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Mixed Trees and Layers
• Layered human organizations are locally relatively 

horizontal and globally tree structured. Locally they form 
a team, and rely on leaders to form interconnections 
resulting in tree structures of clans (see Watts, Chapter 
9, also in Dodd, Watts and Sabel’s paper, although they 
come at it from a very different perspective)
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Characeristics of Human 
Layered Organizations

• Members of a given layer can have multiple 
parents or can relatively easily switch parents at 
the layer above them

• Cooperation and trust are important attributes
• Members of a given layer can interact readily 

with other members at the same layer
• I believe that middle managers in such 

organizations recognize that a significant part of 
their job is increasing trust between their team 
members and members of other teams with 
whom they will need to work at some point
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Overlays
• Large partnerships (e.g., consulting firms) are 

often layered, and use project teams that may 
be best modeled as tree structures which are
overlayed on the base structure

• Matrix organizations (two bosses) may be 
viewed as overlays as well. At MIT we have 
departments as well as centers, and most faculty 
members have a department head and a center 
director as ‘bosses.’
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Complexity and Flexibility
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Complexity and Flexibility:
Structural complexity 

• Kolmogorov defined the (structural) complexity of a function as the 
length of its shortest description. This gives a lower bound to the 
complexity of implementations of the function

• The shortest description is, however, hard to determine 
• Abstractions in an implementation permit you to reduce the length of 

a description (recall the matrix example in Herb Simon’s chapter)
• There is a trade-off between a long description in an implementation 

and one that has a high number of layers of abstractions, each of 
which is relatively short

• The intricacy (related to messiness) of the interconnection pattern in 
a system clearly adds to the complexity

• The total number of nodes and interconnections also clearly adds to 
the complexity of an implementation
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Structural complexity of an 
implementation

• “Spaghetti stack” – a messy pattern of interconnections 
of components – people sometimes use graph theory to 
measure the messiness of the interconnection pattern –
systems or software engineering design methodology 
tends to reduce the messiness of the interconnection 
pattern –this is one of these methodologies’ biggest 
advantages

• Number of components -clearly related to complexity
• Number of interconnections -also clearly related
• In a hierarchy, the number of levels or layers is related to 

complexity (in a system using layers of abstractions 
which reduce the number of components and their 
interconnections, the depth of the hierarchy, if large, 
clearly adds to the complexity)
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My approach to structural 
complexity in the analysis below

• I assume that there is regularity in the 
interconnections structure in a generic structure, 
such as a tree structure . Thus messiness is not 
an issue

• I assume that the number of layers is not large, 
so accounting for the increased complexity for a 
large number of layers is not much of an issue

• I assume that the number of interconnections is 
larger than the number of nodes

• Thus I simply count the number of edges or 
interconnections in a system, and call that the 
structural complexity of the generic system or 
organization 
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Examples of Flexibility
(D-design, R-redesign, O-operation, F-function, P-
performance)

• Using a tuner in a radio to switch stations – O, F
• Changing gears in a car or bicycle – O, P
• Adding rules in spreadsheets – O, R, F
• Creating a new layer of software on top of or in between 

existing layers – D, R, F
• Switching roads to avoid congestion – O, P
• Adding connections in infrastructures to increase 

flexibility (and robustness) – R, P
• Switching roles in NE Patriots’ defensive positions – O, 

F, P
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What is Flexibility?
• A flexible system presents alternatives, usually many 

alternatives, to its function, performance or other ilities
• Some of these alternatives are obvious in the system’s 

interface, but most are not
• A flexible system also makes it easy to make certain 

classes of modifications in the system during design, 
redesign or operation of the system

• Not all modifications by an external designer are easily 
made in a flexible system (largely because these 
modifications may not rely on flexible parts of the 
system)
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Continuous Notions of Flexibility
• Flexibility is assumed here to be a property of discrete 

systems in the process of making alternative choices
• English also uses the term flexibility in continuous 

systems, such as a flexible bow
• One may have a flexible body permitting one to make a 

large variety of moves and take on a large variety of 
positions or states

• One could model or simulate these large number of 
relatively continuous positions with a discrete system, 
but we shall choose to ignore this possibility, and 
continue to emphasize flexibility in relatively clear-cut 
discrete situations
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What is Flexibility -2
• Flexibility is related to the relative ease of 

implementing classes of changes in a system’s 
function. It does not mean that all changes must 
be easy to implement. Big changes will usually 
not be easy. Some apparently simple changes 
will not be anticipated in the original design, and 
may not be easy to introduce (Social Security 
example).

