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I. INTRODUCTION 

Various biological systems have been represented as networks, and a significant subset of such 

representations is seen in cellular biology. Three distinct sets of network studies can be made in this topic, 

namely metabolic pathway networks, protein interaction networks, and genetic regulatory networks. Our 

study looks at a protein interaction networks and metabolic pathways. We have analyzed protein datasets 

for three different species from two different data sources. We have attempted to quantify regularities and 

trends, in the form of basic statistics and community structures. Comparisons are made across the 

pathways of the three species, as well as their equivalent random networks. A topic of core interest in this 

study was the application of a motifs analysis to the protein network. 

The study of structural and functional behavior of all proteins in the human body is termed as proteomics. It 

is a large scale ongoing project which is seen as a successor to the human genome project. Such an 

initiative is seen as being more complicated than the genome project since the estimated number of 

proteins is in the order of 400,000 as compared to 22,000 genes. Hence, it is clear that the various current 

constructs of the human protein network are at a much coarser level and possibly incomplete in many 

regions. The protein networks for simpler organisms have been studied to a greater detail, such as the 

Saccharomyces cervisae (baker’s yeast). 

Data sources for protein networks vary extensively despite bearing the same label. A model for the same 

network is constructed with as many as hundreds to thousands of nodes. This is based on the fact that the 

methods used to determine protein-protein interactions are based on different techniques and different 

motives for aggregating the data. A commonly used method known as two-hybrid screening is known to be 

able to successfully identify interactions within the same functional classes, while tending to ignore 

connections across functional classes. It is interesting to also note that the reliability that authors express 

about the data seems to decrease with networks that have higher numbers of nodes. The largest network 

that we came across was studied by S. Wuchty and E. Almaas, in their 2004 paper “Peeling the yeast 

protein network”, with 3677 nodes. In their paper they describe their data source as being “extensively 

flawed”. Another reason to further emphasize the inaptness of modeling protein networks is based on 

understanding the true nature of proteins and links. In contrast, genome regulatory links are structurally 

constant. Protein structure differs from cell to cell and is constantly changing based on interactions with the 

environment and the genome. Hence, even within an identifiable single cell, the protein structure might 

change through the life cycle of the organism. 
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The data analyzed in this study is based on two sources. The KEGG (Kyoto Encyclopedia of Genes and 

Genomes) database is an initiative for constructing a complete computerized representation of the cell 

during what is termed as the post-genomic era. The other data source is the DIP ( Database of Interacting 

Proteins), which catalogs experimentally determined interactions between proteins. It combines information 

from a variety of different sources to provide a single consistent set of protein-protein interactions. 

Based on preliminary statistical analysis of the various networks, it was found that betweenness centrality 

was metric of key interest. It was found that when random networks (that preserved the same degree 

sequence) were created for each of the three protein pathways, this was the only metric that was 

significantly different in the original network. This regularity is seen in all three network pathways. Such a 

configuration is believed to be a sign of flexibility in the use of specific protein complexes and signal 

pathways for multiple different functions. 

A motifs analysis is carried out on the network. Typically, such an analysis is carried out by means of 

coarse graining the given network. Coarse graining is an important bottom-up method of understanding 

network structure, by uncovering global patterns (motifs). This helps us go beyond the global features and 

understand the relevance of certain structural elements. Motifs are statistically significant patterns of 

connections that recur throughout the network. These patterns serve as the building blocks for the network. 

Studies have shown that motifs identified in biological networks typically have certain key information 

processing function. 

II. LITERATURE REVIEW 

The use of network tools to represent biological systems is prevalent in literature, especially at the cellular 

level biology. A very broad paper summarizing the role and current application of network analysis to 

cellular level biological systems can be found in the work by Barabasi and Oltwar (2004). They provide 

discussions on the use of basic statistics, motifs, modularization and hierarchy, and their relevance to 

functional biology. In this paper, however, this study concerns only large statistics of the networks 

concerning protein pathways and interactions. 

A body of literature in this field focuses on constructing and establishing the network by means of various 

controlled experiments. Examples of such studies include Mansfield et. al. (2000) and Ito et. al.(2001). 

