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Lecture 12 overview

• Models, metrics and architecture 
• Understanding
• Practice

• Overview of model types
• “Poisson  Random graphs
• “Small Worlds”
• Random graphs “generalized” for degree sequences
• System formation models

• Cumulative advantage (aka preferential attachment)
• Node copying and others 

• Structure-Property models
• Cascades, epidemics and other initial “applications”
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The Materials Science Metaphor
• PROCESSING> STRUCTURE> PROPERTIES
• Structure determines/affects properties

• Structure is a multi-dimensional term that includes many scales 
and concepts simultaneously (and thus is not a “simple invisible”)

• Properties include attributes that encompass dynamics, behavior 
and “ilities”. 

• Relationships between Structure and Properties are plentiful and
became strongest as material classes under detailed study increased

• Solid Mechanics, dislocation theory, atomic theory are some of the 
key enablers for deriving mechanisms to propose structure/property 
relationships in materials.

• In materials, properties of interest (almost always) simultaneously 
depend on several structural parameters. There is every reason to 
believe that engineering systems will similarly require numerous
structural parameters to make real progress.
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The Materials Science Metaphor II 
• Processing determines Structure

• Different Processing Modes ( e-beam deposition, casting, forging, 
crystal growth, etc.) have different control parameters
(Temperature gradient, stresses, pressure, magnetic and electrical 
fields, composition, etc.) that affect/determine properties.

• Design is thus modifying the processing modes and control 
parameters to obtain the desired combination of properties. 
Understanding structure is the chief enabler of effective design

• Thermodynamics, phase transformations, thermal and fluid 
sciences, solid mechanics are useful fundamentals underlying 
Process/structure relationship

• Linking the framework to Engineering Systems requires discussing the 
structure and properties analogues in such systems.
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The Materials Science Metaphor III

• Structure Characterization
• Materials-Multiple Dimensional and very broadly 

construed
• Engineering Systems Possibilities for Architecture 

Characterization as Networks.. are also very broad 
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Network metrics; structural characteristics
• size, sparseness, degree, 

average degree, degree 
sequence 

• degree distribution, power 
laws, exponents, truncation

• geodesic, path length, graph  
diameter 

• transitivity (clustering)
• connectivity, reciprocity 
• centrality (degree, closeness, 

betweenness, information, 
eigenvector)

• prestige, acquaintance

• hierarchy
• community structure, cliques
• homophily, assortative 

mixing, degree correlation 
coefficient

• motifs, coarse- graining
• self-similarity, scale-free, 

scale-rich
• dendograms, cladograms and 

relationship strength
• modularity vs. integrality
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The Materials Science Metaphor IV
• Structure Characterization

• Materials-Multiple Dimensional and very broadly 
construed

• Engineering Systems Possibilities for Architecture 
Characterization.. are also very broad (but nonetheless almost 
surely needs to grow)

• Engineering System Properties are also numerous (but some of 
the most important are not yet adequately quantified)
• Robustness (congestion, failure of nodes and links etc.)
• Flexibility
• Rates of propagation (disease, ideas etc.)
• Performance efficiency

• The Processing > Structure > Properties “Mantra” from 
materials becomes for engineering systems
• Formation mechanisms + constraints > architecture 

(structure) > Properties (ilities +)
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Schematic of Engineering System Model 
Purposes

System Structure
Quantified by a

Rich set of metrics

System Properties
understood 

quantitatively 
in terms of 
desirability

System
formation 

mechanisms and
constraints

Network math 
models to predict

properties from structure

Network math 
models to predict 

structure  

Architecture represented
as networks



Professor C. Magee, 2006
Page 9

Schematic of Complex System 
Architecting 

System Structure
Quantified by a

Rich set of metrics

System Properties
understood 

quantitatively 
in terms of 
desirability

System
formation 

mechanisms and
constraints

Math 
models

Math 
Models

Identify key
Architectural

Variables

Identify key
properties

and constraints

The math models of properties allow trade-off of Architectural variables 
and patterns of interaction on properties to drive choice of desirable structure. 

