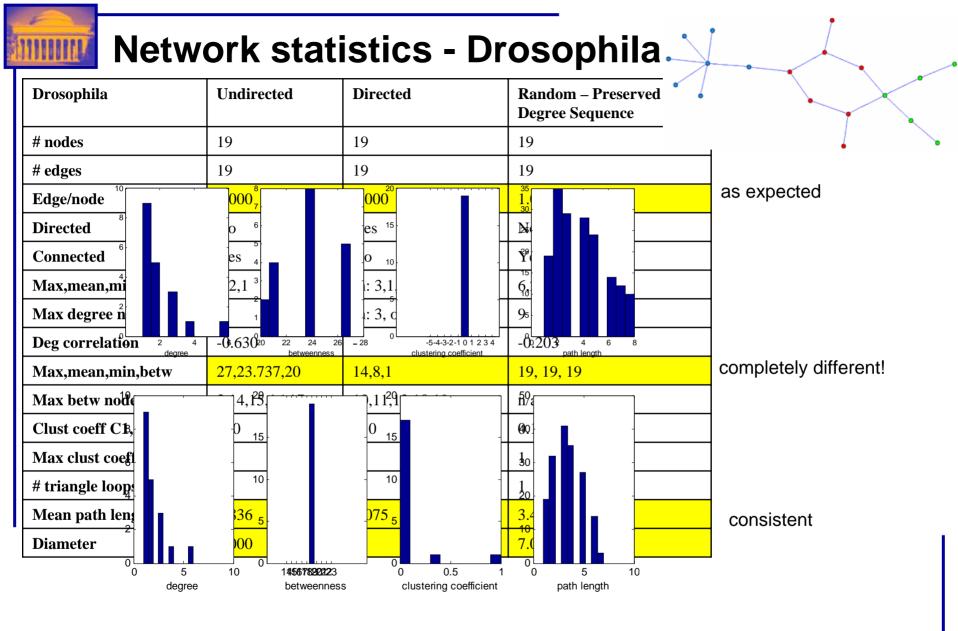


MAPK Signaling Pathway Analysis

ESD.342 – Spring 2006

May 11th 2006 Presentation by: Gergana Bounova, Michael Hanowsky and Nandan Sudarsanam Faculty: Chris Magee


- Background
- Network Statistics: the Usual Suspects
- Structural Analysis: Motifs and Communities
- Other Datasets, Benchmarking
- Future Directions and Scope

MAPK Signaling Pathway

- Cellular Level Biological Network
 - Signaling pathways are used to respond to external stimuli and regulate cellular activities
 - MAPK's (Mitogen Activated Protein Kinase) Transfer information through chemical reactions and mechanistic physical interactions.
 - One pathway, three species does that give us any information
- Literature and Data sources
 - Literature sources in Protein network analysis
 - The proteomics initiative
 - Nature of data an incomplete map
 - KEGG database (Kyoto Encyclopedia of Genes and Genomes): signaling transduction pathways
 - DIP (Database of Interacting Proteins): all known interacting proteins

Network Statistics - Comparisons

	Drosophila	Yeast	Human	
# nodes	19	56	148	
# edges	19	56	187	a sisteration
Edge/node	1.000	1.000	1.264	consistently close to 1
Directed?	No	No	No	
Connected?	Yes	No (5 comp)	No (16 comp)	
Max,mean,min deg	6,2,1	8,2.154,1	15,2.831,1	
Max degree node	9	6	98	
Deg correlation	-0.630	-0.146	-0.306	negative
Max,mean,min,betw	27,23.737,20	103,62.796,54	4639,1035.538,384	
Max betw node	3,14,15,16,17	9	12	acreistantly
Clust coeff C1,C2	0	0.064	0.008	consistently close to 0
Max clust coeff node	-	1	1	
# triangle loops	0	3	3	
Mean path length	3.836 (20% n)	6.370 (11% n)	6.454 (4% n)	Low reachability
Network diameter	8.000	16.000	17	

asi

Network statistics - Yeast

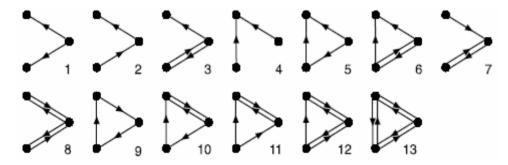
Yeast	Undirected	Directed	Yeast – Random Generated, Preserved Degree Sequence (GC)				
# nodes	56	56	52 (GC)				
# edges	56	56	56				
Edge/node	1.000	1.000	1.077				
Directed?	No	Yes	No 400,				
Connected?		No 40	S 300				
Max,mean,n	8,2.1	8,2,0	2.154				
Max degree	6	In: 6°,					
Deg correlat	-0.14	10	092				
Max,mean,min,bet	0 103,62.7 20 100	¹⁵⁰ 28,12.12,12,5,12,0,0,5	idier 85, 56.7, 52 path length				
Max betw no	9 40	¹ 8,19 ⁶⁰	2 ²⁵⁰				
Clust coeff C	0.0993	0.0201	00 ²⁰⁰				
Max clust c@	1 20	1	150				
# triangle loo	3 10	0 ²⁰					
Mean path le	6.37	4.778					
Network diameterdegree	10, 50, 60, 80, 80, 16,000 betweenness	100 -543210123 11.00@lustering coe					

