Inventory Management Probabilistic Demand

Chris Caplice
ESD.260/15.770/1.260 Logistics Systems
Oct 2006

Assumptions: Probabilistic Demand

- Demand
- Constant vs Variable
- Known vs Random
- Continuous vs Discrete
- Lead time
- Instantaneous
- Constant or Variable (deterministic/stochastic)
- Dependence of items
- Independent
- Correlated
- Indentured
- Review Time
- Continuous
- Periodic
- Number of Echelons
- One
- Multi (>1)
- Capacity / Resources
- Unlimited
- Limited / Constrained
- Discounts
- None
- All Units or Incremental
- Excess Demand
- None
- All orders are backordered
- All orders are lost
- Substitution
- Perishability
- None
- Uniform with time
- Planning Horizon
- Single Period
- Finite Period
- Infinite
- Number of Items
- One
- Many
- Form of Product
- Single Stage
- Multi-Stage

Key Questions

- What are the questions I should ask to determine the type of inventory control system to use?
- How important is the item?
- Should review be periodic or continuous?
- What form of inventory policy should I use?
- What cost or service objectives should I set?

How important is the item?

- Standard ABC analysis

- A Items
- Very few high impact items are included
- Require the most managerial attention and review
- Expect many exceptions to be made
- B Items
- Many moderate impact items (sometimes most)
- Automated control w/ management by exception
- Rules can be used for A (but usually too many exceptions)
- C Items
- Many if not most of the items that make up minor impact
- Control systems should be as simple as possible
- Reduce wasted management time and attention
- Group into common regions, suppliers, end users

But - these are arbitrary classifications

Continuous or Periodic Review?

- Periodic Review
- Know stock level only at certain times
- Review periods are usually scheduled and consistent
- Ordering occurs at review
- Pros / Cons
- Coordination of replenishments
- Able to predict workload
- Forces a periodic review
- Continuous Review
- Is continuous really continuous?
- Transactions reporting
- Collecting information vs. Making decision
- Pros / Cons
- Replenishments made dynamically
- Cost of equipment
- Able to provide same level of service with less safety stock
- Notation

$$
\begin{array}{llr}
s=\text { Order Point } & \text { S = Order-up-to Level } & L=\text { Order Lead Time } \\
Q=\text { Order Quantity } & R=\text { Review Period } & \text { IOH= Inventory on Hand } \\
\text { IP } & =\text { Inventory Position } &
\end{array}
$$

What form of inventory policy?
 Continuous Review ($\mathrm{R}=0$)

- Order-Point, Order-Quantity (s, Q)
- Policy: Order Q if IP $\leq \mathrm{s}$
- Two-bin system

- Order-Point, Order-Up-To-Level (s, S)
- Policy: Order (S-IP) if IP $\leq s$
- Min-Max system

What form of inventory policy? Periodic Review ($\mathrm{R}>0$)

- Order-Up-To-Level (R, S)
- Policy: Order S-IP every R time periods
- Replenishment cycle system

- Hybrid ($\mathrm{R}, \mathrm{s}, \mathrm{S}$) System
- Policy: Order S-IP if IP \leq s every R time periods, if IP>s then do not order
- General case for many policies

What form of inventory policy?

No hard and fast rules, but some rules of thumb

Type of Item,	Continuous Review	Periodic Review
	A Items	(s, S)
$(\mathrm{R}, \mathrm{s}, \mathrm{S})$		
	B Items	(s, Q)
	(R, S)	
	C Items	

Determining s in (s,Q) System

- Coverage over lead time
- Expected demand over lead time
- Safety (buffer stock)
- Procedure:
- Find Safety Stock (SS) by specifying a k
- Find s by adding SS to expected demand over leadtime

- Parameters depend on cost \& service objectives

What cost and service objectives?

1. Common Safety Factors Approach

- Simple, widely used method
- Apply a common metric to aggregated items

2. Cost Minimization Approach

- Requires costing of shortages
- Find trade-off between relevant costs

3. Customer Service Approach

- Establish constraint on customer service
- Definitions in practice are fuzzy
- Minimize costs with respect to customer service constraints

4. Aggregate Considerations

- Weight specific characteristic of each item
- Select characteristic most "essential" to firm

Framework for (s, Q) Systems

- Cycle Stock
- Determine best Q
- Usually from EOQ
- Safety Stock
- Pick type of cost or service standard
- If service, then use decision rule for setting k
- If cost, then minimize total relevant costs to find k
- Calculate safety stock as $\mathrm{k} \mathrm{\sigma}_{\mathrm{L}}$
- Total Cost:

$$
T C=v D+A\left(\frac{D}{Q}\right)+v r\left(\frac{Q}{2}+k \sigma_{L}\right)+C_{\text {StockOutType }} P[\text { StockOutType }]
$$

