Constraints and Metrics in Technical Networks

Goals of This Class

- Metrics as indicators of system properties that may be related to structure or behavior
- Their relation to the constraints under which the systems evolved or in view of which the systems were designed
- Modeling problems

Designed and Grown Systems

- Designed implies some degree of top-down control of the architecture
- Grown does not mean random
- Social systems
 - Designed: organizations, supply chains
 - Grown: coauthors, company directors
- Technical systems
 - Designed: assemblies, PSTN, factories, national highway network
 - Grown: regional or national electric grid, local roads outside of Northwest Territory
- Harder to classify (social?, grown?)
 - A city and its water supply or subway system

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Pearson Coefficient for Technical Systems

- A widely studied metric that captures some elements of structure and possibly is related to behavior
- Distribution systems grids or stars or trees or trees with cross-links
- Mechanical assemblies trees
- Electric and electronic circuits should be grids
 - Computer motherboards have a few nodes with huge k
 - What do they look like inside?
 - Coarse-graining

Pearson Coefficient for Canonical Systems

- Trees, cross-linked trees, and stars have r < 0
- Balanced binary trees have r = -1/3
- Trees with diminishing branching ratio have r > 0
- Trees with big branching ratios explode and r approaches -1
- Finite grids have r approaching 2/3
- Clusters with pendants at each cluster node have r < 0

Closed Form Results

Property	Pure Binary Tree	Binary Tree with Cross-linking
ksum	$2^{n+1}-4$	$3*2^{n}-10$
ksqsum	$10 * 2^{n-1} - 14$	$13 * 2^{n} - 64$
\overline{x}	$\rightarrow 2.5$ as <i>n</i> becomes large (>~ 6)	$\rightarrow \frac{13}{3}$ as <i>n</i> becomes large (>~ 6)
Pearson numerator	$\sim 2^{n}(3-\bar{x})(1-\bar{x})+(ksum-2^{n})(3-\bar{x})^{2}$	$\sim 2^{n}(5-\bar{x})(1-\bar{x})+(ksum-2^{n})(5-\bar{x})^{2}$
Pearson denominator	$\sim 2^{n-1}(1-\overline{x})^2 + (ksum - 2^{n-1})(3-\overline{x})^2$	$\sim 2^{n-1}(1-\overline{x})^2 + (ksum - 2^{n-1})(5-\overline{x})^2$
r	$\rightarrow -\frac{1}{3}$ as <i>n</i> becomes large	$\rightarrow -\frac{1}{5}$ as <i>n</i> becomes large

Note: Western Power Grid r = 0.0035

Nested Self-Similar Networks

nested2

Probably, r = 0in the limit as the network grows

Tree with Diminishing Branching Ratio

Trees with Branching Ratio b

Using approximate formula; tested in matlab with tree-generator written by Mo-Han Hsieh. Actual values are a bit more negative than given by approximate formula for b > 2. 8/24/2006 Technical networks © Daniel E Whitney 1997-2006 9/49

Alignment of System Type and Canonical Shape

- Assemblies seem like trees, or trees decorated with loose clusters at different hierarchical levels
- Subway systems are like clusters with interior nodes and exterior pendants
- Commuter rail lines can be trees, trees with cross-links, or grids
 - Grids arise when there is a robust intercity rail system and commuter trains can share these tracks
 - Also helps to have relatively flat ground
 - Trains must follow flat ground or cost a lot for tunnels
 - Flat ground is associated with water courses, as are locations of towns that need train service

Network Models of Technical Systems

- Need to carefully define what is a node and what is a link
- Examples:
 - Assemblies: node = part; link = joint between two parts tat constrains at least one degree of freedom
 - Rail lines: node = rail junction or place where people can change train lines; link = rail
 - Electric circuit: node = circuit element (R, C, IC); link = wire
 - Distribution infrastructure: node = branch point, load, or sink; link = conductor (pipe, wire)
 - Food web: node = species; link (directed) what eats what (can include cannibalism)

