Demand Forecasting II Causal Analysis

Chris Caplice ESD.260/15.770/1.260 Logistics Systems Sept 2006

Massachusetts Institute of Technology

Agenda

Forecasting Evaluation
Use of Causal Models in Forecasting
Approach and Methods

 Ordinary Least Squares (OLS) Regression
 Other Approaches

Closing Comments on Forecasting

Forecast Evaluation

How do we determine what is a good forecast?

- Accuracy Closeness to actual observations
- Bias Persistent tendency to over or under predict
- Fit versus Forecast Tradeoff between accuracy to past forecast to usefulness of predictability
- Forecast Optimality Error is equal to the random noise distribution

Combination of art and science

- Statistically find a valid model
- Art find a model that makes sense

Accuracy and Bias Measures

 $MAD = \frac{\sum_{t=1}^{n} |e_t|}{MAD}$

4

- 1. Forecast Error: $e_t = x_t \hat{x}_t$
- 2. Mean Deviation:
- 3. Mean Absolute Deviation
- 4. Mean Squared Error:
- 5. Root Mean Squared Error:
- d Error: $RMSE = \sqrt{\frac{\sum_{t=1}^{n} e_t^2}{n}}$
- 6. Mean Percent Error:
- 7. Mean Absolute Percent Error: $MAPE = \frac{\sum_{t=1}^{n} \frac{|e_t|}{D_t}}{D_t}$

 $MSE = \frac{\sum_{t=1}^{n} e_t^2}{MSE}$

 $MPE = \frac{\sum_{t=1}^{t} \overline{D_t}}{D_t}$

© Chris Caplice, MIT

Moving Average Forecasts

5

Analysis of the Forecast

Are the forecast errors ~N(0,Var(e))?

- For Moving Averages:
 - What is the expected value of the errors?
 - What is the variance of the errors?
- From actual observations,
 - Are the observed errors ~N(0,Var(e))?
 - For the MA3 data
 - μ_e = 0.05
 - σ_e= 0.69
 - σ_D= 1.478
 - Testing for Normalcy Chi-Square, Kolmogorov-Smirnov, or other tests

6

© Chris Caplice, MIT

Corrective Actions to Forecasts

Measures of Bias

- Cumulative Sum of Errors (C_t)
 - Normalize by dividing by RMSE (U_t)
 - U_t should ~0 if unbiased

Smoothed Error Tracking Signal (T_t)

- T_t=z_t/MAD_t
- Where $z_t = \omega e_t + (1-\omega)z_{t-1}$ (smoothing constant)
- Autocorrelation of forecast Errors
 - Correlation between successive observations

Corrective Actions

- Adaptive Forecasting
 - Methods where the smoothing coefficients change over time
 - Found (generally) to be no better than standard methods
- Human Intervention
 - Overrule the model's output look for reason
 - Rules of thumb: $|T_t| > f$ or $|C_t| > k(RMSE)$ (f~0.4 and k~4)
 - Lower values (of k or f) lead to more intervention

Causal Forecasting Models

- Assumes that demand is highly correlated with some environmental factors
- Model is built to relate the independent exogenous factors to the demand

Examples:

- Diapers ~ f(birth rates lagged by 1 year)
- NFL Jerseys ~ f(team and individual performance)
- New products ~ f(product lifecycle)
- Promotional Items ~ f(marketing promotions & ads)
- Regional Sales ~ f(household demographics in area)
- Umbrellas / Fuel ~ f(weather, temperature, rain, etc.)
- Form of Dependent Variable dictates the method used
 - Continuous takes any value
 - Discrete takes only integer values
 - Binary is equal to 0 or 1

The relationship is described in terms of linear model

- The data (x_i,y_i) are the observed pairs from which we try to estimate the β coefficients to find the 'best fit'
- The error term, ε, is the `unaccounted' or `unexplained' portion
- The error terms are assumed to be iid ~N(0,σ) and catch all of the factors ignored or neglected in the model

9

MIT Center for Transportation & Logistics - ESD.260

Residuals

- Predicted or estimated values are found by using the regression coefficients, b.
- Residuals, e_i, are the difference of actual predicted values
- Find the b's that "minimize the residuals"

$$\hat{y}_i = b_0 + b_1 x_i$$
 for $i = 1, 2, ... n$

$$e_i = y_i - \hat{y}_i = y_i - b_0 + b_1 x_i$$
 for $i = 1, 2, ... n$

- How should I measure the residuals?
 - Min sum of errors shows bias, but not accurate
 - Min sum of absolute error accurate & shows bias, but intractable
 - Min sum of squares of error shows bias & is accurate

$$\sum_{i=1}^{n} \left(e_i^2 \right) = \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2 = \sum_{i=1}^{n} \left(y_i - b_0 - b_1 x_i \right)^2$$

