Single Period Inventory Models

Yossi Sheffi
Mass Inst of Tech
Cambridge, MA

Outline

\square Single period inventory decisions
\square Calculating the optimal order size

- Numerically
- Using spreadsheet
\square Using simulation
- Analytically
\square The profit function
- For specific distributions
\square Level of Service
\square Extensions:
- Fixed costs
- Risks
- Initial inventory
- Elastic demand

Single Period Ordering

ロ
ロ
ロ
口
\square
\square

Selling Magazines

\square Weekly demand:

90	48	87	78	58	71	102	87	66	79	97	75	89
57	86	95	67	89	70	113	52	84	62	91	71	66
99	73	92	66	67	89	87	64	70	54	67	88	62
79	79	105	76	73	78	50	107	80	78	51	79	80

- Total: 4023 magazines
- Average: 77.4 Mag/week
- Min: 51; max: 113 Mag/week

Detailed Histogram

Average $=77.4 \mathrm{Mag} / \mathrm{wk}$

Histogram

The Ordering Decision (Spreadsheet)

\square Assume: each magazine sells for: \$15
\square Cost of each magazine: \$8

Order:		20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
d/wk	Prob.															
40	0.00	\$140	\$210	\$280	\$200	\$120	\$40	\$40	\$120	200	280					0
50	0.04	\$140	\$210	\$280	\$350	\$270	\$190	\$110	\$30	-\$50	\$130	-\$21	\$29	-\$370	\$450	\$530
60	0.10	\$140	\$210	\$280	\$350	\$420	\$34	\$260	\$180	\$100	\$20	-\$	-\$140	-\$220	\$300	0
70	0.21	\$140	\$210	\$280	\$350	\$420	\$49	\$410	\$330	\$250	\$170	\$90	\$10	-\$70	\$150	\$230
80	0.29	\$140	\$210	\$280	\$350	\$420	\$49	\$560	\$480	\$400	\$320	\$240	\$160	\$80	\$0	-\$80
90	0.19	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$550	\$470	\$390	\$310	\$230	\$150	\$70
100	0.10	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$620	\$540	\$460	\$380	\$300	\$220
110	0.06	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$770	\$690	\$610	\$530	\$450	\$370
120	0.02	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$770	\$840	\$760	\$680	\$600	\$520
130	0.00	\$140	\$210	\$280	\$350	\$420	\$490	\$560	\$630	\$700	\$770	\$840	\$910	\$830	\$750	\$670
Exp. Profit:		\$140	\$210	\$280	\$350	\$414	\$464	\$482	\$457	\$403	\$334	\$257	\$177	\$97	\$17	-\$63

Expected Profits

Optimal Order (Anayticial)

\square The optimal order is Q^{*}
\square At Q* - what is the probability of selling one more magazine?
\square The expected profit from ordering the $\left(Q^{*}+1\right)$ st magazine is:
\square The optimum is where the total expected profit from ordering one more magazine is zero:

$$
\operatorname{Pr}\left(\text { Demand } \leq \mathrm{Q}^{*}\right)=\frac{\mathrm{REV}-\mathrm{COST}}{R E V}
$$

Optimal Order

The "critical ratio":

$$
\operatorname{Pr}\left(\text { Demand } \leq Q^{*}\right)=\frac{R E V-C O S T}{R E V}=\frac{15-8}{15}=0.47
$$

Salvage Value

 Salvage value $=\$ 4 / \mathrm{Mag} . \quad$ Critcal Ratio $=\frac{R E V-\operatorname{COST}}{R E V-S L V}=\frac{15-8}{15-4}=0.64$

The Profit Function

\square Revenue from sold items
\square Revenue or costs associated with unsold items. These may include revenue from salvage or cost associated with disposal.
\square Costs associated with not meeting customers' demand. The lost sales cost can include lost of good will and actual penalties for low service.
\square The cost of buying the merchandise in the first place.

The Profit Function

$$
\begin{aligned}
& E[\text { Sales }]=Q \cdot \int_{x=Q}^{\infty} f(x) d x+\int_{x=0}^{Q} x \cdot f(x) d x \\
& E[\text { Unsold }]=\int_{x=0}^{Q}(Q-x) \cdot f(x) d x=Q-E[\text { Sales }] \\
& E[\text { Lost Sales }]=\int_{x=0}^{\infty}(x-Q) \cdot f(x) d x=\mu-E[\text { Sales }]
\end{aligned}
$$

$$
E[\text { Profit }]=R \cdot E[\text { Sales }]+S \cdot E[\text { Unsold }]-L \cdot E[\text { Lost Sales }]-C \cdot Q
$$

The Profit Function - Simple Case

$$
E[\text { Profit }]=R \cdot E[\text { Sales }]-C \cdot Q
$$

Optimal Order:

$$
\begin{gathered}
\frac{d}{d Q} E[\text { Profit }]=(1-F(Q)) \cdot R-C=0 \\
\frac{d}{d Q} E[\text { Sales }]=1-F(Q) \\
F\left[Q^{*}\right]=\frac{R-C}{R} \quad \text { and: } \quad Q^{*}=F^{-1}\left[\frac{R-C}{R}\right]
\end{gathered}
$$

Level of Service

\square Cycle Service - The probability that there will be a stock-out during a cycle
\square Fill Rate - The probability that a specific customer will encounter a stock-out
\square

Level of Service

Normal Distribution of Demand

$$
\begin{aligned}
& X \sim N(\mu, \sigma) \\
& E[\text { sales }]=Q-\sigma \cdot(z \bullet \Phi(z)+\phi(z)) \quad z=\frac{Q-\mu}{\sigma} \\
& E[\text { Profit }]=(R-C) \bullet Q-R \bullet \sigma \cdot[z \bullet \Phi(z)+\phi(z)]
\end{aligned}
$$

$$
\begin{aligned}
Q^{*}= & \text { NORMINV }\left(\frac{R-C}{R}\right)= \\
& =\text { NORMINV }\left(\frac{15-8}{15}\right)=76 \mathrm{Mags}
\end{aligned}
$$

Incorporating Fixed Costs

With fixed costs of $\$ 300 /$ order:

Risk of Loss

Ordering with Initial Inventory

\square Given initial Inventory: Q_{0}, how to order?
\square Cost of initial inventory
\square With fixed costs, order only if the expected profits from ordering are more than the ordering costs

Ordering with Fixed
 Costs and Initial Inventory

Example: $\mathrm{F}=\$ 150$

-If initial inventory is LE 46, order up to 80
-If initial inventory is GE 47, order nothing

Elastic Demand

$\square \quad \mu=\mathrm{D}(\mathrm{P}) ; \sigma=\mathrm{f}(\mu)$
\square Procedure:

5. Calculate optimal expected profits as a function of P.

Rev $=$	$\$ 15$
Cost $=$	$\$ 8$
$\mu(p)=165-5^{*} \mathrm{p}$	
$\sigma=$	$\mu / 2$

$\mathrm{P}^{*}=\$ 22$
$\mathrm{Q}^{*}=65 \mathrm{Mag}$
$\mu(\mathrm{p})=56 \mathrm{Mag}$
$\sigma=28$
Exp. Profit=\$543

Elastic Demand: Numerical Optimization

Screenshots removed due to copyright restrictions.

Any Questions?

Yossi Sheffi