Design of Distribution Systems

- Fundamental need is to "fill space" in some sense
- Scaling issues
- Cost per unit of capability or capacity
- Levels of service: speed, choice of destination, equity
- Context, legacy
 - Ability to run commuter trains on inter-city tracks
 - Ability to exceed service of legacy system

Spatial Distribution Networks -1

- Blood, water, sewer, newspapers are one to many or many to one
- Urban rail systems can be like this or can be many to many in the core and many to one in the periphery
- The phone system is many to many in the core and one to many in the periphery
- One to many = tree
- Many to many = grid or hierarchy with levelskipping

Spatial distribution networks (Magee slides)

- Gastner and Newman analyzed the case where the distribution system has a "root node" which is the sole source or sink for the commodity being distributed.
- Additional design factors considered
 - Additional node locations (constraint)
 - Total link length (smaller lowers cost)
 - Shortest path length between two nodes (smaller lowers transport time)
- Tradeoff in last two factors is the design/architecting problem
 - Look at ideal solutions for each criterion
 - Examine how real networks compare on the tradeoffs
 - Build growth model to derive pattern and look for consistency
- 8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Spatial distribution networks -2

• Minimum total edge length including paths to the root node is given by a Minimum Spanning Tree (c) while obtaining shortest paths from each node to the root node is optimized by a star graph (b). Actual system is (a)

From Gastner, M. T., and M. E. J. Newman. "Shape and efficiency in spatial distribution networks." *J Stat Mech* (2006): P01015. (Fig. 1) Courtesy the Institute of Physics. Used with permission.

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Spatial distribution networks - 3

• From transportation research, a route factor q is where ℓ_{io} is the shortest actual path length and and d_{io} is the shortest Euclidean distance from node *i* to the origin *o*

$$q = \frac{1}{n} \sum_{i=1}^{n} \frac{\ell_{io}}{d_{io}} \ge 1$$

q is equal to 1 for a star graph, which has maximum total edge length

• For three real technological system networks,

		route f	factor	edge length (km)		
network	n	actual	MST	actual	MST	star
sewer system	23922	1.59	2.93	498	421	102998
gas (WA)	226	1.13	1.82	5578	4374	245034
gas (IL)	490	1.48	2.42	6547	4009	59595

From Gastner, M. T., and M. E. J. Newman. "Shape and efficiency in spatial distribution networks." *J Stat Mech* (2006): P01015. (Table 1) Courtesy the Institute of Physics. Used with permission.

- The systems favor minimum edge length but have route factors considerably superior to MST optimums indicating *effective tradeoff in the two criteria*.
- A simple growth model is used to explain this result

Spatial distribution networks -4

- The growth model assumes that the systems evolve from the root node by linking in new (but already existing) nodes using a greedy optimization criterion that adds unconnected node, i. to an already connected node, j with the weighting factor given by $w'_{ij} = d_{ij} + \beta l_{j0}$.
- Simulations using these model assumptions yield

From Gastner, M. T., and M. E. J. Newman. "Shape and efficiency in spatial distribution networks." J Stat Mech (2006): P01015. (Fig. 3) Courtesy the Institute of Physics. Used with permission.

Spatial distribution networks 5

- What is **missing** from these studies of spatial distribution networks from your perspective? What *future research* do these studies suggest?
- Consideration of other network properties
- Consideration of constraints like geography
- Development of more broadly applicable models
 - More than one source/sink node
 - Coordination with other networks (subway and commuter or intercity rail)
- Development of other rules/protocols for growth that achieve the key properties well
- Consideration of top-down vs. evolved systems

London Underground r = 0.0997

Image removed for copyright reasons. Map of the London subway system. See: http://www.tfl.gov.uk/tfl/pdfdocs/colourmap.pdf

Tokyo JR East Lines and Subways

$$r_{\text{regional rail}} = -0.0134$$

 $r_{\text{regional rail plus subways}} = 0.0425$

Image removed for copyright reasons. Map of the Tokyo railroad and subway systems. See: http://www.jreast.co.jp/e/info/map_a4ol.pdf

Tokyo Subways

Image removed for copyright reasons. Map of the Tokyo subway system. See: http://www.deutsch-japanischer-kulturverein.de/Images/Karte%20Tokyo%20Subway2.jpg

Moscow Metro

Image removed for copyright reasons. Map of the Moscow subway system. See: http://meta.metro.ru/moskva/moscow-metro.gif

Moscow Regional Rail

Images removed for copyright reasons. Map of the Moscow Regional Rail.