Framework for (s,Q) Systems

Stockout Types	Key Element	Cost	Service
Event based	Probability of a stock out event	$\mathrm{B}_{1}(\operatorname{Prob}[\mathrm{SO}])(\mathrm{D} / \mathrm{Q})$	$\mathrm{P}_{1}=1-\mathrm{Prob}[\mathrm{SO}]$
\# of Units Short	Expected \# units short	$\left(B_{2} v\right)\left(\sigma_{L} G_{u}(k)\right)(D / Q)$	$\mathrm{P}_{2}=$ ItemFill Rate $=1-\left(\sigma_{L} G_{u}(k) / Q\right)$
Units Short per Time	Expected duration time for each unit stocked out	$\left(B_{3} v\right)\left(\sigma_{L} G_{u}(k) d_{s 0}\right)(D / Q)$ Where $\mathrm{d}_{\mathrm{so}}=$ avg duration of stockout	
Line Items Short	Expected number of lines shorted	$\left(B_{4} v\right)\left(\sigma_{\mathrm{L}} G_{u}(k) / z\right)(D / Q)$ where $\mathrm{z}=$ avg items / order	

Cycle Service Level (CSL or P_{1})

Cycle Service Level

- Probability of no stockouts per replenishment cycle
- Equal to one minus the probability of stocking out
- = 1 - $P[$ Stockout $]=1-P\left[x_{L}>s\right]=P\left[x_{L} \leq s\right]$

Finding P[Stockout]

Cumulative Normal Distribution

Finding CSL from a given k

Using a Table of Cumulative Normal Probabilities . . .

k Factor versus Cycle Service Level

Figure by MIT OCW.

Example: Setting SS and s

- Given
- Average demand over time is considered constant
- Forecast of demand is 13,000 units a year ~ iid Normal
- Lead time is 2 weeks
- RMSE of the forecast $=1,316$ units per year
- $\mathrm{EOQ}=228$ units ($\mathrm{A}=50$ \$/order, $\mathrm{r}=10 \%$, $\mathrm{v}=250$ \$/item $)$
- Find
- Safety stock and reorder point, s, for the following cycle service levels:
- CSL=. 80
- CSL=. 90
- CSL=. 95
- CSL=. 99

Quick Aside on Converting Times

How do I convert expected values and variances of demand from one time period to another?

- Suppose we have two periods to consider:
- S = Demand over short time period (e.g., week)
- L = Demand over long time period (e.g., year)
- $\mathrm{n}=$ Number of short periods within a long (e.g., 52)

Converting from Long to Short

- $\mathrm{E}[\mathrm{S}]=\mathrm{E}[\mathrm{L}] / \mathrm{n}$
- $\operatorname{VAR}[S]=\operatorname{VAR}[L] / n$ so that $\sigma_{S}=\sigma_{L} / \sqrt{ } n$

Converting from Short to Long

- $\mathrm{E}[\mathrm{L}]=\mathrm{nE}[\mathrm{S}]$
- $\operatorname{VAR}[L]=n V A R[S]$ so that $\sigma_{L}=\sqrt{ } n \sigma_{S}$

Item Fill Rate $\left(\mathrm{P}_{2}\right)$ Metric

Item Fill Rate $\left(\mathrm{P}_{2}\right)$

- Fraction of demand filled from IOH
- Need to find the expected number of items that I will be short for each cycle
- Expected Units Short E[US]
- Expected Shortage per Replenishment Cycle (ESPRC)
- More difficult than CSL - need to find a partial expectation for units short

$$
\text { FillRate }=\frac{\text { OrderQuantity }-E[\text { UnitsShort }]}{\text { OrderQuantity }}
$$

Finding Expected Units Short

Find the expected number of units short, $\mathrm{E}[\mathrm{US}]$, during a replenishment cycle
Use Loss Function - widely used in inventory theory
$L(k)=$ expected amount that random variable X exceeds a given threshold value, k .

Interpretation:

If my demand is $\sim \mathrm{U}(1,8)$ and I have a safety stock of 5 then I can expect to be short
0.75 units each service cycle

Finding Expected Units Short

Consider both continuous and discrete cases

Looking for expected units short per replenishment cycle.

$$
E[U S]=\sum_{x=k}^{\infty}(x-k) p[x]
$$

$$
E[U S]=\int_{k}^{\infty}\left(x_{o}-k\right) f_{x}\left(x_{o}\right) d x_{o}
$$

For normal distribution, $E[U S]=\sigma_{L} G(k)$
Where $G(k)=$ Unit Normal Loss Function
In SPP,
$\left.G(k)=G_{u}(k)=f_{x}\left(x_{0}\right)-k * \operatorname{Prob}\left[x_{0} \geq k\right]\right)$
Derived in SPP p. 721, in tables B. 1
In Excel,
NORMDIST(k,0,1,0) - k(1-NORMDIST(k,0,1,1))