- Midsa

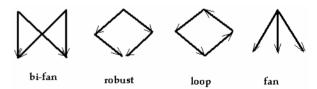
Network statistics - Human

Human	an Undirected		Human undirected, randomly-generated (GC)
# nodes	148	148	130
# edges	187	187	184
Edge/node	1.264	1.264	1.415
Directed?	No	Yes	No
Connected?	No (16 comp)	No	Yes
Max,mean,min deg	15,2.831,1	15,2.527,0	15, 2.831, 1
Max degree node	98	In: 23, out: 98	82
Deg correlation	-0.306		-0.323
Max,mean,min,betw	4639,1035.538,384	383,37.669,1	362, 241.6, 160
Max betw node	12	145	25,33,41,70,72,73,82
Clust coeff C1,C2	0.0075, 0.0045	0,0	0.122
Max clust coeff node	1	-	1
# triangle loops	3	0	9
Mean path length	6.454	3.931	4.286
Network diameter	17	11.000	9.000

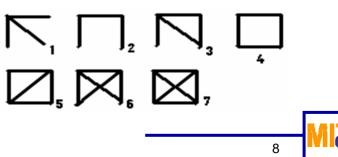
Becoming more evident: the real pathway has more built-in flexibility, even though reachability remains low


7

ייך

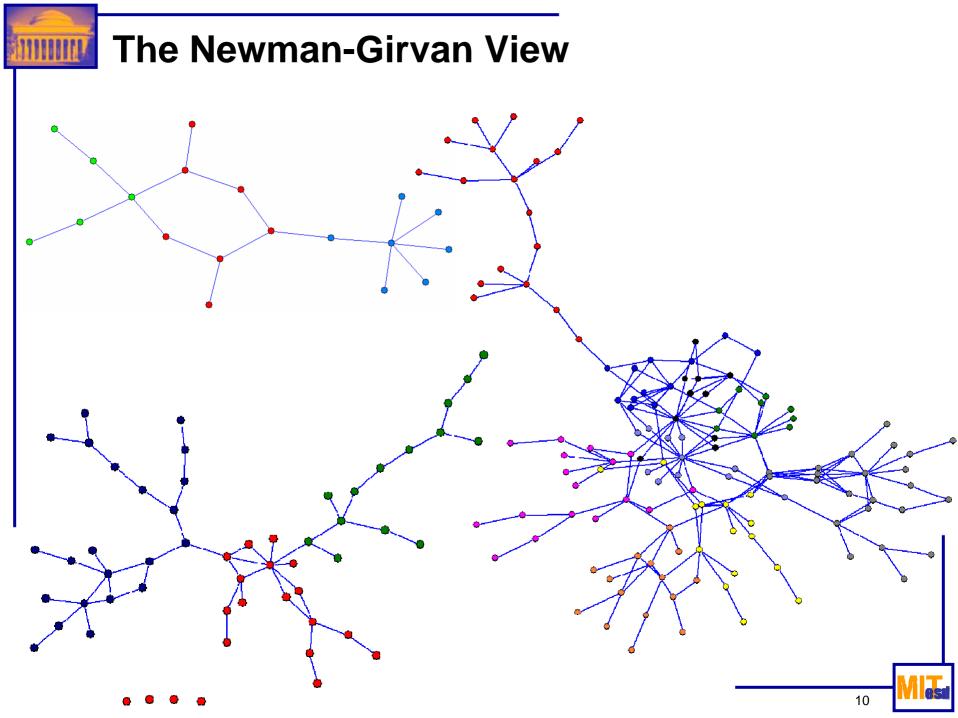

Motifs – Background

- Coarse Graining an important bottom-up method of understanding network structure, by uncovering global patterns.
 - This helps us go beyond the global features and understand the relevance of certain structural elements.
 - Motifs are statistically significant patterns of connections that recur through out the network.
 They serve as the basic building blocks of the network.
 - Studies have shown that each network motif performs a key information processing function in biological networks.
- Examples of Motifs studied in Biological networks:


