Inventory Management Time Varying Demand Fixed Planning Horizon

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

Assumptions: Basic FPH Model

Demand

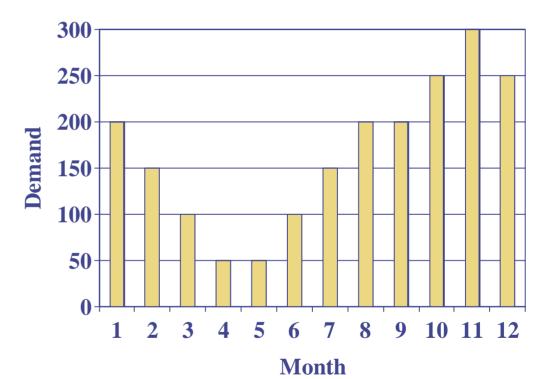
- Constant vs <u>Variable</u>
- Known vs Random
- <u>Continuous</u> vs Discrete
- Lead time
 - Instantaneous
 - Constant or Variable (deterministic/stochastic)
- Dependence of items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous
 - Periodic
- Number of Echelons
 - <u>One</u>
 - Multi (>1)
 - Capacity / Resources
 - Unlimited
 - Limited / Constrained

MIT Center for Transportation & Logistics – ESD.260

- Discounts
 - None
 - All Units or Incremental
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - <u>One</u>

2

- Many
- Form of Product
 Single Stage
 - Multi-Stage


© Chris Caplice, MIT

Example

When should I order and for how much?

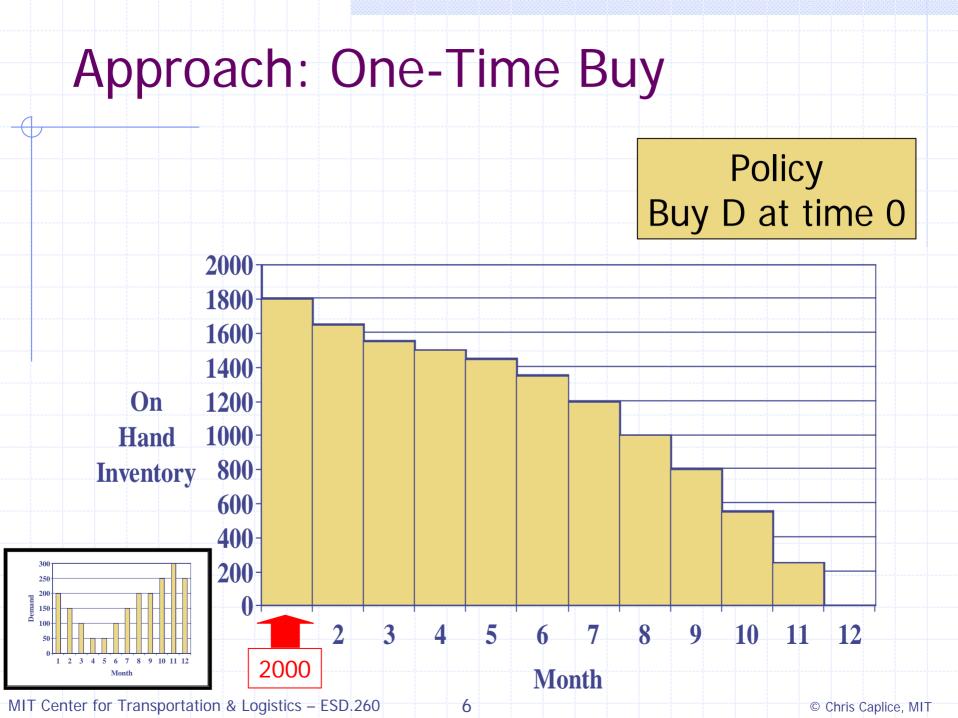
Costs

- D = 2000 items per year
- A = \$500.00 per order
- v = \$50.00 per item
- r = 24% per item per year
- $C_{hm} = rv/N = 1$ \$/month/item
- N = number of periods per year