The math models of formation mechanisms allow choice of lowest cost 
or feasible sets of desirable  structural metrics to be selected and evolved. 
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Model types
• Models of Systems (networks)
• Models for predicting/explaining Structure

• Models for formation/growth processes of systems
• Most network models such as random, small-world etc. 

implicitly fall in this category
• Cumulative advantage, preferential attachment, bipartite 

community formation, heuristic optimization relative to 
constraints, hierarchy (or heuristics) + random

• Models for predicting/explaining properties of systems
• Predicting properties from structure – architecture 

• Flexibility, robustness, performance of functions 
• Operational processes or functions

• Communication, problem solving, decision-making, learning
• Search and navigation
• Failures and cascades, epidemics

• Models/algorithms used to “observe” systems (why care?)
• Calculation of structural metrics
• Communities, motifs, coarse-graining, hierarchy
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The Iterative Learning Process

deduction induction deduction induction

Objectively obtained quantitative data (facts, phenomena)

hypothesis ( model, theory that can be disproved)

Models are “hardened” only by intensive simultaneous
observational studies of relevant reality. The result  can be

The rapid facilitation of a transition to engineering 
(vs. craft approaches) for the design of complex 

social/ technological systems

The emergence of a cumulative science in this area.
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Lecture 12 overview

• Models, metrics and architecture 
• Understanding
• Practice

• Overview of model types
• “Poisson  Random graphs
• “Small Worlds”
• Random graphs “generalized” for degree sequences
• System formation models

• Cumulative advantage (aka preferential attachment)
• Node copying and others 

• Structure-Property models
• Cascades, epidemics and other initial “applications”
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Poisson Random Graph

• Rapaport and later Erdos and Renyi and others such as Bollobas
have studied a very simple model in some depth. This is the one 
where each node in a network is connected with probability p to 
other nodes. Ensembles with variable numbers of links <k>
are studied and the degree distribution is 

• The path length can be formally shown to be
and is thus consistent with a “Small World”

• Clustering is simply equal to the random probability
of a link between 2 nodes and is 
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Poisson Random Graph II

• It is generally stated that this model is nice for intuition but
describes no real networks. It also provides a benchmark.

• Let us look again at the Metrics Table from Newman with 
addition of some estimated quantities from the random 
network model.
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Poisson Random Graph II

• It is generally stated that this model is nice for intuition but
describes no real networks. It also provides a benchmark.

• Let us look again at the Metrics Table from Newman with 
addition of some estimated quantities from the random 
network model.

• What do we see? (more in assignment # 3)
• Path Length, l, is generally small (small worlds) and often 

approximately equal to that given by Poisson random network
• Clustering is usually orders of magnitude higher than predicted 

by random networks for the large networks and is ~constant 
with n
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Small World Problem as seen by Watts
Lattice Random graph
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Small World Network Model (1D)
K is the  number of nearest neighbors originally with links 
(=3 below)

Figure by MIT OCW.
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Small-world networks

Watts & Strogatz, 

Nature 393, 440 (1998)

N = 1000
• Large clustering coeff. 

• Short typical path
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Figure by MIT OCW. After Watts & Strogatz, 1998.

Figure by MIT OCW.
 After Watts & Strogatz, 1998.
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Small World Clustering Estimation

• Watts and Strogatz got results 
from simulation

• Later Work by Barrett and 
Weigt
on their model derived 
a clustering coefficient of 

• An improved model by 
Newman and Watts and 
independently by Monasson
gives for the clustering 
coefficient

• These estimates are 
sufficiently high for real 
networks
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Small World Model Path Lengths

• Simulation based by Watts and Strogatz showed that path lengths 
were small and scaled with ln n

• No exact solution (yet) but Barthelemy
and Amaral proposed a scaling relation that was later derived by
Newman and Watts. It shows that the
transition to “Small World Path
Length Dependence” occurs at smaller 
p as n increases. Indeed, the number of 
shortcuts needed to give small world behavior is constant (for 
given K) as n increases

)(nKpf
K
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Ubiquity of small-world networks

Bertelemy and Amaral, Phys Rev Lett 83, 3180 (1999)

Newman & Watts, Phys Lett A 263, 341 (1999)

Barrat & Weigt, Eur Phys J B 13, 547 (2000)
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Figure by MIT OCW.  After Barrat & Weigt, 2000.
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Small World Models 

• Small world models thus
• Show that it is relatively easy to have higher clustering and 

yet short paths.  In large networks a few long paths is all 
that is needed- brain now understood this way as are some 
other large scale complex systems

• However, the specific models have only marginal connection 
to any real systems  as they are stylistic and notional

• Small World Models have been relatively widely used as a 
“substrate” for studies of such as iterated games, epidemics. 
The rewiring approach has also proven  useful even if the 
specific models are not real (more on model utility in later 
lectures)



Professor C. Magee, 2006
Page 23

Generalized Random Graphs I

• Since the 1970’s,  many papers have been published that generalize 
the random graph model for various purposes. Recent work has 
emphasized degree distribution and clustering

• The “configuration model” allows  the “degree sequence” to be 
preset and then random connections made.