• I define the flexibility of a system to be 
log(paths/nodes)

where paths is the number of paths in the 
system, starting with a root node and ending in 
leaf nodes, but counting cycles just once
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Flexibility in relation to other goals 
and characteristics of systems

• Increased use of flexibility to modify systems usually 
increases complexity

• The architecture of a system will play a key role in 
determining the relationship between flexibility and 
complexity

• Flexibility may not be free – there is usually some loss in 
performance. 

• Flexibility may be used to get around failing nodes or 
connections in a (networked) system, thus obtaining 
some robustness or resilience

• Due to such relationships, flexibility is, for me, the queen 
of the ilities
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Implementing Flexibility
• Flexibility is, for me, a relatively implementation-oriented

ility
• Flexibility is related to having discrete alternatives in the 

system or adding such alternatives in a redesign
• Adaptability is, to me, largely having continuous 

alternatives or changes, as in a feedback system (e.g., 
use of a thermostat is related to adaptability, not 
flexibility)

• Switches (and routers) are ways of building-in 
alternatives

• IF statements in software are switches
• Interpreters, which may accept an infinite number of 

different inputs (they have a loop in addition to routers), 
provide great flexibility

• Uncertainty is less of an issue in software if one can rely 
on interpreters to handle a huge number of future states
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Why are paths important in the 
definition of flexibility?

• Surely, one can add or modify function by 
adding new nodes and connecting them to the 
existing system. In business one does this when 
merging firms. We, unfortunately, tend to think 
this is easier than it often turns out to be.

• Often it is possible to make changes by 
connecting nodes that were previously not 
connected, and make some small changes 
within the pair of nodes. This is not possible in a 
pure tree structure, although it is often done, but 
it then usually adds a lot to the structural 
complexity of the resulting  (increasingly messy) 
system.
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Team structures

• Team with five members or nodes– a fully 
connected graph – ten interconnections or 
edges
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Complexity and Flexibility of 
Teams/Families

• The number of paths in a team of n nodes is 
O(n!) which is huge, but the complexity is O(n2). 
Thus n needs to be small for human 
teams/families, due to George-Miller-type 
restrictions. Clans can be larger, but they too are 
limited in size
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Tree Structures

• A tree with 8 nodes and 7 edges, 5 paths 
from root node to bottom nodes, 3 levels 
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Complexity and Flexibility of Tree 
Structures

• Complexity of a tree structure is O(n), but 
the number of paths is also O(n), since the 
number of paths is equal to the number of 
bottom (leaf) nodes. The flexibility 
measure is negative. Essentially pure tree 
structures are inflexible. Increasing the 
flexibility of a pure tree by adding edges or 
interconnections will increase flexibility, 
but at a potentially significant increase in 
complexity.
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Flexibility and Performance – Tree 
structured systems

• A balanced binary tree has 2d nodes at depth d (in a balanced tree 
nearly all leaf or bottom nodes are at the same depth).

• The number of paths from top to bottom is also 2d 

• The number of switches that are triggered in each node in a path is 
log (base 2) of the total number of paths – that is, d

• The loss in performance due to the switches is usually bounded by a 
constant multiple of the number of switches triggered, or log (base 
2) of the number of paths in a balanced tree

• An alternative to switching is to have 2d direct connections between 
the top and bottom, which is usually difficult to achieve due to fan-
out problems, but this alternative eliminates much of the 
performance loss due to switching. Direct connections may also lose 
the potential explanatory power of a hierarchical architecture

• A key weakness of a hierarchical tree-structure architecture is that 
redesigns may add greatly to the complexity of the system and may 
prevent additional changes after some point. In other words, pure 
tree structured systems  (often the key intermediate result of 
systems engineering or software engineering) are often overly 
complex and inflexible after some redesign



