

## PSTN

#### By Jijun Lin Dan Livengood Chintan Vaishnav May 11th 2006

### *Faculty Advisor: Dan Whitney* ESD 342, Advanced Systems Architecture

1



### **Overview**

- A new historical perspective
- Call scenarios and architectural comparison
  - Static: Network Metrics
  - Dynamic: Pearson's Coefficient in evolving network
- Robustness in new networks
- Constraints and responses
- Contributions and future work

## **PSTN Economic Regulation (US)**



## Level Skipping vs. Dynamic Non-Hierarchical Routing (DNHR) 1980s

Level Skipping



Five-level toll switching plan in use from the 1950s. A variety of routings was possible with a maximum of nine trunks in tandem.

Figure by MIT OCW. After Andrews & Hatch, 1971. Improved quality via level skipping

© 2006 Student: Jijun Lin, Daniel Livengood, Chintan Vaishnav, Engineering Systems Division, Massachusetts Institute of Technology

<u>DNHR</u>



- Switch quality no longer main constraint
- 5-level hierarchy structure no longer required
- New constraints are the capacity on the links and switch reliability
- Statistical analysis allows for dynamic planning of routes in pre-set time periods

## DNHR – Flattening the Hierarchy (1980s)



**REGIONAL CENTERS** 

Figure by MIT OCW.

## Now Nano, Mini and Maxi can have similar architecture, but different coverage



### **Call Scenarios**

|      | Nano                                               | Mini                                               |
|------|----------------------------------------------------|----------------------------------------------------|
| Nano | In-network<br>Local Calls                          | Inter-network<br>Local &<br>Long-distance<br>Calls |
| Mini | Inter-network<br>Local &<br>Long-distance<br>Calls | In-network<br>Local Calls                          |

### Five Networks

2005 Nano Network 2010 Nano Network Mini Network 2005 Nano + Mini 2010 Nano + Mini

## Between Nano, Mini and Nano + Mini networks, we can study all call scenarios

### Architecture of Nano Network (in-network local calling)



### Nano Bell's Plan for Migration from 2005 to 2010

- 1. Get redundant fiber outlets
- 2. Get every node on fiber (preferably ring)



N = 171z = 5.218M = 446I = 2.582C = 0.1179

<u>Four Types of Tandems</u> Local Access Toll 911

Why are Nano and Mini different? Legacy Architecture Regulatory Obligations Voice vs. Data Network

Is there a parameter that indicates the difference in Nano vs. Mini Network?

8

## Nano vs. Mini Networks

| Parameter          | Nano 2005 | Nano 2010 | Mini Only |
|--------------------|-----------|-----------|-----------|
| Ν                  | 104       | 123       | 171       |
| М                  | 121       | 152       | 446       |
| z ( <k>)</k>       | 2.327     | 2.452     | 5.216     |
| I                  | 7.308     | 8.729     | 2.582     |
| log n/ log <k></k> | 5.499     | 5.365     | 3.113     |
| С                  | 0.0262    | 0.0206    | 0.1179    |
| < <b>k</b> >/n     | 0.022     | 0.020     | 0.031     |
| r                  | 0.2196    | 0.3277    | -0.6458   |

Is sharply different r indicative of differences in technology?

Perhaps not....

We know from level-skipping and DNHR that Central Offices (not just the tandems) are connected in Mini's network, so *r* must be higher. *But we simply can't get this information because of privacy/competitive reasons.* 

# What happens to Pearson's if we had more routing information for Mini Bell?



# What happens to Pearson's if we had more routing information for Mini Bell?

- Degree correlation changes from -0.6458 to 0.7403 by randomly adding 0 up to 1755 edges)
- On average, zero degree correlation happens at adding 185 edges