More Assumptions

- Demand is required and consumed on first day of the period
- Holding costs are not charged on items used in that period
- Holding costs are charged for inventory ordered in advance of need

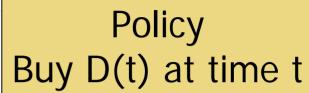
MIT Center for Transportation & Logistics - ESD.260

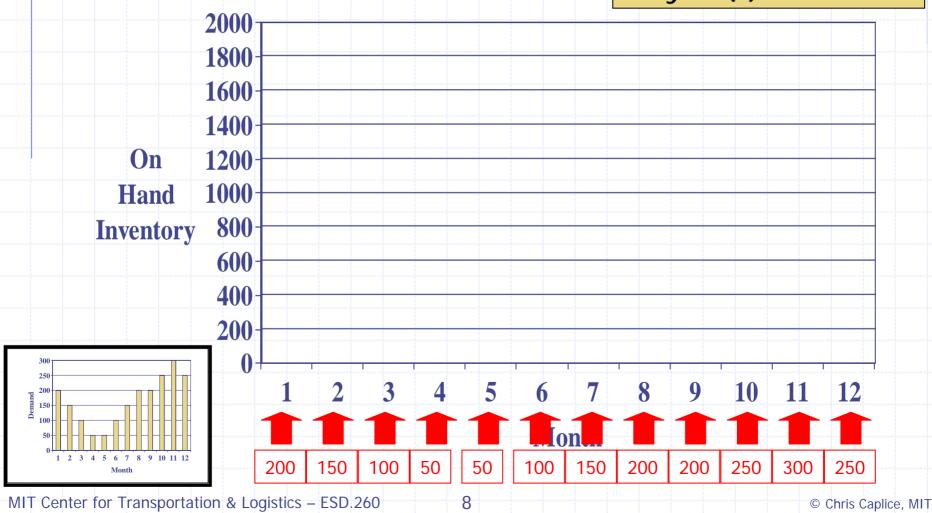

Methods Used

Different Approaches

- 1. Simple Heuristics
 - The One-Time Buy
 - Lot For Lot
 - Fixed Order Quantity (FOQ)
 - Periodic Order Quantity (POQ)
- 2. Optimal Procedures
 - Wagner-Whitin (Dynamic Programming)
 - Mixed Integer Programming
- 3. Specialty Heuristics
 - The Silver Meal Algorithm
 - Least Unit Cost (LUC)
 - Part-Period Balancing (PPB)

