | 100 | 250 | $\$ 150$ | $\$ 500$ | $\$ 650$ |
| 7 | 150 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| 8 | 200 | 400 | $\$ 200$ | $\$ 500$ | $\$ 700$ |
| 9 | 200 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| 10 | 250 | 550 | $\$ 300$ | $\$ 500$ | $\$ 800$ |
| 11 | 300 | 0 | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| 12 | 250 | 250 | $\$ 0$ | $\$ 500$ | $\$ 500$ |
| Totals: | 2000 | 2000 | $\$ 1350$ | $\$ 2500$ | $\$ 3850$ |

## Approach: Silver-Meal Algorithm

Policy: Order 550 in period 1, 250 in period 6, 400 in period 8, 550 in period 10, and 250 in period 12



2000 0 |  |
| :---: |
|  |
| On |
| Hand |
| Inventory |

## Approach: Least Unit Cost

- Objective
- Minimize total relevant cost per item (TRCI)
- $\quad \operatorname{TRCI}(T)=\operatorname{TRC}(T) /$ Sum( $D)$
$=($ Order + Carrying $) /($ Lot Size $)$
人 Decision Rule:
- Add next period's demand to the order if the average cost per item is reduced
- Algorithm

1. Start at first period
2. Set $\mathrm{T}=1$
3. If $\operatorname{TRCI}(T)>\operatorname{TRCI}(T-1)$ then

- Previous order goes for $T-1$ periods with $\mathrm{Q}=\mathrm{sum}(\mathrm{D})$ for T ,
- Start new order and go to 2

4. Else, $\mathrm{T}=\mathrm{T}+1$ and go to 3

## Approach: Least Unit Cost

| PER | Demand | Lot Size | Order Cost | Hold Cost | Lot Cost | Cost Per Item | Next CPI | CNT | BUY | ORDER |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 200 | 200 | $\$ 500$ | $\$ 0$ | $\$ 500$ | $\$$ | 2.50 | $\$$ | 1.86 | 1 |
| 1 | 1 | 1 |  |  |  |  |  |  |  |  |
| 2 | 150 | 350 | $\$ 500$ | $\$ 150$ | $\$ 650$ | $\$$ | 1.86 | $\$$ | 1.89 | 2 |

## Policy:

Order 350 in period 1, 300 in period 3, 350 in period 7, 450 in period 9, and 550 in period 11

## Approach: Part Period Balancing

- Objective
- Balancing holding and order costs for each replenishment
- Decision Rule:
- Select number of periods to cover so that carrying costs is close to order (set up) costs


## Algorithm

- Starting with first period, find holding cost
- Add period to order until the holding cost is "close" to A
- Start new order


## Approach: Part Period Balancing

| Month | Demand | Order Quantity | Holding Cost |  | Ordering Cost |  |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 200 | 500 | $\$$ | 300 | $\$$ | 500 |
| 2 | 150 | 0 | $\$$ | 150 | $\$$ | - |
| 3 | 100 | 0 | $\$$ | 50 | $\$$ | - |
| 4 | 50 | 0 | $\$$ | - | $\$$ | - |
| 5 | 50 | 300 | $\$$ | 250 | $\$$ | 500 |
| 6 | 100 | 0 | $\$$ | 150 | $\$$ | - |
| 7 | 150 | 0 | $\$$ | - | $\$$ | - |
| 8 | 200 | 650 | $\$$ | 450 | $\$$ | 500 |
| 9 | 200 | 0 | $\$$ | 250 | $\$$ | - |
| 10 | 250 | 0 | $\$$ | - | $\$$ | - |
| 11 | 300 | 550 | $\$$ | 250 | $\$$ | 500 |
| 12 | 250 | 0 | $\$$ | - | $\$$ | - |
| Totals: | 2000 | 2000 | $\$$ | 1,850 | $\$$ | 2,000 |


| Policy: |
| :---: |
| Order 500 in period 1,300 in period 5, |
| 650 in period 8 , and 550 in period 11 |

## Comparison of Approaches

| Month | Demand | 1TB | L4L | EOQ | POQ | Optimal | SM | LUC | PBB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 200 | 2000 | 200 | 400 | 450 | 550 | 550 | 350 | 500 |
| 2 | 150 | 0 | 150 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 100 | 0 | 100 | 400 | 0 | 0 | 0 | 300 | 0 |
| 4 | 50 | 0 | 50 | 0 | 200 | 0 | 0 | 0 | 0 |
| 5 | 50 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 300 |
| 6 | 100 | 0 | 100 | 0 | 0 | 450 | 250 | 0 | 0 |
| 7 | 150 | 0 | 150 | 0 | 550 | 0 | 0 | 350 | 0 |
| 8 | 200 | 0 | 200 | 400 | 0 | 0 | 400 | 0 | 650 |
| 9 | 200 | 0 | 200 | 0 | 0 | 450 | 0 | 450 | 0 |
| 10 | 250 | 0 | 250 | 400 | 800 | 0 | 550 | 0 | 0 |
| 11 | 300 | 0 | 300 | 400 | 0 | 550 | 0 | 550 | 550 |
| 12 | 250 | 0 | 250 | 0 | 0 | 0 | 250 | 0 | 0 |
|  | ding Cost | \$ 13,100 | \$ - | \$ 1,900 | \$ 2,000 | \$ 1,750 | \$ 1,350 | \$ 1,850 | \$ 1,850 |
|  | rder Cost | \$ 500 | \$6,000 | \$ 2,500 | \$ 2,000 | \$ 2,000 | \$ 2,500 | \$ 2,500 | \$ 2,000 |
|  | Total Cost | \$ 13,600 | \$6,000 | \$ 4,400 | \$ 4,000 | \$ 3,750 | \$ 3,850 | \$ 4,350 | \$ 3,850 |
| Inv | Turn Over | 1.83 | Inf | 12.60 | 12.00 | 13.70 | 17.80 | 13.00 | 13.00 |
|  | > Optimal | 263\% | 60\% | 17\% | 7\% | 0\% | 3\% | 16\% | 3\% |

## Take Aways from FPH

- Many ways to solve the problem with implicit trade-offs
- Heuristics - Fast, simple, not always good
- Optimal Methods - Requires more time and data
- Specialty Heuristics - More Focused, harder to set up, better 'real-world' results
- An "optimal" solution might not be optimal in the real-world
Best solution to the problem . . . depends


## Questions?

 Comments
## Suggestions?