Directed 3-Node Motifs

Directed 4-Node Motifs

Undirected 4-Node Motifs


Motif Occurrences

\sum_{1}	3	4	5	6	$\mathbf{r}_{\mathbf{r}}$
			12		

Motif index	D.Mel	D.Mel. rand	Yeast	Yeast rand	Human	Human rand	
1	24	36	40	40	538	326	2
2	38	16	128	104	600	694	1
4	8	12	38	74	272	352	3
5	-	3	6	3	9	15	4
9	-	-	3	-	-	12	5

Motif index	D.Mel	D.Mel. rand	Yeast	Yea	nst rand	hitan		initan Human radius		st		loop	fan	
1	81	66	228	297	Motif in	4488 dex	D.N	lef ⁴²⁶	⁹ D.Mel. rai	nd	Yeast	Yeast rand	Human	Human rand
2	64	82	264	406	1	2996	-	333	4		4	-	204	4
3	-	25	105	-	2	150	-	545	-		4	-	164	16
4	-	-	8	4	3	400	-	28	-		-	-	-	12
5	-	-	8	-	4	24	30	-	12		15	66	1929	411

All Protein Datasets

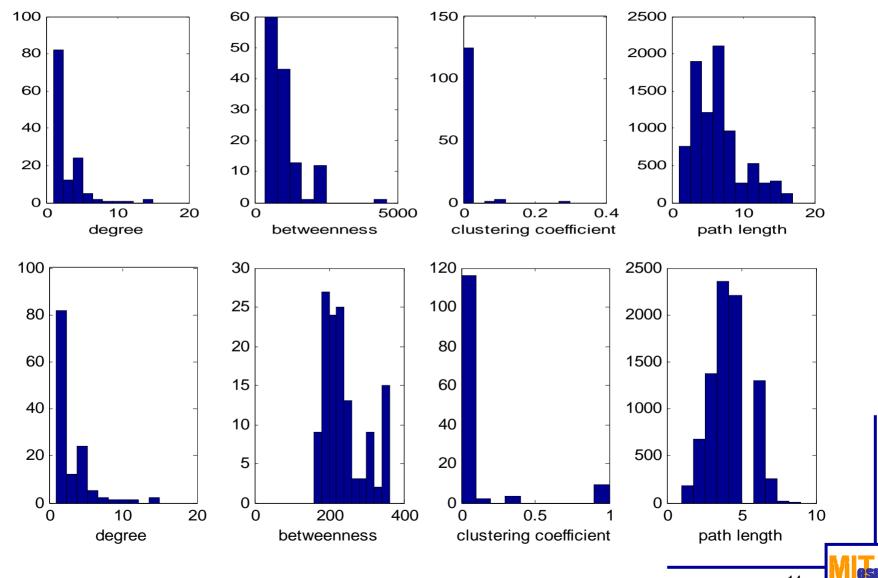
- First refinement: 2554 nodes, 5728 edges
- Second refinement: 2408 nodes, 5668 edges
- Edge/node: 2.4, clust=0.294, meanL=5.197, diam=14

Drosophila original: 28052 nodes, 22819 links

- First refinement: 7451 nodes, 22636 edges
- Second refinement: 7355 nodes, 22593 links
- Edge/node: 3.072, clust=0.016, meanL=8.009

- Yeast Core Proteins Main Component Human Proteins Connected Component
- Human original: 28155 nodes, 1397 links
 - First refinement: 1085 nodes, 1346 links
 - Second refinement: 939 nodes, 1276 links
 - Edge/node: 1.359, clust=0.235, meanL=6.822

Conclusions & Future Work


- Analyzed three pathway sets structurally and detected some similar patterns (modules, communities)
- Found betweenness as the best signature of pathways and a sign of flexibility in biological networks
- Building blocks are preserved across pathways, and certain motifs found by others do appear statistically significant (such as bi-fan, for example)
- Plan to perform coarse-graining on larger datasets to look for further structural matching
- Benchmarking of motifs and other statistical measures with whole known protein datasets

References

- Itzkovitz, S., Levitt, R., Kashtan, N., Milo, R., Itzkovitz, M., and Alon. U., Coarse-Graining and Self-Dissimilarity of Complex Networks. arXiv:qbio.MN/0405011 v1, May 2004.
- Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N., *Lethality and centrality in protein networks*. Nature 411, 41–42 (2001).
- Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).
- Milo, R., Shen-Orr, S. S., Itzkovitz, S., Kashtan, N. & Alon, U., Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
- Sole, R. V., Pastor-Satorras, R., Smith, E., and Kepler, T. B., A model of large-scale proteome evolution, Advances in Complex Systems 5, 43{54 (2002).
- Wuchty, S., and Almaas, E., "Peeling the Yeast protein network," Proteomics. 2005 Feb;5(2):444-9. 5(2), pp. 444–449, 2005.

Distribution Comparisons - Human

