Inventory Management Probabilistic Demand

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

Assumptions: Probabilistic Demand

Demand

- Constant vs <u>Variable</u>
- Known vs <u>Random</u>
- <u>Continuous</u> vs Discrete
- Lead time
 - Instantaneous
 - <u>Constant</u> or Variable (deterministic/stochastic)
- Dependence of items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous
 - Periodic
- Number of Echelons
 - <u>One</u>
 - Multi (>1)
 - Capacity / Resources
 - Unlimited
 - Limited / Constrained

MIT Center for Transportation & Logistics – ESD.260

- Discounts
 - None
 - All Units or Incremental
- Excess Demand
 - None
 - All orders are backordered
 - All orders are lost
 - Substitution
- Perishability
 - None
 - Uniform with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - <u>One</u>

2

- Many
- Form of Product
 Single Stage
 - Multi-Stage

© Chris Caplice, MIT

Key Questions

What are the questions I should ask to determine the type of inventory control system to use?

- How important is the item?
- Should review be periodic or continuous?
- What form of inventory policy should I use?
- What cost or service objectives should I set?

3

How important is the item?

Standard ABC analysis

- A Items
 - Very few high impact items are included
 - Require the most managerial attention and review
 - Expect many exceptions to be made
- B Items
 - Many moderate impact items (sometimes most)
 - Automated control w/ management by exception
 - Rules can be used for A (but usually too many exceptions)
- C Items
 - Many if not most of the items that make up minor impact
 - Control systems should be as simple as possible
 - Reduce wasted management time and attention
 - Group into common regions, suppliers, end users

♦ But – these are arbitrary classifications

MIT Center for Transportation & Logistics – ESD.260

Continuous or Periodic Review?

What form of inventory policy?

No hard and fast rules, but some rules of thumb

Type of Item,	Continuous Review	Periodic Review
 A Items	(s, S)	(R, s, S)
B Items	(s,Q)	(R, S)
C Items		Manual ~ (R,S)

Determining s in (s,Q) System

Coverage over lead time

- Expected demand over lead time
- Safety (buffer stock)

Procedure:

- Find Safety Stock (SS) by specifying a k
- Find s by adding SS to expected demand over leadtime

Parameters depend on cost & service objectives

What cost and service objectives?

- 1. Common Safety Factors Approach
 - Simple, widely used method
 - Apply a common metric to aggregated items
- 2. Cost Minimization Approach
 - Requires costing of shortages
 - Find trade-off between relevant costs
- 3. Customer Service Approach
 - Establish constraint on customer service
 - Definitions in practice are fuzzy
 - Minimize costs with respect to customer service constraints
- 4. Aggregate Considerations
 - Weight specific characteristic of each item
 - Select characteristic most "essential" to firm

Framework for (s, Q) Systems

Cycle Stock

- Determine best Q
- Usually from EOQ

Safety Stock

- Pick type of cost or service standard
 - If service, then use decision rule for setting k
 - If cost, then minimize total relevant costs to find k
- Calculate safety stock as $k\sigma_{\!\rm L}$

Total Cost:

$$TC = vD + A\left(\frac{D}{Q}\right) + vr\left(\frac{Q}{2} + k\sigma_L\right) + C_{StockOutType}P[StockOutType]$$

Framework for (s,Q) Systems

Stockout Types	Key Element	Cost	Service
Event based	Probability of a stock out event	B ₁ (Prob[SO])(D/Q)	P ₁ =1-Prob[SO]
# of Units Short	Expected # units short	(B ₂ v)(σ _L G _u (k))(D/Q)	P_2 =ItemFillRate =1- ($\sigma_LG_u(k)/Q$)
Units Short per Time	Expected duration time for each unit stocked out	$(B_3v)(\sigma_LG_u(k)d_{SO})(D/Q)$ Where $d_{SO}=avg$ duration of stockout	
Line Items Short	Expected number of lines shorted	(B ₄ v)(σ _L G _u (k)/z)(D/Q) where z=avg items / order	

Cycle Service Level (CSL or P₁)

Cycle Service Level

- Probability of no stockouts per replenishment cycle
- Equal to one minus the probability of stocking out
- = $1 P[Stockout] = 1 P[x_L > s] = P[x_L \le s]$

MIT Center for Transportation & Logistics – ESD.260

Finding P[Stockout]

Cumulative Normal Distribution

Finding CSL from a given k

If I select a k=0.42

0

Using a Table of Cumulative Normal Probabilities . . .

	K	0.00	0.01	0.02	0.03	0.04
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700
	05	0 6915	0 6950	0 6985	9.7019	0.7054
From SPP (Table B.1 pp 724-734) Select k factor (first column)				.7357	0.7389	
Prob[Stockout] = value in the $p_{u>}(k)$ column				.7673	0.7704	
• $CSL = 1 - p_{u \ge}(k)$.7967	then my Cycle
In Excel, use the function				0000	Service Level is	
• CSL=NORMDIST(s, x_L , σ_L , 1) where s= x_L + $k\sigma_L$				1.8238	this value.	
 CSL=NORMSDIST(k) 				.8485	0.0000	
н. с. т			260	10		

MIT Center for Transportation & Logistics – ESD.260

k Factor versus Cycle Service Level

Figure by MIT OCW.