Simple Heuristics

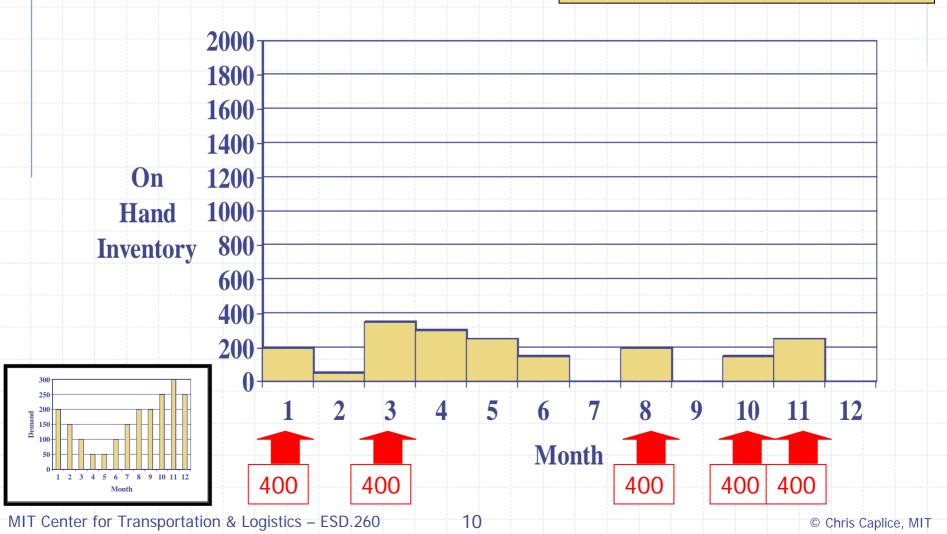

One Time Buy Lot for Lot Fixed Economic Order Quantity Periodic Order Quantity



Approach: One-Time Buy

	Month	Demand	Order Quantity	Holding Cost	Ordering Cost	Period Costs
	1	200	2000	\$1800	\$500	\$2300
	2	150	0	\$1650	\$0	\$1650
	3	100	0	\$1550	\$0	\$1550
	4	50	0	\$1500	\$0	\$1500
	5	50	0	\$1450	\$0	\$1450
	6	100	0	\$1300	\$0	\$1300
	7	150	0	\$1200	\$0	\$1200
	8	200	0	\$1000	\$0	\$1000
	9	200	0	\$800	\$0	\$800
	10	250	0	\$550	\$0	\$550
	11	300	0	\$250	\$0	\$250
	12	250	0	\$0	\$0	\$0
	Totals:	2000	2000	\$13100	\$500	\$13600
/IT Cen	ter for Transportati	on & Logistics – ES	D.260 7			© Chris Caplic

Approach: Lot for Lot



Approach: Lot for Lot

	Month	Demand	Order Quantity	Holding Cost	Ordering Cost	Period Costs
	1	200	200	\$0	\$500	\$500
	2	150	150	\$0	\$500	\$500
	3	100	100	\$0	\$500	\$500
	4	50	50	\$0	\$500	\$500
	5	50	50	\$0	\$500	\$500
	6	100	100	\$0	\$500	\$500
	7	150	150	\$0	\$500	\$500
	8	200	200	\$0	\$500	\$500
	9	200	200	\$0	\$500	\$500
	10	250	250	\$0	\$500	\$500
	11	300	300	\$0	\$500	\$500
	12	250	250	\$0	\$500	\$500
	Totals:	2000	2000	\$0	\$6000	\$6000
IT Cent	er for Transportati	on & Logistics – ESI	D.260 9			© Chris Caplic

Approach: EOQ

Policy Order Q* if D(t)>IOH

Approach: EOQ

Month	Demand	Order Quantity	Holding Cost	Ordering Cost	Period Costs
1	200	400	\$200	\$500	\$700
2	150	0	\$50	\$0	\$50
3	100	400	\$350	\$500	\$850
4	50	0	\$300	\$0	\$300
5	50	0	\$250	\$0	\$250
6	100	0	\$150	\$0	\$150
7	150	0	\$0	\$0	\$0
8	200	400	\$200	\$500	\$700
9	200	0	\$0	\$0	\$0
10	250	400	\$150	\$500	\$650
11	300	400	\$250	\$500	\$750
12	250	0	\$0	\$0	\$0
Totals:	2000	2000	\$1900	\$2500	\$4400