Item Fill Rate (IFR or P_{2})

- Procedure: Relate k to desired IFR
- Find k that satisfies rule
- Solve for G[k]

$$
\begin{gathered}
I F R=\frac{Q-E[U S]}{Q}=1-\frac{E[U S]}{Q} \\
I F R=1-\frac{\sigma_{L} G[k]}{Q}
\end{gathered}
$$

- Use table or Excel to find k
- Find reorder point s
- $s=X_{L}+k \sigma_{L}$
- Example

$$
G[k]=\frac{Q}{\sigma_{L}}(1-I F R)
$$

- Average demand over time is considered constant
- Forecast of demand is 13,000 units a year ~ iid Normal
- Lead time is 2 weeks
- RMSE of the forecast $=1,316$ units per year
- EOQ = 228 units ($\mathrm{A}=50$ \$/order, $\mathrm{r}=10 \%$, v=250 \$/item)
- Find
- Safety stock and reorder point, s, for the following item fill rates:
- IFR=.80, .90,.95, and 0.99

Compare CSL versus IFP

IFR usually much higher than CSL for same SS

- IFR depends on both s and Q while CSL is independent of all product characteristics
- Q determines the number of exposures for an item

Pct	SS CSL	SS IFR
99%	601	513
95%	423	348
90%	330	252
80%	217	148

Cost per Stockout Event $\left(\mathrm{B}_{1}\right)$

- Consider total relevant costs
- Order Costs - no change from EOQ
- Holding Costs - add in Safety Stock
- StockOut Costs product of:
- Cost per stockout event (B_{1})
- Number of replenishment cycles
- Probability of a stockout per cycle

$$
\begin{aligned}
& T R C=\text { OrderCosts }+ \text { HoldingCosts }+ \text { StockOutCosts } \\
& T R C=A\left(\frac{D}{Q}\right)+\left(\frac{Q}{2}+k \sigma_{L}\right) v r+B_{1}\left(\frac{D}{Q}\right) p_{u \geq}(k)
\end{aligned}
$$

- Solve for k that minimizes total relevant costs
- Use solver in Excel
- Use decision rules

Cost per Stockout Event $\left(\mathrm{B}_{1}\right)$

- Decision Rule
- If Eqn 7.19 is true
- Set k to lowest allowable value (by mgmt)
- Otherwise set k using Eqn 7.20

$$
\left(\text { Eqn7.19) } \frac{D B_{1}}{\sqrt{2 \pi} Q v \sigma_{L} r}<1\right.
$$

$$
\left(\text { Eqn7.20) } \quad k=\sqrt{2 \ln \left(\frac{D B_{1}}{\sqrt{2 \pi} Q v \sigma_{L} r}\right)}\right.
$$

Cost per Unit Short $\left(\mathrm{B}_{2}\right)$

- Consider total relevant costs
- Order Costs - no change from EOQ
- Holding Costs - add in Safety Stock
- StockOut Costs product of:
- Cost per item stocked out (B_{2})
- Estimated number units short
- Number of replenishment cycles

$$
\begin{aligned}
& \text { TRC }=\text { OrderCosts }+ \text { HoldingCosts }+ \text { StockOutCosts } \\
& T R C=A\left(\frac{D}{Q}\right)+\left(\frac{Q}{2}+k \sigma_{L}\right) v r+B_{2} v \sigma_{L} G_{u}(k)\left(\frac{D}{Q}\right)
\end{aligned}
$$

- Solve for k that minimizes total relevant costs
- Use solver in Excel
- Use decision rules

Cost per Unit Short $\left(\mathrm{B}_{2}\right)$

- Decision Rule
- If Eqn 7.22 is true
- Set k to lowest allowable value (by mgmt)
- Otherwise set k using Eqn 7.23

$$
\begin{gathered}
\left(\text { Eqn7.22) } \frac{Q r}{D B_{2}}>1\right. \\
(\text { Eqn7.23 }) \quad p_{u \geq}(k)=\frac{Q r}{D B_{2}}
\end{gathered}
$$

Example

- You are setting up inventory policy for a Class B item. The annual demand is forecasted to be 26,000 units with an annual historical RMSE $+/-2,800$ units. The replenishment lead time is currently 4 weeks. You have been asked to establish an (s, Q) inventory policy.
- Other details: It costs $\$ 12,500$ to place an order, total landed cost is $\$ 750$ per item, holding cost is 10%. Items come in cases of 100 each.
What is my policy, safety stock, and avg IOH if . . .

1. I want to have a CSL of 95% ?
2. I want to achieve an IFR of 95% ?
3. I estimate that the cost of a stockout per cycle is $\$ 50,000$?
4. I estimate that the cost of a stockout per item is $\$ 75$?

Questions? Comments? Suggestions?