Layered Hierarchies
• Layered structure with three layers – no purely horizontal 

interconnections – may connect to any or even all nodes in layer 
immediately above or below

Layer 1

Layer 2

Layer 3
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Complexity and Flexibility of 
Layered Structures

• Assume a layered structure with no horizontal 
interconnections, with k layers, each of n/k 
nodes. The number of paths will be O((n/k)k), far 
higher than a tree structure with similar number 
of nodes, except for k=1. The complexity will be 
quadratic in n, thus too high for human 
organizations (use hybrid organization instead) 
and for some technical systems (use routers in 
some cases). This level of complexity presents 
no problem in pure mathematics
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Flexibility and Performance –
Layered Systems

• A hierarchy of routers or interpreters is one set of 
examples of a layered system

• Layered systems are related to levels of abstractions, 
and have relatively easy explanations in comparison to 
the overall system

• Performance suffers somewhat due to the cost of getting 
through each layer – people who don’t like a layered 
approach tend to emphasize this point

• If one is careful, one may permit the violation of an 
abstraction by allowing direct paths through one or more 
layers in order to increase performance in certain cases
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Hybrid Hierarchy or Mixed Trees 
and Layers

• Layered human organizations are locally relatively 
horizontal and globally tree structured. Locally they form 
a team, and rely on leaders to form interconnections 
resulting in tree structures of clans (see Watts, Chapter 9 
for a similar diagram, but different analysis and different 
detailed structure. Also Dodd, Watts and Sabel)
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Analysis of a hybrid or mixed trees 
and layers

• What is the flexibility of a mixed tree and layer system?
– Assume teams with t members each, depth d. Can you 

determine what the number of paths is for a balanced  mixed 
tree and layer? It will be equal to or higher than O(n2), but 
usually not as high as O(n3)

• What is its structural complexity?
– Answer: O(t n), more complex than a tree, but bearable when t is

relatively small
• Thus a mixed tree and layer reduces complexity to 

something akin to a tree, albeit higher, but flexibility is 
quite a bit higher than that of a tree

• In contrast to some network models, this hybrid 
architecture is designed by humans and is relatively 
controlled, rather than ad hoc or random
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Summary of Complexity and Flexibility Analysis

Architecture Complexity Number of 
paths

Family/team O(n2) O(n!)

Tree structure O(n) O(n)

Layered 
structure

O(n2) O(nd)

Mixed/hybrid
Tree and Layer

O(n), but higher 
than tree 
structure

O(n2+)



26

Analysis of layered systems that 
use routers

• Complexity is O(n log(n)) with routers
• The number of paths is still O((n/k)k) for k layers 

(with no horizontal connections)
• Efficiency is lower since one has to go through a 

router, and routers may get congested with 
requests. Use multiple routers for robustness 
and some reduction in congestion 

• This makes computer/communication hardware 
architectures a potentially challenging problem
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Complexity and Flexibility of 
Networks

• General network structures take many forms. 
However, a grid type of network (nearest 
neighbors are connected) will have the number 
of paths that is exponential in the number of 
nodes. Consider adding just one new node and 
connect it to its nearest neighbors, and see that 
the number of paths is at least doubled. The 
complexity is O(n), which is good. However, 
such networks lend themselves to highly 
distributed control as well as cycles (and thus 
feedback), and this makes it often relatively 
difficult to analyze or control the behavior of the 
system
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Laterality
• We can distinguish parent/child vertical   

connections from ones that are more horizontal 
or lateral

• We define laterality to be the ratio of the number 
of lateral connections to the number of vertical 
connections

• The higher the laterality the more paths we are 
likely to have and thus the greater the flexibility 
of the system (and thus the greater likelihood of 
robustness)
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Flexibility of Linearly Structured 
Systems

• Consider the number of ways of assigning 
offices on a given floor, where the number of 
offices to be assigned varies from 0 to k, k≤n, 
and different groups require m contiguous 
spaces, m≤k