11

© Chris Caplice, MIT

MIT Center for Transportation & Logistics – ESD.260

Approach: Periodic Order Quantity

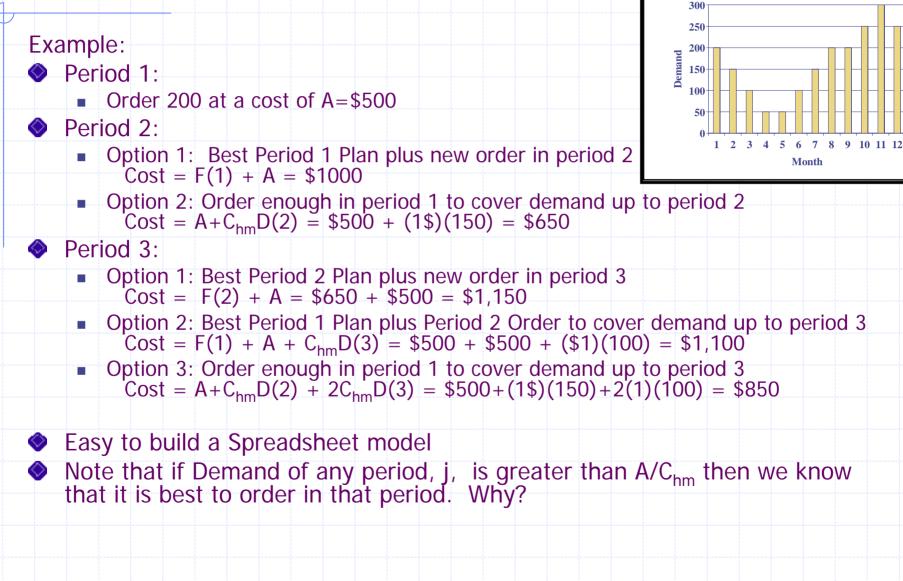
Similar to EOQ

- Find the optimal order cycle time, T*, for EOQ using annual demand
- Set POQ = Round up of T* to nearest integer
 - Every POQ time periods, order enough to satisfy demand for that POQ periods in the future
- Example
 - T*= 0.204 years = 2.45 months
 - POQ = 3 months

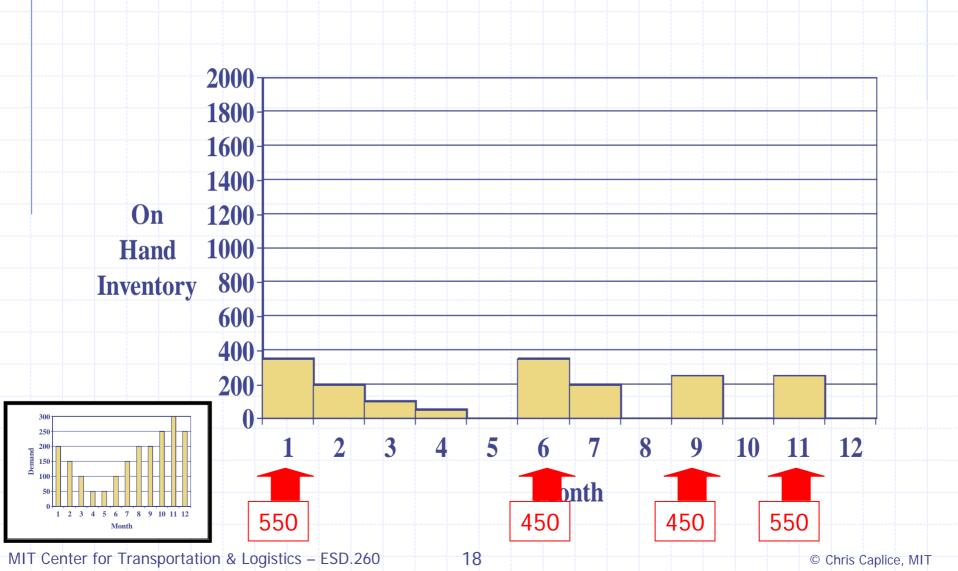
Approach: POQ

 Month	Demand	Order Quantity	Holding	Cost	Orderin	g Cost	Period	Costs
 1	200	450	\$	250	\$	500	\$	750
 2	150	0	\$	100	\$	-	\$	100
 3	100	0	\$	-	\$	-	\$	-
 4	50	200	\$	150	\$	500	\$	650
 5	50	0	\$	100	\$	-	\$	100
 6	100	0	\$	-	\$	-	\$	-
 7	150	550	\$	400	\$	500	\$	900
 8	200	0	\$	200	\$	-	\$	200
9	200	0	\$	-	\$	-	\$	-
 10	250	800	\$	550	\$	500	\$	1,050
 11	300	0	\$	250	\$	-	\$	250
 12	250	0	\$	-	\$	-	\$	-
 Totals:	2000	2000	\$	2,000	\$	2,000	\$	4,000