• Clustering comparison to
real networks is “better” than 

for random networks 
• For Generalized Random

Graphs with Power laws,
clustering depends on 

• Low           (less than 7/3)“power law but random” networks can 
thus have significant clustering. 
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Generalized Random Graphs II
• Generalized Random Graphs have also been developed for 

• Directed graphs
• Bipartite graphs are of particular interest as the clustering 

coefficient does not vanish as n becomes large
• Most interesting, recent work has shown that the number 

of types of nodes can be expanded beyond two 
(Multipartite) and mixing of arbitrary types (“non-pure 
homophily”) can be allowed and still allow calculation of 
many metrics. 

• Work on other generalized random network models 
(exponential and Markov for example) continue but for now 
the most useful is the bipartite/multipartite models as they 
are the only ones showing transitivity. They are limited to 
bipartite/multipartite networks but there are more examples 
of these than generally realized

• Putting enough structure (and constraints) in to a model so it 
reflects  reality  and making random additions is attractive
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System Formation (Network  Growth) Models

• (Most) real Networks grow (adding nodes and links)
• As (attempts at realistic) rules for attachment were devised, the first 

simple “reality-related” models for system formation were developed
• Barabasi and Albert model
• Citation networks and D. J. de S. Price (following a Simon skew 

distribution concept)

• Price/Barasi and Albert  model  generalizations

• Other growth models
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Schematic of Engineering System Model 
Purposes

System Structure
Quantified by a

Rich set of metrics

System Properties
understood 

quantitatively 
in terms of 
desirability

System
formation 

mechanisms and
constraints

Network math 
models to predict

properties from structure

Network math 
models to predict 

structure  

Architecture represented
as networks
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Barabasi and Albert Model
• Insights

• Real Networks are growing (adding nodes and links). 
Attachment will not occur randomly but will tend to be 
preferential (the rich get richer)

• Assumptions
• Undirected network (and first applied to citations and the 

Internet which are directed)
• Each node is added with a fixed number of links

which must be positive and an integer. 
• Probability of attaching to node i is

(equal to degree centrality) 

Results: Simulation using the model yielded
power laws with                independent of 

and led to idea that scale-free structures with hubs exist when 
power laws are found (but we now realize that power laws 
are ubiquitous)
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D. J. de S. Price’s work I

• 1965- described first example of a scale free network
• He showed that the Scientific Citations Network shows a 

power law.
• Initially he estimated that      was 2.5 – 3 and later (1976) gave 

a more accurate value of 3.04
• 1976- presented the first “growth” model for a network to explain 

the power law he had found in 1965.
• He based it on work by (again) Herb Simon (1955) who had 

shown that power laws arise when “the rich get richer” –the 
amount you get goes up with the amount you already have 
(“The Matthew effect”) . The power laws Simon was 
“explaining” were wealth effects (Pareto) and some of the 
power laws shown by George Zipf.

• “For to everyone who hath shall be given”…

α
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D. J. de S. Price’s work II

• 1965- described first example of a “scale free” network
• He showed that the Scientific Citations Network follows a 

power law for degree distribution.
• Initially he estimated that      was 2.5 – 3 and later (1976) gave 

a more accurate value of 3.04
• 1976- presented the first “growth” model for a network to explain 

the power law he had found in 1965.
• He based it on work by (again) herb Simon (1955) who had 

shown that power laws arise when “the rich get richer” –the 
amount you get goes up with the amount you already have 
(“The Matthew effect”) . The power laws Simon was 
“explaining were some of those shown by George Zipf.

• Price was the first to use this concept (he called it cumulative 
advantage) to discuss network growth and to explain degree 
distributions on networks (although others used Simon’s 
approach to develop similar models before Price was 
rediscovered in 2003 or so).

α
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Price’s Model

• Assumptions
• Directed graph-appropriate for citation network
• Nodes are added with variable (and permanent) out-

degree          but average out degree               is stable 

• Assumes starting point for in-degree of a new paper at  

= 1 but discusses general case

• Result

• Price in 1976 makes a decent case for agreement with his 1965 
results
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Generalizations of Price/Barabasi-Albert 
Models I

• The Albert and Barabasi review (2002) identifies about 15 
variants involving non- linear preference, time-dependent 
growth, mean degree increase with time, multiple node 
fitnesses, and many others
• Many allow                   and thus can “improve” agreement 

with actual networks
• Costs for links (and aging of nodes) has been modeled and 

this also “improves agreement” with real networks

3<α
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Classes of small-world networks:
Truncation due to Costs and Constraints

Proc Nat Acad Sci USA 97, 11149 (2000)

Courtesy of National Academy of Sciences, U.S.A. Used with permission. 
Source:

 
Amaral, L. A. N., A. Scala, M. Barthelemy, and H. E. Stanley. "Classes of small-world networks." 