These papers do not perform any network analysis, but were used to identify data sources and understand 

the mechanism by which networks are created, predominantly, the two-hybrid screening approach. This 

technique is based on testing individual pairs of proteins for physical interactions (such as binding) by 

introducing genetically engineered strains of a certain protein construct. 
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The second body of literature in this topic studies statistical properties and regularities in protein networks. 

Jeong et. al., (2001), look at the basic statistics of the protein interaction network found in yeast. Centrality 

is addressed in their study and a hypothesis that the most central proteins are the most important for the 

cells functioning is stated. They show that the network exhibits a scale free topology that is very similar to 

metabolic networks, and in general to that of robust and error tolerant networks. Maslov and Sneppen 

(2002), perform a comparative analysis between the protein interaction networks and genetic regulatory 

networks, against the null model (random rewiring) networks. The paper contends that the highly connected 

nodes tend to link to less connected proteins (negative degree correlation). They claim that this effect 

decreases the likelihood of cross talk between different functional modules of the cell and increases 

robustness. The negative degree correlation is confirmed by our own studies, and found to be true of not 

just protein networks, but most cellular biological networks. Sole et. al., (2002), compare a simple model of 

the human proteome with that of yeast. They claim that statistical regularities across the human network are 

similar to that of yeast which in turn are similar to that many other complex networks. Wuchty and Almaas 

(2005) look into key hubs (highly connected sets of nodes) present in yeast proteins. They create two 

separate measures of centrality, called local and global centrality. Globally central nodes tend to participate 

in multiple complexes and therefore are hypothesized as an evolutionary backbone to the proteome. 

A central topic discussed in this paper is motifs analysis. Motifs are patterns of interconnections occurring in 

complex networks at numbers that are significantly higher than those in randomized networks. The final 

category of the literature review deals with papers that look at coarse graining of networks using motifs to 

better understand structural and functional topologies. The application of motifs analysis to biological 

systems is seen in Milo et. al.(2002). This study investigates the application of network motifs across 

various systems including gene regulation and food webs. They provide various patterns that are likely 

candidates for a motif analysis. Itzkovitz et. al. (2004) look specifically at the application of a motif analysis 

to the yeast protein network. The subject of their paper titled Coarse Graining and Self-Dissimilarity in 

Complex Networks is to define and present algorithms to detect coarse-grained units (motifs). They apply 

their algorithm to biological and electronic networks, with different motifs found in each case. Their 

biological network is based on the mammalian protein signaling network. 
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III. ANALYSIS & RESULTS 

Simple Network Statistics 

Network statistics are computed for every species, for three different cases: i) treating the pathway as 

undirected (counting every link both ways), ii) directed as mapped originally and finally iii) computing the 

same statistics with a random network generated with the same degree sequence as the original pathway. 

The results for drosophila are given in Table 1. Yeast statistics are given in Table 2 and the human pathway 

numbers are shown in Table 3. 

Table 1: Drosophila MAPK pathway statistics: pathway treated as undirected and directed, compared to a 
random-graph generated with the same degree sequence. 
Drosophila Undirected Directed Random – 

Preserved 
Degree 
Sequence 

Comments 

# nodes 19 19 19 
# edges 19 19 19 
Edge/node 1.000 1.000 1.000 Same for randomly-generated 

nets 
Directed? No Yes No 
Connected? Yes No Yes 
Max,mean,min deg 6,2,1 In: 3,1,0, 

out: 5,1,0 
6,2,1 

Deg correlation -0.630 - -0.203 Degree sequence seems to 
preserve some structure 

Max,mean,min,betw 27,23.737,20 14,8,1 19, 19, 19 Clear indication that the real 
network exhibits structure that 
wouldn’t exist otherwise (in 
randomly wired) 

Clust coeff C1,C2 0, 0 0, 0 0.140 Low clustering 
# triangle loops 0 0 1 
Mean path length 3.836 4.075 3.427 Consistent 
Network diameter 8.000 8 7.000 Consistent 
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Table 2: Yeast MAPK pathway statistics: pathway treated as undirected and directed, compared to a 
random-graph generated with the same degree sequence. 
Yeast Undirected Directed Yeast – 

Random 
Comments 

Generated 
(Giant Comp) 

# nodes 56 56 52 (GC) Different number of nodes – 
mapping only the giant 
component (52 nodes) for the 
random graph 

# edges 56 56 56 
Edge/node 1.000 1.000 1.077 Consistent. Slightly different for 

the random net, because only 
the giant component is 
generated randomly from a 
degree sequence 