### Nano Connected to Mini Network (inter-network local or long distance)





| Parameter          | Nano 2005 | Nano 2010 | Mini Only | Mini+Nano 2005 | Mini+Nano 2010 |
|--------------------|-----------|-----------|-----------|----------------|----------------|
| N                  | 104       | 123       | 171       | 275            | 295            |
| М                  | 121       | 152       | 446       | 667            | 714            |
| z ( <k>)</k>       | 2.327     | 2.452     | 5.216     | 4.85           | 4.84           |
| 1                  | 7.308     | 8.729     | 2.582     | 3.71           | 4.275          |
| log n/ log <k></k> | 5.499     | 5.365     | 3.113     | 3.557          | 3.606          |
| С                  | 0.0262    | 0.0206    | 0.1179    | 0.196          | 0.2136         |
| <k>/n</k>          | 0.022     | 0.020     | 0.031     | 0.018          | 0.016          |
| r                  | 0.2196    | 0.3277    | -0.6458   | -0.1882        | -0.1552        |

#### All critical measures of Nano + Mini fall in between Nano and Mini



Physically separate SONET rings are at least twice as resilient. *Can we test this?* 

# Robustness to Loss of Nodes or Edges in Nano Bell

- Algorithms
  - Randomly remove nodes
  - Randomly remove edges
  - Replicate the experiments for 500 times

| Max nodes | Nano 2005 | Nano 2010 | Max edges | Nano 2005 | Nano 2010 |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 1         | 0.584     | 0.902     | 1         | 0.57      | 0.968     |
| 10        | 1.068     | 3.228     | 5         | 1.274     | 4.48      |
| 20        | 1.522     | 3.662     | 100       | 1.256     | 12.252    |

# Robustness to Loss of Nodes or Edges in Nano Bell

#### Randomly remove nodes

#### Randomly remove edges



Results shows Nano 2010 is more robust than Nano 2005 In terms of removing nodes and edges



## **Summary of Constraints**

### Technical

| Constraint                                       | Improvement             | Copper                       | Fiber      |
|--------------------------------------------------|-------------------------|------------------------------|------------|
| Cabling Distance<br>(Attenuation)                | SN Ratio                | < 1Km<br>(without repeaters) | < 70 Km    |
| <b>Bandwidth</b> (Sampling and Error correction) | Speed of<br>Electronics | < 100 Mbps                   | < few Gbps |

### Economic

- Cost of Fiber: Overcome by the economies of scale in fiber manufacturing. A low-end fiber cable costs similar to high-end copper cable
- Cost of Electronics: Still a constraint. Electronics to run fiber network costs 3-4 time higher than electronics for running copper network

### Regulatory

- Payment of Access Charges: Overcome by DNHR and flattened hierarchy
- Unbundling and Equal Access: Constraints upgrade of Access (Nano Bell) Tandems

### Operational

- **Cost of Digging:** Overcome by overcapacity
- Physical breaks: Overcome by physically separate rings
- Legacy: Overcome by new companies (Nano Bells) through ground-up ring architecture

## Contributions

- The new hierarchy is flat: from 5 to ~3 levels
- The new network is a hybrid of copper and fiber
- The new architecture is a tree structure with rings
- The new routing scheme is DNHR (Dynamic Non-Hierarchical Routing) instead of level skipping
- The Pearson's correlation coefficient has been changing from negative to positive as the network evolves
- The network analysis confirms the increased robustness of the new fiber network architecture

### **Recommendations for Future Work**

- Find more data, preferably electronically
  - The best you can do is to get Telcordia's LERG (~ \$1600)
- Enhance PSTN analysis by introducing link and node properties
  - Link Properties: bandwidth, traffic loads
  - Node Properties: switching capacity, customers served, traffic characteristics
- Historical, time-based data would show the network's evolution and the effects of legacy on Mini Bells
- Comparison and joint modeling of PSTN with the Internet
  - What are the structural differences in the networks?
  - What are the different design assumptions (circuit vs. packet switching) that influenced each network?
  - How much overlap occurs between these two networks?