• Claim: the number of alternate assignments is 
2n, the number of subsets of n

• Hence doubling n yields a squaring of the 
number of alternatives
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Staging Alternatives
• The office assignment problem is related to the number 

of alternative assignments of groupings in a staged 
system (e.g., the number of satellites to be placed in 
orbit in stages, the number of floors in a garage to be 
added in stages)

• In the garage example, one may need to add 
performance up-front (to the beams) so that one has the 
option to add floors at a later point

• The B52 can be viewed as an unexpected example of 
staging. Its performance was higher than was actually 
needed. Thus in later stages of its life new equipment 
could be added to the plane that lowered the maximum 
height performance, but the height performance was still 
above the minimum needed to avoid enemy fire, and the 
new functions thus obtained were extremely useful
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Flexibility and Routers
• Routers rely on tags or addresses to make the switch. 

As a result, the number of alternatives tends to be higher 
than in a (binary) switch.

• Routers play key roles in infrastructures as well as in 
software systems

• Language interpreters are often implemented as routers, 
but include a loop. This is about as close as software 
normally gets to having feedback

• Layered software/hardware systems can be considered 
as (layered) hierarchies of routers/interpreters

• New layered abstractions greatly increase the system’s 
flexibility and expressive power

• In biology, cells, bilateral architectures, limbs, and the 
neo-cortex all provide such abstractions (viz. Kirschner 
and Gerhart - they don’t use this terminology, but should)
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Flexibility, networks and 
Robustness

• Networks tend to have very large number of possible 
paths from a starting node to end nodes, thus their 
flexibility is very high

• The number of paths is often so high that it is relatively 
easy to circumvent a failing node or connection, thus 
obtaining a measure of robustness

• Interestingly, the ease of changing internally (flexibility) 
allows one to successfully resist internal or 
environmental challenge or change (robustness)

• Moreover, analyses of network flows may lead to the 
identification of the few additional connections that would 
result in an even more flexible and robust network 
design
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Flexibility and Rates of Change

• Very slowly changing systems do not need to be 
very flexible – one may change these systems 
slowly and pay a penalty in complexity

• Systems that are the first implementation of their 
type need flexibility – second implementations 
may pay more attention to performance
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Measuring Flexibility

• Our emphasis on paths makes the number 
of paths a natural component of the 
measure of flexibility

• By itself such a measure is not very useful. 
It needs to be related to other system 
measures and characteristics, such as 
(structural) complexity and (generic) 
architectures

• It’s about the relationships, stupid
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Universality
• Interpreters (e.g., instruction execution in a 

microprocessor, language interpreters) can 
execute (or simulate) any well-defined 
procedure (Church-Turing thesis)

• All it takes is a router, a looping capability, a 
read/write capability and unbounded time and 
storage

• This property of information systems may be a 
reason why uncertainty is less of an issue in 
software systems – one expects to handle any 
future state (ignoring efficiency considerations)

• Universality is the ultimate in flexibility
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Layering as an Algebraic 
Concept

• Trees and layered systems are 
describable using combinatorics, 
especially graph theory

• Layered systems are, however, probably 
best described using abstract algebra

• Each layer is an abstraction of the layer 
immediately below it, and a specialization 
of the layer immediately above it



37

The Telephone Network as 
Example of Layered Architecture

• The AT&T system in the US (certainly prior to 1983) was 
basically composed of three layers (each using a 
different architecture)
– Local switching loops (routers) at the bottom of the hierarchy
– Regional interconnections in the middle
– National network at the top layer

• The capacity of the US system was 10 billion phones 
given 10 digit phone numbers

• The system was scalable, flexible and robust
• Unfortunately, the rate of change of technology was kept 

low, partly due to AT&T’s long term investment in copper
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The Landline Telephone Network 
as a Commutative Diagram

Three layered model of land-line telephone 
system
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Landline Telephone Architecture

• Lowest layer (10,000 lines) – uses a large switch 
or router

• Middle or regional layer (1,000) – might use a 
team structure, that is a nearly fully connected 
graph of a few nodes, each a switch of the 
architecture above

• Upper layer (1,000 area codes) – uses a 
national network between regions with central 
offices that switch potentially thousands of ‘calls’
as if they were a liquid, for robustness and 
efficiency reasons
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Abstractions in Algebra:
Simple Algebraic Examples

