Single Period Inventory Models

Yossi Sheffi Mass Inst of Tech Cambridge, MA

Outline

- Single period inventory decisions
- Calculating the optimal order size
 - Numerically
 - Using spreadsheet
 - Using simulation
 - Analytically
- The profit function
 - For specific distributions
- Level of Service
- Extensions:
 - Fixed costs
 - Risks
 - Initial inventory
 - Elastic demand

Single Period Ordering

Selling Magazines

□ Weekly demand:

90	48	87	78	58	71	102	87	66	79	97	75	89
57	86	95	67	89	70	113	52	84	62	91	71	66
99	73	92	66	67	89	87	64	70	54	67	88	62
79	79	105	76	73	78	50	107	80	78	51	79	80

- Total: 4023 magazines
- Average: 77.4 Mag/week
- Min: 51; max: 113 Mag/week

Detailed Histogram

Histogram

The Ordering Decision (Spreadsheet)

□ Assume: each magazine sells for: \$15

Cost of each magazine: \$8

		Order:	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
C	l/wk	Prob.															
	40	0.00	\$140	\$210	\$280	\$200	\$120	\$40	-\$40	-\$120	-\$200	-\$280	-\$360	-\$440	-\$520	-\$600	-\$680
	50	0.04	\$140	\$210	\$280	\$350	\$270	\$190	\$110	\$30	-\$50	-\$130	-\$210	-\$290	-\$370	-\$450	-\$530
	60	0.10	\$140	\$210	\$280	\$350	\$420	\$340	\$260	\$180	\$100	\$20	-\$60	-\$140	-\$220	-\$300	-\$380
	70	0.21	\$140	\$210	\$280	\$350	\$420	\$490	\$410	\$330	\$250	\$170	\$90	\$10	-\$70	-\$150	-\$230
	80	0.29	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$480	\$400	\$320	\$240	\$160	\$80	\$0	-\$80
	90	0.19	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$550	\$470	\$390	\$310	\$230	\$150	\$70
	100	0.10	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$620	\$540	\$460	\$380	\$300	\$220
	110	0.06	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$770	\$690	\$610	\$530	\$450	\$370
	120	0.02	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$770	\$840	\$760	\$680	\$600	\$520
	130	0.00	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$770	\$840	<u>\$910</u>	\$830	<u>\$750</u>	<u>\$670</u>
E	Exp. Profit:		\$140	\$210	\$280	\$350	\$414	\$464	\$482	\$457	\$403	\$334	\$257	\$177	\$97	\$17	-\$63

Expected Profits

Optimal Order (Analytical)

- The optimal order is Q*
- At Q* what is the probability of selling one more magazine ?
- The expected profit from ordering the (Q*+1)st magazine is:

The optimum is where the total expected profit from ordering one more magazine is zero:

$$Pr(Demand \leq Q^*) = \frac{REV-COST}{REV}$$

Optimal Order

 $\frac{15-8}{15}$ **REV-COST** The "critical ratio": Pr(Demand \leq Q*) = = 0.47REV 100% 16 90% 14 • Frequency 80% 12 70% Frequency (Wks/Yr 10 60% Cummulative 8 50% 40% 6 30% 4 20% 2 10% 0 0% 20 130 Nore ہ مہر Mag/week) 5 6 0 20

Salvage Value

The Profit Function

- Revenue from sold items
- Revenue or costs associated with unsold items. These may include revenue from salvage or cost associated with disposal.
- Costs associated with not meeting customers' demand. The lost sales cost can include lost of good will and actual penalties for low service.
- The cost of buying the merchandise in the first place.

The Profit Function

$$E[Sales] = Q \cdot \int_{X=Q}^{\infty} f(x) dx + \int_{X=0}^{Q} x \cdot f(x) dx$$

$$E[Unsold] = \int_{x=0}^{Q} (Q-x) \cdot f(x) dx = Q - E[Sales]$$

$$E[Lost Sales] = \int_{X=Q}^{\infty} (x-Q) \cdot f(x) dx = \mu - E[Sales]$$

 $E[Profit] = R \cdot E[Sales] + S \cdot E[Unsold] - L \cdot E[Lost Sales] - C \cdot Q$

The Profit Function – Simple Case

 $E[Profit] = R \cdot E[Sales] - C \cdot Q$

Optimal Order:

$$\frac{d}{dQ}E[Profit] = (1 - F(Q)) \cdot R - C = 0$$
$$\frac{d}{dQ}E[Sales] = 1 - F(Q)$$

$$F[Q^*] = \frac{R-C}{R}$$
 and: $Q^* = F^{-1}\left[\frac{R-C}{R}\right]$

Level of Service

- Cycle Service The probability that there will be a stock-out during a cycle
- Fill Rate The probability that a specific customer will encounter a stock-out

Level of Service

REV=\$15 COST=\$8

Normal Distribution of Demand

$$X \sim N(\mu, \sigma)$$

$$E[sales] = Q - \sigma \cdot (z \cdot \Phi(z) + \phi(z))$$
$$z = \frac{Q - \mu}{\sigma}$$

$$E[Profit] = (R - C) \bullet Q - R \bullet \sigma \cdot [z \bullet \Phi(z) + \phi(z)]$$

$$Q^* = NORMINV\left(\frac{R-C}{R}\right) =$$
$$= NORMINV\left(\frac{15-8}{15}\right) = 76 \text{ Mags}$$

Incorporating Fixed Costs

With fixed costs of \$300/order:

Risk of Loss

Ordering with Initial Inventory

Given initial Inventory: Q_0 , how to order?

- Cost of initial inventory
- With fixed costs, order only if the expected profits from ordering are more than the ordering costs

- •If initial inventory is LE 46, order up to 80
- •If initial inventory is GE 47, order nothing

 $\mu/2$

5. Calculate optimal expected profits as a $P^* = 22

Q*= 65 Mag $\mu(p) = 56 \text{ Mag}$ $\sigma = 28$ Exp. Profit=\$543

Elastic Demand: Numerical Optimization

Screenshots removed due to copyright restrictions.

Any Questions?

Yossi Sheffi