Directed? No Yes No 
Connected? No (5 comp) No Yes 
Max,mean,min deg 8,2.154,1 8,2,0 8, 2.154,1 
Deg correlation -0.146 - -0.092 Consistently negative 
Max,mean,min,betw 103,62.796,54 28,12.125,1 85, 56.7, 52 Higher flexibility shown in real 

yeast network (more shortest 
paths go through highest 
betweenness node) 

Clust coeff C1,C2 0.0638, 0.0202, 0.000 More clustering in real network, 
0.0376 0.0119 though still minimal 

# triangle loops 3 0? 0 
Mean path length 6.370 4.779 4.910 Same order of magnitude 
Network diameter 16.000 11.000 10.000 Same order of magnitude 

Table 3: Human MAPK pathway statistics: pathway treated as undirected and directed, compared to a 
random-graph generated with the same degree sequence. 
Human Undirected Directed Human 

undirected, 
randomly-
generated (GC) 

Comments 

# nodes 148 148 130 Mapping giant component 
only 

# edges 187 187 184 
Edge/node 1.264 1.264 1.415 Consistent 
Directed? No Yes No 
Connected? No (16 comp) No Yes 
Max,mean,min deg 15,2.831,1 15,2.527,0 15, 2.831, 1 
Deg correlation -0.306 -0.323 Consistently negative 
Max,mean,min,betw 4639,1035.538,384 383,37.669,1 362, 241.6, 160 Real net is more “flexible” 

than random one 
Clust coeff C1,C2 0.0075, 0.0045 0, 0 0.122 Higher clustering 

coefficient in random net, 
probably indicates that the 
real clustering coefficient 
is close to 0 

# triangle loops 3 0 9 
Mean path length 6.454 3.931 4.286 
Network diameter 17 11.000 9.000 
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The results from Tables 1, 2 and 3 show low clustering in all cases, and relatively high average path-lengths 

and diameters, compared to the number of nodes. This means that the pathways are definitely not small 

worlds, in fact quite the opposite. Edge to node rations are small (less than 1.5), indicating that local 

connectivity is preserved with increasing network size. Degree correlations are consistently negative, as 

cited in the literature [3]. 

The only significant difference in network statistics seen for all species is in the betweenness distributions. 

The betweenness characteristics for the randomly-generated networks are distinct from those of the real 

pathway distributions for all the drosophila, yeast and human pathways. The maximum and average 

betweenness are consistently lower for random nets, showing a greater degree of flexibility in the real 

pathways, due to greater number of shortest paths going through a given node. Thus the real pathways 

compared to random networks have low reachability (long path-lengths), low clustering and higher flexibility. 

The discussion of distributions above is supported by plotting all distributions for the various cases. Figure 1 

shows an example of the human pathway distributions. The cases of yeast and drosophila are included in 

the appendix. 
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Figure 1: Human pathway distributions: degree, betweenness, clustering coefficient and pathlength 
distributions (left to right) shown for the undirected pathway and randomly-generated pathway respectively 

(top to bottom). 
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Community Structure 

We argue that the three pathways have similar community structure. The first point of comparison is dot 

matrix alignments. A dot matrix alignment is simply a dot plot of the adjacency matrix. Node indices are on 

both axes. The (i,j) point is plotted (filled) if and only if A(i,j)=1. Figure 2 shows matrix alignments for all 

species, real pathways and randomly generated, with different node orderings for the alignments. The first 

matrix is unordered, simply as generated, the second is ordered by increasing degree, the third by 

betweenness and the fourth by eigen-centrality. Two things are important to notice on these plots. First, 

they look very similar across species, indicating the essentially similar connectivity and community 

structure. The second important thing is the difference in betweenness patterns between the real and the 

randomly-generated pathways. As with the distributions discussions, the matrix dot alignments confirm that 

betweenness signifies the inherent structure of these pathways, which makes them stand out among 

random graphs with the same degree sequence. 
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Figure 2: Matrix dot-alignment plots: each pathway plot is followed by it random counterpart. By two the 

plots are of drosophila (top two), yeast (middle two) and human (bottow two). 
 