Policy Order Sum(D) every POQ time periods


MIT Center for Transportation & Logistics - ESD.260

Optimal Methods


Wagner Whitin Mixed Integer Linear Programming

Relies on 2 Key Properties

- Zero Inventory Ordering Property exists
- Upper limit on holding time for demand
- Algorithm
 - Start at t=1,
 - Find cost for ordering just enough for D(t)
 - Look at past orders (until t=1)
 - Find cost for ordering enough for D(t) by adding it into the previous order for D(t-1)
 - Pick lowest cost of Options Go to next t
 - At t=N find lowest cost option and work backwards

				<u> </u>	{							
Period	1	2	3	4	5	6	7	8	9	10	11	12
Demand	200	150	100	50	50	100	150	200	200	250	300	250
Order 1	500	650	850	1,000	1,200	1,700	2,600	4,000	5,600	7,850	10,850	13,600
Order 2		1,000	1,100	1,200	1,350	1,750	2,500	3,700	5,100	7,100	9,800	12,300
Order 3			1,150	1,200	1,300	1,600	2,200	3,200	4,400	6,150	8,550	10,800
Order 4				1,350	1,400	1,600	2,050	2,850	3,850	5,350	7,450	9,450
Order 5					1,500	1,600	1,900	2,500	3,300	4,550	6,350	8,100
Order 6						1,700	1,850	2,250	2,850	3,850	5,350	6,850
Order 7					1		2,100	2,300	2,700	3,450	4,650	5,900
Order 8								2,350		3,050	-	4,950
Order 9									2,750	3,000	3,600	4,350
Order 10								1		3,050	3,350	3,850
Order 11											3,500	3,750
Order 12										1		3,850
				Onti	mal	Irdor		•				
						Order I	J					
		OI	rder 5	50 in	peric	od 1, 4	150 in	peric	od 6,			
		4	50 in	peric	od 9, a	and 5	50 in	period	d 11			
MIT Center for Transpor	rtation	& Logistic	cs – ESD	.260	17						© Chris Ca	olice, MIT

Approach: Optimization (MILP)

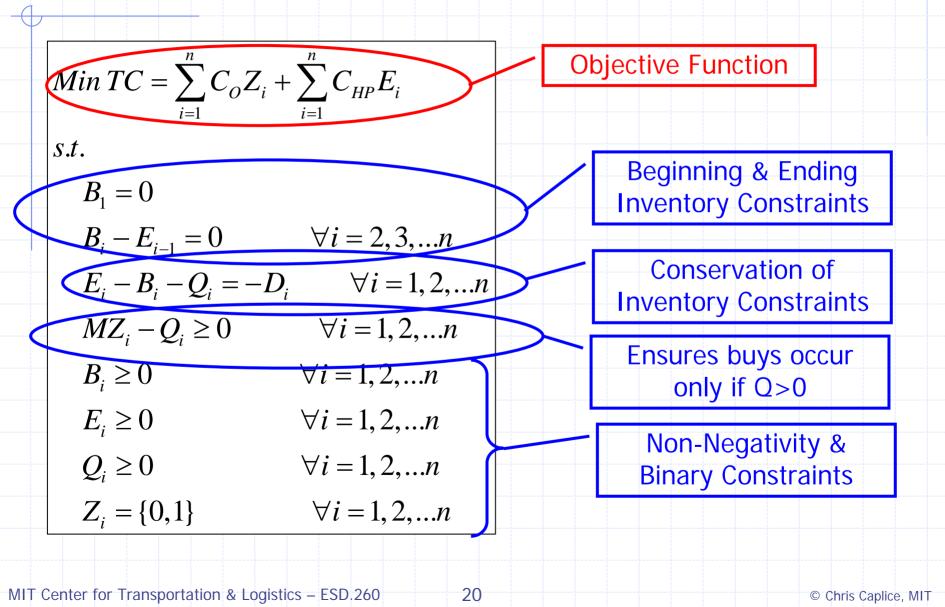
Decision Variables:

- Qi = Quantity purchased in period i
- $Zi = Buy variable = 1 \text{ if } Q_i > 0, = 0 \text{ o.w.}$
- Bi = Beginning inventory for period I
- Ei = Ending inventory for period I