• Consider the (infinite) set of integers, Z
• The rational numbers, R, are an abstraction of Z
• Each integer has an infinite number of rationals 

for which it acts as numerator or denominator –
no problem having so many implicit connections

• The integers modulo 3 (i.e., 0, 1, 2) are a 
specialization of Z 

• Polynomials in x with integer coefficients, Pz(x) 
are an abstraction of Z

• Polynomials in y whose coefficients are in Pz(x), 
Pz(x,y) is an abstraction of Pz(x) 
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Integration using algebraic 
abstractions

• Consider ∫f(x) dx, such as ∫x ex dx = x ex – ex

• Suppose f(x) is in an abstraction (extension) of 
the rational functions in x, say F(x)

• (Liouville, Ritt, Risch Theorem)    The integral of 
f(x), if it is expressible in terms of the usual 
functions in the calculus (exponentials, logs, 
roots of such functions), then
∫f(x) dx = A(x) + ∑ci log(Bi(x))
, where ci are constants, and A and the Bi are 
also in F(x)             



42

Simple Examples
• ∫e x2dx
• The integrand is in R(x, ex2 ). In this special case we know that there are no 

log terms, and that the form of the integral is 
• ∫e x2dx = A(x) e x2 , where A(x) is in R(x), that is A is in the immediately 

lower field
• Differentiate both sides

e x2 = A’(x) e x2 + 2 x A(x) e x2 , divide both sides by e x2

1= A’ + 2x A
If A is a rational function in x, could it have a nontrivial denominator? No, since A’

would have a denominator of higher order and the other terms would not cancel 
it.

Thus A must be a polynomial in x of degree n, say
What could n be?
0   (n-1) (n+1)   the degrees of the three terms on the two sides of the equation
Thus, 0 = n+1, or n= -1, but that is a contradiction since A would then have a non-

trivial denominator
Hence the integral is not expressible in closed form
This proof used to be dozens of pages long prior to 1970
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Simple integration examples
• ∫x e x2dx = A(x) e x2 , where A(x) is in R(x)
• Differentiate both sides and divide by e x2

• X = A’(x) + 2 x A(x)
• As before, A has no nontrivial denominator
• Say A is a polynomial of degree n in x
• 1  (n-1)   (n+1)  the degrees of the three terms above
• So n=0, A(x) = a, a constant
• X = 0 + 2 x a 
• Solve for a
• a= 1/2
• ∫x e x2dx = ½ e x2
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Abstraction and Problem Solving

• A key value of abstractions is that they simplify a 
problem by hiding layers (not just modules) of detail in its 
solution

• A possible approach to problem solving (in contrast to 
hierarchical decomposition) is “repeated abstraction”

• Also instead of starting at the bottom (or top) one may 
want to start in the middle (“middle-out”) and develop 
abstractions (going up) and specializations (going down) 
from there

• Such an approach may be best when one is exploring a 
new problem domain. Top-down, in order to be 
successful, usually assumes you already know what the 
specs are or ought to be

• Just as there is no unique decomposition of a given 
problem, there is no unique abstraction
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Arguments against abstractions 
and layering

• It is not clear how to create a “good” abstraction. The 
mathematician who invented matrices circa 1860 thought 
that there would be hardly any use for them – it is thus 
even hard to tell when you have a good abstraction

• Similarly, it is not clear how to create a good 
decomposition, but it is relatively easier to create some 
decomposition

• Abstractions leading to higher layers will likely lead to 
some, possibly minimal, loss of performance

• In CS, this loss of performance has been used against 
most new abstractions, such as high level languages 
(e.g., FORTRAN) and VLSI design languages

• New computer architectures and improved speeds have 
often vitiated such arguments
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Data Abstraction

• See Chapter 2 of Abelson and Sussman’s 
6.001 text

• Rational number arithmetic procedures (+, 
*) are based on lower layer procedures for 
integer arithmetic

• Polynomial arithmetic in one variable with 
rational number coefficients is based on 
rational number arithmetic procedures

• Etc.
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