The best model minimizes the residual sum of squares

We can find the optimal values of b₀ and b₁ by taking first order conditions of the SSE:

$$\sum_{i=1}^{n} \left(e_i^2 \right) = \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2 = \sum_{i=1}^{n} \left(y_i - b_0 - b_1 x_i \right)^2$$

This gives us the following coefficients:

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT

Expansion to multiple variables is straightforward
So, for k variables we need to find k regression coefficients

$$Y_{i} = \beta_{0} + \beta_{1}x_{1i} + \dots + \beta_{k}x_{ki} + \varepsilon_{i} \quad \text{for } i = 1, 2, \dots n$$
$$E(Y \mid x_{1}, x_{2}, \dots, x_{k}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{k}x_{k}$$

 $StdDev(Y \mid x_1, x_2, ..., x_k) = \sigma$

$$\sum_{i=1}^{n} \left(e_i^2 \right) = \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2 = \sum_{i=1}^{n} \left(y_i - b_0 - b_1 x_{1i} - \dots - b_k x_{ki} \right)^2$$

OLS Example

13

	Month	Demand	Deriod	Summe
OIS Example	Jan	3 025	1	0
	Feb	3,047	2	0
	Mar	3,079	3	0
	Apr	3,136	4	0
A Establish relationshin	May	3,454	5	1
	Jun	3,661	6	1
$\mathbf{F}_{i} = \mathbf{f}(\mathbf{X}_{1i}, \mathbf{X}_{2i}, \dots, \mathbf{X}_{ni})$	Jul	3,554	7	1
	Aug	3,692	8	1
$= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_n X_{ni}$	Sep	3,407	9	0
	Oct	3,410	10	0
	Nov	3,499	11	0
F ₁ = Level + Trend + Season	Dec	3,598	12	0
	Jan	3,596	13	0
$= \beta_0 + \beta_1 \mathbf{X}_{1i} + \beta_2 \mathbf{X}_{2i}$	Feb	3,721	14	0
	Mar	3,745	15	0
	Apr	3,650	16	0
Where $X_{2i} = 1$ if a summer month,	May	4,157	17	1
	Jun	4,221	18	1
= 0 0.W.	Jul	4,238	19	1
Points to consider:	Aug	4,008	20	1
What if the trend is not linear?				
How do I handle seasonality if it impact	s the trer	nd?		

- How does OLS treat old versus new data?
- How much information do I need to keep on hand?

OLS Example (Excel)

MIT Center for Transportation & Logistics – ESD.260

15

OLS Example (Excel)

Coefficient of Determination (R²)

Measures Goodness of Fit of the model

- Captures the amount of variation that the model 'explains'
 - R²=1-ESS/TSS = RSS/TSS
 - TSS = ESS + RSS
 - Variation of observed around mean = Variation of observed around estimated – Variation of estimated around the mean
- ♦ Generally, a higher R² is better, but . . .
 - Model needs to make sense
 - High R² does not indicate causality
 - It really depends on how the model is being used as to what is 'good enough'
 - The individual coefficients need to be tested

Discrete Choice Models

What if you are predicting demand for one product over another?

- Model Selections (Blue vs. Red Cars)
- Mode Forecasting (pick one of many)

Sales Forecasting Methods

٥	Ex	pert Op	oinions
		44.8%	Sales Force
		37.3%	Executives
		14.9%	Industry Surveys
٥	St	atistica	Models
		30.6%	Naïve Model
		20.9%	Moving Average
		11.2%	Exp. Smoothing
		6.0%	Regression
		3.7%	Box-Jenkins

Source: Dalrymple (1987) Survey 134 companies

Sales Forecast Errors (MAPE) by forecast horizons in years

Level	<.25 yrs	≤2 yrs	>2 yrs
Industry	8		15
Corporate	7	11	18
Product Group	10	15	20
Product Line	11	16	20
Product	16	21	26

Source: Mentzer & Cox (1984)

Misc. Forecasting Issues

Data Issues

- Sales data is not demand data
- Transactions can aggregate and skew actual demand
- Ordering quantities can dictate sourcing
- Historical data might not exist
- Demand visibility can be skewed by level of echelon
 - Bullwhip effect
 - Collaborative Planning, Forecasting, and Replenishment (CPFR)
- Forecasting vs. Inventory Management
- Statistical Validity vs. Use and Cost of Model
- Demand is not always exogenous

Questions, Comments, Suggestions?

