Inventory Management More Probabilistic Demand

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

Safety Stock Logic (given x_L, σ_L, A,D, v, r, & Q)

2

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Inputted versus Implied Objectives

Any inputted objective implies all others

- Example
 - Average demand over time is considered constant
 - Forecast of demand is 13,000 units a year ~ iid Normal
 - Lead time is 2 weeks
 - RMSE of the forecast = 1,316 units per year
 - EOQ = 228 units (A=50 \$/order, r=10%, v=250 \$/item)
 - σ_L =258 units and μ_L =500 units
- If mgmt sets $P_1 = CSL = .95$, what is the implied:
 - IFR (P2)?
 - Cost per Stockout Event (B1)?
 - Cost per Item Shorted (B2)?
 - What are my expected units short?

An Aside: Lost Sales vs Backorders

♦ So far, we have assumed 100% backorders.

$$TRSSC(Backorder) = vr(k\sigma_L) + C_{Backorder}\sigma_L G_u[k]\left(\frac{D}{Q}\right)$$

$$P[SO] = p_{u\geq}(k) = \frac{Qr}{DC_{Backorder}}$$

- If there are lost sales, then we need to order more each replenishment cycle.
 How much? . . . E[US]
- Changes $G_u[k]$ to $(Q/\sigma)((1-IFR)/IFR)$

$$\left| TRSSC(LostSale) = vr(k\sigma_L + \sigma_L G_u[k]) + C_{LostSale}\sigma_L G_u[k] \right| \frac{D}{Q}$$

$$P[SO] = p_{u\geq}(k) = \frac{Qr}{DC_{LostSales} + Qr}$$

4

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Periodic vs Continuous Review

- Suppose that I now must review and order periodically.
 - What is my order cost?
 - How much should I order if I cannot find Q*?
- Convenient transformation of (s,Q) to (R,S)
 - (s,Q) = Continuous, order Q when IP \leq s
 - (R,S)= Periodic, order up to S every R time periods
- Allows for the use of all previous decision rules

(s,Q)	(R,S)
S	S
Q	D*R
L	R+L

Periodic vs Continuous Review

- Same Example
 - Average demand over time is constant at 13,000 units a year
 - Lead time is 2 weeks
 - RMSE of the forecast = 1,316 units per year
 - EOQ = 228 units (A=50 \$/order, r=10%, v=250 \$/item)
 - σ_L =258 units and μ_L =500 units
- Find the (R,S) inventory policy and safety stock for P_2 =IFR=.95
 - Review Period = 8 Weeks
- If this was an (s,Q) policy we would find G_u[k]
- Lets do the same thing with the recommended substitutions:
 - Q becomes D*R or (13000)(8/52) = 2000 units
 - x_1 becomes $x_{R+1} = (13000)/(52/10) = 2500$ units
 - $\sigma_{\rm L}$ becomes $\sigma_{\rm R+L} = 1316/(\sqrt{(52/10)}) = 577$ units
 - So $G_{\mu}[k] = (1.95)(2000/577) = 0.1733$ giving k=0.58
 - $S = \dot{x}_{R+L} + k\sigma_{R+L} = 2500 + (.58)(577) = 2835$ units
- Policy becomes order up to 2835 units every 8 weeks.

Questions? Comments? Suggestions?