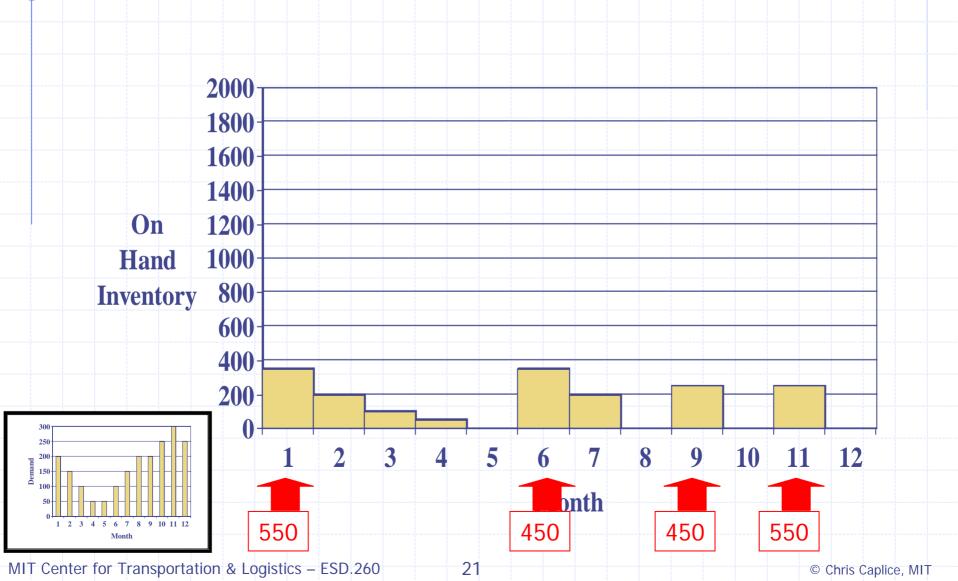
Data:

- D_i = Demand per period, i = 1,,n
- $C_o = Ordering Cost$
- C_{hp} = Cost to Hold, \$/unit/period
- M = a very large number....

MILP Model


Objective Function:

• Minimize total relevant costs


Subject To:

- Beginning inventory for period 1 = 0
- Beginning and ending inventories must match
- Conservation of inventory within each period
- Nonnegativity for Q, B, E
- Binary for Z

Approach: Optimization (MILP)

Approach: Optimization (MILP)

Special Heuristics

- Silver-Meal (Least Period Cost)
 Least Unit Cost
- Part-Period Balancing

Objective

- Minimize total relevant cost per unit time (TRCUT)
- TRCUT(T) = TRC(T)/T = (Order + Carrying)/T

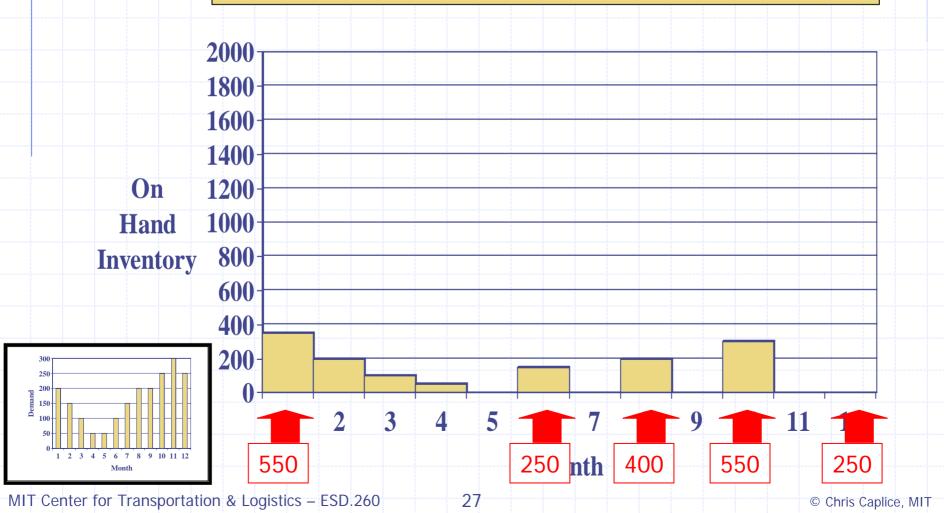
Decision Rule:

 Add next period's demand to the order if the average cost per period is reduced

Algorithm

- 1. Start at first period
- 2. Set T=1
- 3. If TRCUT(T) > TRCUT(T-1) then
 - Previous order goes for T-1 periods with Q=sum(D) for T,
 - Start new order and go to 2
- 4. Else, T=T+1 and go to 3

Mon	Dmd	Lot Qty	Order Cost	Holding Cost	Lot Cost	TRCUT
1st	Buy:					
1	200	200	\$500	\$0	\$500	\$500
2	150	350	\$500	\$150	\$650	\$325
3	100	450	\$500	\$150+\$200	\$850	\$283
4	50	500	\$500	\$150+\$200+\$150	\$1000	\$250
5	50	550	\$500	\$150+\$200+\$150+\$200	\$1200	\$240
6	100	650	\$500	\$150+\$200+\$150+ \$200+\$500	\$1700	\$283
2nd	Buy:					
6	100	100	\$500	\$0	\$500	\$500
7	150	250	\$500	\$150	\$650	\$325
8	200	450	\$500	\$150+\$400	\$1050	\$350


MIT Center for Transportation & Logistics – ESD.260

Mon	Dmd	Lot Qty	Order Cost	Holding Cost	Lot Cost	TRCUT
3rd	Buy:					
8	200	200	\$500	\$0	\$500	\$500
9	200	400	\$500	\$200	\$700	\$350
10	250	650	\$500	\$200+\$500	\$1200	\$400
4th	Buy:					
10	250	250	\$500	\$0	\$500	\$500
11	300	550	\$500	\$300	\$800	\$400
12	250	800	\$500	\$300+\$500	\$1300	\$433
5th	Buy:					
12	250	250	\$500	\$0	\$500	\$500

- ()	Month	Demand	Order Quantity	Holding Cost	Ordering Cost	Period Costs
	1	200	550	\$350	\$500	\$850
	2	150	0	\$200	\$0	\$200
	3	100	0	\$100	\$0	\$100
	4	50	0	\$50	\$0	\$50
	5	50	0	\$0	\$0	\$0
	6	100	250	\$150	\$500	\$650
	7	150	0	\$0	\$0	\$0
	8	200	400	\$200	\$500	\$700
	9	200	0	\$0	\$0	\$0
	10	250	550	\$300	\$500	\$800
	11	300	0	\$0	\$0	\$0
	12	250	250	\$0	\$500	\$500
	Totals:	2000	2000	\$1350	\$2500	\$3850
MIT Cent	er for Transportation	on & Logistics – ESI	D.260 20	5		© Chris Cap

© Chris Caplice, MIT

Policy: Order 550 in period 1, 250 in period 6, 400 in period 8, 550 in period 10, and 250 in period 12

Approach: Least Unit Cost

Objective

- Minimize total relevant cost per item (TRCI)
- **Decision Rule:**
 - Add next period's demand to the order if the average cost per item is reduced

Algorithm

- 1. Start at first period
- 2. Set T=1
- 3. If TRCI(T) > TRCI(T-1) then
 - Previous order goes for T-1 periods with Q=sum(D) for T,
 - Start new order and go to 2
- 4. Else, T=T+1 and go to 3