Ioscow Regiona ro ai 2

Images removed for copyright reasons. Map of the Moscow Metro and Regional Rail.

 $r_{\text{subway + rail}} = 0.2601$

 $r_{\text{subway}} = 0.1846_{24/49}$

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Berlin U-bahn and S-bahn

Images removed for copyright reasons. Map of the Berlin subway and train. See: http://www.lodging-germany.com/info/Berlin/berlin-7citymapubahn.htm

Munich U-bahn and S-bahn

Images removed for copyright reasons. Map of the Munich subway and train. See: http://www.munich-info.de/images/mvv.jpg

Paris Metro and RER

Image removed for copyright reasons. Map of the Paris Metro. See: http://www.kigoobe.com/parishotel/img/carte.gif

Image removed for copyright reasons. Map of the Paris RER. See: http://www.paris.org/Metro/gifs/rer01.map.jpg

Car and Train Traffic, Paris

Figure by MIT OCW. After figure by Renault Cars UK.

Food Webs

- These are directed graphs of what eats what
- They are classic hierarchies with typically three levels
 - Top have no predators
 - Middle are both prey and predators
 - Bottom have no prey
- Trophic species are those with the same predators and prey, so that they look alike from the point of view of the web
- Some food webs are quoted in the network literature with or without trophic species condensation, without noting this difference
- Data in following slides are from Jennifer Dunne, Santa Fe Institute

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Canonical Forms in Food Webs

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

UK Grassland

Parasitic insects

Herbivore insects Grasses

Chesapeake Bay

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

 $r = -0.2942_{32/49}$

Little Rock Lake, WI

r for Food Webs: Toy Example Seeking the Reason for $\pm r$

Trophic Species Affect r

In graph theory this is called structural equivalence

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Mechanical Assemblies

- All analyzed so far have r < 0.
- There is usually one or a few foundation parts that support important operating loads and have many parts attached to them
- Other parts group into subassemblies but these do not have high clustering coefficient or big differences in nodal degree
- The reason is avoidance of mechanical overconstraint

Average Nodal Index for Mechanical Assemblies ≈ 1.5*2

Average Nodal Index Does Not Grow with Network Size, Unlike Most Networks: Why?

Constraint as a Limit on Connectivity

- Each time two parts are joined, each part subtracts some number of degrees of freedom from the other.
- An unconnected part has 6 dof
- Adding more parts may increase or decrease their mutual dof
- The chicken comes home to roost when a loop closes and the dof arithmetic has to be summed around the loop
- The result could be negative dof!
- This is called over-constraint
- The Kutzbach criterion formalizes this for simple assemblies
- Screw Theory is the definitive method

Constraint and <k>

M > 0: under - constrained

M < 0: over - constrained

M = 0: properly (exactly) constrained

$$M = 3(n - g - 1) + \sum \text{joint freedoms } f_i$$

where

n = number of parts

g = number of joints

 f_i = degrees of freedom of joint i

 $\alpha = g/n$ $< k \ge 2\alpha$ For M = 0:

$$\alpha = \frac{3-3n}{n(\beta-3)} \to \frac{3}{3-\beta}$$
 as *n* gets large

For spatial mechanisms, replace "3" with "6"