Another point of structural comparison is looking for communities via the Newman-Girvan algorithm. The 

three pathways are modularized separately and different communities are plotted with different colors as in 

Figure 3. All communities identify clear input and output ends and intermediate loops. Certainly the human 

pathway is the most complex followed by the yeast pathway. The drosophila pathway is very simple, 

possibly due to some level of coarse-graining. Not all disconnected communities are plotted on Figure 3. 

Figure 3: Newman-Girvan communities identified in Drosophila, yeast and the human pathways 
respectively. 
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Motifs Analysis 
Four sets of motifs are evaluated in the studied networks: all undirected triangles, a set of all directed 3

node motifs, a selection of undirected 4-node motifs and lastly a selection of directed 4-node motifs. All of 

these are show in Figure 4. 

Figure 4: Set of all motifs considered. 

The frequencies of occurrence of the motifs above are shown in Tables 4, 5 and 6. 

Table 4: Frequencies of occurrence of directed triangular motifs. 
Motif 
index 

D.Mel D.Mel. 
rand 

Yeast Yeast 
rand 

Human Human 
rand 

1 24 36 40 40 538 326 

2 38 16 128 104 600 694 

4 8 12 38 74 272 352 

5 - 3 6 3 9 15 

9 - - 3 - - 12 

Table 5: Frequencies of occurrence of undirected rectangular motifs. 

Motif 
index 

D.Mel D.Mel. 
rand 

Yeast Yeast 
rand 

Human Human 
rand 

1 81 66 228 297 4488 4269 

2 64 82 264 406 2996 3334 

3 - 25 105 - 150 545 

4 - - 8 4 400 28 

5 - - 8 - 24 -
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Table 6: Frequencies of occurrence of directed rectangular motifs. 

Motif 
index 

D.Mel D.Mel. 
rand 

Yeast Yeast 
rand 

Human Human 
rand 

1 - - 4 - 204 4 

2 - - 4 - 164 16 

3 - - - - - 12 

4 30 12 15 66 1929 411 

Motif frequencies are not meaningful by themselves, since they can occur generically in random networks. 

This is why the same evaluations are performed for randomly-generated graphs with the same degree 

sequence (as in the network statistics analysis). Notably, for all three pathways, the motif ranking is mostly 

the same: 2,1,4,5,9 for directed 3-node motifs, 1,2, (3or4), 5 and 4,1,2 for directed 4-node motifs. Ranking 

does not show significance though. The top ranking motifs are as abundant in random networks. The most 

significant motifs are the directed triangular loop, a feed-forward 3-node loop, undirected rectangles, the bi-

fan and the two-path robust motif (and-gate) among directed 4-node motifs. These are highlighted in the 

motif tables. 

The next step in motif analysis is coarse-graining. If found significant, a set of motifs can be collapsed into 

single nodes optimally to find a higher pattern level of the network. A simple probabilistic coarse-graining 

algorithm [5] was written to try coarse-graining of the 3 pathways and look for similar patterns. Figure 5 

show results of coarse-graining the human pathway (left) and the yeast pathway (right). Just looking at 

these plots, we find similarities between a coarse-grained pathway and its predecessor. For example, the 

coarse-grained yeast pathway looks a lot like the original drosophila pathway, with two opposite ends of two 

and three branches and an internal loop. The coarse-grained human pathway is similar to the original yeast 

pathway, but maybe actually more self-similar. This confirms the functional similarities, and does indicate 

that biological function is preserved in modules, but it does not point to exact replicated modules in the 

three pathways directly. This can be due to stochastic differences, the relatively small network size or 

simply mean that these are different pathways performing the same function. 
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Figure 5: Coarse-grained human pathway and yeast pathway. 

All Protein Interaction Datasets 

In order to benchmark the pathway data, we obtained and analyzed a wider set of protein interaction data 

from the DIP database [2]. The database contains all known to date protein interactions in form of edge lists 

for various species, among which are D. melanogaster, H. sapiens and S. cerevisiae. The edge lists are 

parsed to extract only node pairs and then continuously refined to obtain manageable formats. Refinement 

essentially is a process of looking for the largest connected component. Refinement steps are listed below. 