Approach: Least Unit Cost

	\mathbf{r}											
~~	PER	Demand	Lot Size	Order Cost	Hold Cost	Lot Cost	Cos	st Per Item	Next CP	CNT	BUY	ORDER
~~~	1	200	200	\$500	\$0	\$500	\$	2.50	\$ 1.86	1	1	
	2	150	350	\$500	\$150	\$650	\$	1.86	\$ 1.89	2	1	350
	3	100	100	\$500	\$0	\$500	\$	5.00	\$ 3.67	1	2	
	4	50	150	\$500	\$50	\$550	\$	3.67	\$ 3.25	2	2	
	5	50	200	\$500	\$150	\$650	\$	3.25	\$ 3.17	3	2	
	6	100	300	\$500	\$450	\$950	\$	3.17	\$ 3.44	4	2	300
~~	7	150	150	\$500	\$0	\$500	\$	3.33	\$ 2.00	1	3	
	8	200	350	\$500	\$200	\$700	\$	2.00	\$ 2.00	2	3	350
	9	200	200	\$500	\$0	\$500	\$	2.50	\$ 1.67	1	4	
	10	250	450	\$500	\$250	\$750	\$	1.67	\$ 1.80	2	4	450
	11	300	300	\$500	\$0	\$500	\$	1.67	\$ 1.36	1	5	
	12	250	550	\$500	\$250	\$750	\$	1.36	\$ 1.36	2	5	550
	1											

#### Policy: Order 350 in period 1, 300 in period 3, 350 in period 7, 450 in period 9, and 550 in period 11

## Approach: Part Period Balancing

#### Objective

 Balancing holding and order costs for each replenishment

#### Decision Rule:

Select number of periods to cover so that carrying costs is close to order (set up) costs

#### Algorithm

- Starting with first period, find holding cost
- Add period to order until the holding cost is "close" to A
- Start new order

## Approach: Part Period Balancing

Month	Demand	Order Quantity	Hole	ding Cost	Orc	lering Cost
1	200	500	\$	300	\$	500
2	150	0	\$	150	\$	-
3	100	0	\$	50	\$	-
4	50	0	\$	-	\$	-
5	50	300	\$	250	\$	500
6	100	0	\$	150	\$	-
7	150	0	\$	-	\$	-
8	200	650	\$	450	\$	500
9	200	0	\$	250	\$	-
10	250	0	\$	-	\$	-
11	300	550	\$	250	\$	500
12	250	0	\$	-	\$	-
Totals:	2000	2000	\$	1,850	\$	2,000

Policy: Order 500 in period 1, 300 in period 5, 650 in period 8, and 550 in period 11

31

## **Comparison of Approaches**

$\Psi$									
Month	Demand	1TB	L4L	EOQ	POQ	Optimal	SM	LUC	PBB
1	200	2000	200	400	450	550	550	350	500
2	150	0	150	0	0	0	0	0	0
3	100	0	100	400	0	0	0	300	0
4	50	0	50	0	200	0	0	0	0
5	50	0	50	0	0	0	0	0	300
6	100	0	100	0	0	450	250	0	0
7	150	0	150	0	550	0	0	350	0
8	200	0	200	400	0	0	400	0	650
9	200	0	200	0	0	450	0	450	0
10	250	0	250	400	800	0	550	0	0
11	300	0	300	400	0	550	0	550	550 -
12	250	0	250	0	0	0	250	0	0
Но	Iding Cost	\$ 13,100	\$ -	\$ 1,900	\$ 2,000	\$ 1,750	\$ 1,350	\$ 1,850	\$ 1,850
0	Order Cost	\$ 500	\$6,000	\$ 2,500	\$ 2,000	\$ 2,000	\$ 2,500	\$ 2,500	\$ 2,000
	Total Cost	\$ 13,600	\$6,000	\$ 4,400	\$ 4,000	\$ 3,750	\$ 3,850	\$ 4,350	\$ 3,850
- Inv	Turn Over	1.83	Inf	12.60	12.00	13.70	17.80	13.00	13.00
Pc	t > Optimal	263%	60%	17%	7%	0%	3%	16%	3%

## Take Aways from FPH

- Many ways to solve the problem with implicit trade-offs
  - Heuristics Fast, simple, not always good
  - Optimal Methods Requires more time and data
  - Specialty Heuristics More Focused, harder to set up, better 'real-world' results
- An "optimal" solution might not be optimal in the real-world
- Best solution to the problem . . . depends

Questions? Comments Suggestions?