MIT Center for Transportation & Logistics – ESD.260

Example: Setting SS and s

🔷 Given

- Average demand over time is considered constant
- Forecast of demand is 13,000 units a year ~ iid Normal
- Lead time is 2 weeks
- RMSE of the forecast = 1,316 units per year
- EOQ = 228 units (A=50 \$/order, r=10%, v=250 \$/item)

Find

- Safety stock and reorder point, s, for the following cycle service levels:
 - CSL=.80
 - CSL=.90
 - CSL=.95
 - CSL=.99

Quick Aside on Converting Times

Item Fill Rate (P₂) Metric

\diamond Item Fill Rate (P₂)

- Fraction of demand filled from IOH
- Need to find the expected number of items that I will be short for each cycle
 - Expected Units Short E[US]
 - Expected Shortage per Replenishment Cycle (ESPRC)
- More difficult than CSL need to find a partial expectation for units short

 $FillRate = \frac{OrderQuantity - E[UnitsShort]}{E[UnitsShort]}$ **OrderQuantity**

20

Finding Expected Units Short

Find the expected number of units short, E[US], during a replenishment cycleUse Loss Function – widely used in inventory theory

L(k) = expected amount that random variable X exceeds a given threshold value, k.

MIT Center for Transportation & Logistics – ESD.260

21

Interpretation: If my demand is ~U(1,8) and I have a safety stock of 5 then I can expect to be short 0.75 units each service cycle

Finding Expected Units Short

Consider both continuous and discrete cases Looking for expected units short per replenishment cycle.

$$E[US] = \sum_{x=k}^{\infty} (x-k) p[x] = \int_{k}^{\infty} (x_o-k) f_x(x_o) dx_o$$

For normal distribution, $E[US] = \sigma_L G(k)$ Where G(k) = Unit Normal Loss Function In SPP, $G(k) = G_u(k) = f_x(x_0) - k* Prob[x_0 \ge k])$ Derived in SPP p. 721, in tables B.1 In Excel, NORMDIST(k,0,1,0) - k(1 - NORMDIST(k,0,1,1))

22

MIT Center for Transportation & Logistics – ESD.260

Item Fill Rate (IFR or P₂)

Procedure: Relate k to desired IFR $IFR = \frac{Q - E[US]}{O} = 1 - \frac{E[US]}{O}$

- Find k that satisfies rule
 - Solve for G[k]
 - Use table or Excel to find k
- Find reorder point s
 - $s = x_1 + k\sigma_1$

Example

- Average demand over time is considered constant
- Forecast of demand is 13,000 units a year ~ iid Normal
- Lead time is 2 weeks
- RMSE of the forecast = 1,316 units per year
- EOQ = 228 units (A=50 \$/order, r=10%, v=250 \$/item)

Find

Safety stock and reorder point, s, for the following item fill rates: IFR=.80, .90,.95, and 0.99

Compare CSL versus IFP

IFR usually much higher than CSL for same SS
 IFR depends on both s and Q while CSL is independent of all product characteristics
 Q determines the number of exposures for an item

Pct	SS CSL	SS IFR
99%	601	513
95%	423	348
90%	330	252
80%	217	148

Cost per Stockout Event (B₁)

Consider total relevant costs

- Order Costs no change from EOQ
- Holding Costs add in Safety Stock
- StockOut Costs product of:
 - Cost per stockout event (B₁)
 - Number of replenishment cycles
 - Probability of a stockout per cycle

TRC = *OrderCosts* + *HoldingCosts* + *StockOutCosts*

$$\left| TRC = A\left(\frac{D}{Q}\right) + \left(\frac{Q}{2} + k\sigma_L\right)vr + B_1\left(\frac{D}{Q}\right)p_{u\geq}(k) \right|$$

Solve for k that minimizes total relevant costs

- Use solver in Excel
- Use decision rules

Cost per Stockout Event (B₁)

Decision Rule

- If Eqn 7.19 is true
 - Set k to lowest allowable value (by mgmt)
- Otherwise set k using Eqn 7.20

$$Eqn7.19) \quad \frac{DB_1}{\sqrt{2\pi}Qv\sigma_L r} < 1$$

$$(Eqn7.20) \quad k = \sqrt{2\ln\left(\frac{DB_1}{\sqrt{2\pi}Qv\sigma_Lr}\right)}$$

Cost per Unit Short (B₂)

Consider total relevant costs

- Order Costs no change from EOQ
- Holding Costs add in Safety Stock
- StockOut Costs product of:
 - Cost per item stocked out (B₂)
 - Estimated number units short
 - Number of replenishment cycles

TRC = *OrderCosts* + *HoldingCosts* + *StockOutCosts*

$$TRC = A\left(\frac{D}{Q}\right) + \left(\frac{Q}{2} + k\sigma_L\right)vr + B_2v\sigma_LG_u(k)\left(\frac{D}{Q}\right)$$

Solve for k that minimizes total relevant costs

- Use solver in Excel
- Use decision rules

Cost per Unit Short (B₂)

Decision Rule

- If Eqn 7.22 is true
 - Set k to lowest allowable value (by mgmt)
- Otherwise set k using Eqn 7.23

 $(Eqn7.22) \quad \frac{Qr}{DB_2} > 1$

 $(Eqn7.23) \quad p_{u\geq}(k) = \frac{Qr}{DB_2}$

Example

- You are setting up inventory policy for a Class B item. The annual demand is forecasted to be 26,000 units with an annual historical RMSE +/- 2,800 units. The replenishment lead time is currently 4 weeks. You have been asked to establish an (s,Q) inventory policy.
 Other details: It costs \$12,500 to place an order, total landed cost is \$750 per item, holding cost is 10%. Items come in cases of 100 each.
- What is my policy, safety stock, and avg IOH if . . .
 - 1. I want to have a CSL of 95%?
 - 2. I want to achieve an IFR of 95%?
 - 3. I estimate that the cost of a stockout per cycle is \$50,000?
 - 4. I estimate that the cost of a stockout per item is \$75?

Questions? Comments? Suggestions?