• Yeast original: 8992 nodes, 5952 links 
– First refinement: 2554 nodes, 5728 edges 
– Second refinement: 2408 nodes, 5668 edges 
– Edge/node: 2.4, clust=0.294, meanL=5.197, diam=14 

• Drosophila original: 28052 nodes, 22819 links 
– First refinement: 7451 nodes, 22636 edges 
– Second refinement: 7355 nodes, 22593 links 
– Edge/node: 3.072, clust=0.016, meanL=8.009 

• Human original: 28155 nodes, 1397 links 
– First refinement: 1085 nodes, 1346 links 
– Second refinement: 939 nodes, 1276 links 
– Edge/node: 1.359, clust=0.235, meanL=6.822 

Network statistics, where obtained, for the three wider datasets are given in Table 7. What stands out is the 

consistent average path length of about 6, which is even smaller than the pathways average path-lengths. 
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Clustering coefficients are notably higher for these datasets, thus indicating that they are closer to small 

worlds than the pathways themselves. It seems that functionally organized datasets behave very differently 

from randomly assembled datasets. 

Figures 6 and 7 discuss more evidence of the difference in the structure of the all yeast protein network 

compared to the MAPK pathway. The degree distribution is a good approximation of a power-law (Figure 6) 

and community structure cannot be detected in dot matrix alignment plots (Figure 7), as for the pathways. 

Table 7: All-protein interaction datasets network statistics. 

Edge/node 

# nodes 

# edges 

Directed? 

Connected? 

Max,mean,min deg 

Deg correlation 

Max,mean,min,betw 

Clust coeff C1,C2 0.294, 0.2129 

0 0.5 1 
0 

500 

1000 

1500 

clustering 

coefficient 

histogram 

# triangle loops 2979 

Mean path length 5.197 

Network diameter 14 

2.3929 

Yeast Core 
Proteins 

2344 

5609 

No No 

Yes No 

91, 4.786, 1 178,6.16, 1 

-0.1329 

280462,4837,8,0 1274986.125,12433.112, 0 

0.016 

8.009 

3.072 

Drosophila Core Proteins 

7355 

22593 

1.5477 

Human All 
proteins 

577 

893 

No 

Yes 

33, 3.095, 1 

-0.1391 

47006.410, 
1676.813, 0 

0.235 

301 

6.822 

? 

Consistently low, 
as network grows; 
probably depends 
on increasing 
network knowledge 

Comments 

Always negative 

Higher than 
pathway clustering 
coefficients. 

~ 6, less and close 
to pathway results 
on average 
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Figure 6: Yeast core proteins dataset, degree distributions; best fit is a power-law with exponent pdf (-
0.83), exponential (~-0.3). This shows again a difference in pathway, versus all-interactions datasets 

behavior. Pathway degree distributions are clearly skewed normals. 
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Figure 7: Yeast core proteins, connected component, matrix alignments. These matrix alignments are 

another clear indication of the difference between random datasets and functionally organized modules. 
Almost none of the alignments show any meaningful structure, compared to pathway dot matrix alignment, 

where structure is obvious, especially when ordering nodes by betweenness. 



Figure 8: Human and yeast all protein datasets – giant connected components 

IV CONCLUSION 

In this computational study of biological datasets, we have found or rediscovered a set of common 

principles. First of all, for a single pathway, among different species, functional similarity and common 

community structure can be detected only on the network level. This has been verified with various 

techniques, which also show that the pathways are not strictly identical. In such a way, there are many 

ways to do the same thing in nature. 

The second important conclusion is that functional datasets do not exhibit the same network characteristics 

as randomly assembled datasets. Degree, betweenness and pathlength distributions are different, from 

skewed normal to power-laws, showing that 1) function organizes structure in special, non-random ways, 

and 2) probably statistical randomness gives rise to certain common distributions like power-laws. 

There is much to be done in refining this research. More signal transduction pathways can be analyzed to 

verify the first conclusion. Further refinement of the all-protein datasets can help identify functional modules 

and maybe point out individual pathways on the larger dataset to understand how molecules interact 

globally and whether they are functionally loaded. 
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APPENDIX 
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Figure 9: Drosophila pathway distributions: degree, betweenness, clustering coefficient and pathlength 
distributions (left to right) shown for the undirected pathway, directed pathway and randomly-generated 

pathway respectively (top to bottom). 
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Figure 10: Yeast pathway distributions: degree, betweenness, clustering coefficient and pathlength 
distributions (left to right) shown for the undirected pathway, directed pathway and randomly-generated 

pathway respectively (top to bottom). 
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