β	α planar	α spatial
0	1	1
1	1.5	1.2
2	3	1.5

What Matters in Assembly Networks

- It's chains and loops, not clusters
- Well, maybe it's a combination of chains, loops, and clusters
- Next few slides give a first pass at this
- Main functions are implemented by loops that appear to pass through major hubs
- For a class of assemblies:
 - Functions appear to apply loads
 - Hubs appear to be load-accumulators, balancers, distributors, shedders

Example Assembly: Exercise Walker

8/24/2006 Technical networks © Daniel E Whitney 1997-2006

Network Diagram of Walker

Walker Horizontal Functional Loops

V-8 Engine Functional Loops

Summary Properties of Several Big Networks (Newman)

Network	Туре	n	m	Z	1	α	C ⁽¹⁾	C ⁽²⁾	r
SOCIAL									
Film actors	undirected	449913	25516482	113 43	3 48	23	0.20	0.78	0.208
Company directors	undirected	7673	55392	14 44	4 60	2.5	0.20	0.70	0.200
Math coauthorship	undirected	253339	496489	3.92	7.57		0.55	0.34	0.120
Physics coauthorship	undirected	52909	245300	9.72	619		0.15	0.54	0.120
Biology coauthorship	undirected	1520251	11803064	15 53	4 92		0.088	0.50	0.127
Telephone call graph	undirected	47000000	80000000	3.16	1.72	21	0.000	0.00	0.127
E-mail messages	directed	59912	86300	1 44	4 95	15/2.0		0.16	
E-mail address books	directed	16881	57029	3.38	5,22	-	0.17	0.13	0.092
Student relationships	undirected	573	477	1.66	16.01	_	0.005	0.001	-0.029
Sexual contacts	undirected	2810	.,,	1.00	10.01	3.2	0.000	0.001	0.022
INFORMATION									
WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067
WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7			
Citation network	directed	783339	6716198	8.57		3.0/-			
Roget's Thesaurus	directed	1022	5103	4.99	4.87	-	0.13	0.15	0.157
Word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44	
TECHNOLOGICAL									
Internet	undirected	10697	31992	5.98	3.31	2.5	0.035	0.39	-0.189
Power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003
Train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033
Software packages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016
Software classes	directed	1377	2213	1.61	1.51	-	0.033	0.012	-0.119
Electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154
Peer-to-peer network	undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366
BIOLOGICAL									
Metabolic network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240
Protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156
Marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263
Freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326
Neural network	directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226

Figure by MIT OCW.

Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance l; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient C⁽¹⁾; clustering coefficient C⁽²⁾; and degree correlation coefficient r. Blank entries indicate unavailable data.

Additional Networks

Social
Assemblies (Technological)
Transport (Technological) Software
Electric

Coolol

Network	n	m	<k></k>	r
Karate Club	34	78	4.5882	-0.4756
Little Rock Lake	200	1159	11.59	-0.3398
Food Web				
Santa Fe Coauthors	118	198	3.3559	-0.2916
V8 engine	243	367	3.01	-0.269
Exercise walker	82	116	2.8293	-0.256
Bike	131	208	3.1756	-0.2018
Six speed	143	244	3.4126	-0.1833
automatic				
transmission				
"HOT"	1000	1049	2.098	-0.1707
St. Martin Food	44	132	6	-0.1097
Web				
Tokyo Regional	147	204	2.775	-0.0911
Rail				
Mozilla19980331	811	4077	5.0271	-0.0499
Mozilla all comp	1187	4129	3.4785	-0.0393
Munich	50	65	2.6	-0.0317
Schnellbahn				
Western Power	4941	6594	2.6691	0.0035
Grid				
Physics coauthors	145	346	4.7724	0.0159
Tokyo Regional	191	300	3.1414	0.0425
Rail plus Subways				
London	92	139	3.02	0.0997
Underground				
Moscow Subways	51	82	3.216	0.1846
Company directors	6731	50775	15.09	0.2386
Moscow Subways	129	204	3	0.2601
and Regional Rail				
Scottish Broom	154	185	2.406	0.2618
Grass Food Web				

Definitely negative

Probably Indifferent From zero

> Definitely positive