Proc Natl Acad Sci 97 (2000): 11149-11152. (c) National Academy of Sciences, U.S.A.
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Generalizations of Barabasi-Albert 
Models II

• Albert-Barabasi (2002) review identifies about 15 variants 
involving non- linear preference, time-dependent growth, mean 
degree increase with time, multiple node fitness, and many 
others

• Some remaining limitations of all Barabasi-Albert models
• Model is undirected but the real Web is directed
• If it is regarded as directed then it only generates acyclic 

graphs (the web is not acyclic)
• The out-degree of the web is a power law whereas the model 

gives constant out-degree
• Note that Price’s model is also acyclic but it is directed and his 

network of interest is acyclic so his model is reasonable in its
limited sphere. (Citation out-degree is constant)
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Generalized Growth Models

• Callaway model as generalized by Krapivsky and Redner
• Nodes and links are added separately to the network so 

many new nodes have no links. This model yields a full 
directed network with separate preferential attachment of 
ingoing and outgoing links

• Extensions of K-R models that incorporate realistic system 
constraints – heuristically- have been developed as well. 

• Node Copying Models –see next slide
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Node Copying Models
• Kleinberg et. al. have suggested network growth involves a mixture 

of copying existing nodes and links along with stochastic additions
• Assumptions: copy an existing node, assume a number of links, M , 

to add to it. The nodes for the other end of the links are found by 
choosing a random node and copying its linked nodes and do this 
sequentially until M links in total have been copied. 

• This copying gives power laws similarly to cumulative advantage 
where                            depending upon the ratio of

copying  to stochastic addition for the network.

• Although the model was first suggested for the web, it is more 
descriptive for biochemical (protein) interaction networks. Much
later work extending this model has focused on this domain.

32 <<α
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Lecture 12 overview

• Models, metrics and architecture 
• Understanding
• Practice

• Overview of model types
• “Poisson  Random graphs
• “Small Worlds”
• Random graphs “generalized” for degree sequences
• System formation models

• Cumulative advantage (aka preferential attachment)
• Node copying and others 

• Structure-Property models
• Robustness, cascades, epidemics and other initial 

“applications” with robustness as the “property”
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Structure-Property Models for 
Networked Systems

• Newman, 2003 review article (P 2 closure for Introduction) 
• “As we will see, the scientific community has, by drawing 

on ideas from a broad variety of disciplines, made an 
excellent start on the first two of these aims, the 
characterization and modeling of network structure. 
Studies of the effect of structure on system behavior on the 
other hand are still in their infancy. It remains to be seen 
what the crucial theoretical developments will be in this 
area.”

• CM (2006) All areas require coordinated development??..
• For the rest of this lecture, we will briefly look at some of the 

early work (prior to the quote above). A number of later 
lectures will explore developments after Newman’s review. 

• Modeling developments in this area must concern themselves 
with defining the property being modeled and the operational 
process in the system being studied. 
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Network Resilience and Robustness
• The term resilience in the network literature is very similar to

robustness as we use it and as defined in the T & D 
• Robustness: ability to deliver desired function in spite of 

changes to the environment, internal variations or 
emergent properties

• Thus we will look at resilience studies to determine how 
structure might affect (certain kinds of) robustness

• An important aspect of this discussion is that robustness will 
not be found to depend upon structure in a simple way. For 
example, one structure may be more robust to one type and 
level of disturbance or change while another will be more 
robust to another type or level of disturbance/change

• Psuedometric:                                 Robustness equals the 

inverse delta (decrease) in performance divided by the 
change/disturbance level       leading to that decrease.

)/(1 DC
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Function in a network where connection is essential: function 
is connectivity and/or path length
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A A

B

Node 
removal

Performance deterioration can be estimated by connectivity or path length increase
and disturbance by # of nodes removed.

Node removal

B

Figure by MIT OCW.



Connectivity and path length upon node failure: random 
network
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Source: Statistical Mechanics of Complex Networks, Reka Albert and Albert-Laszlo Barabasi, Fig. 32, 2001
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Connectivity and path length upon node failure: scale free 
network
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Source: Statistical Mechanics of Complex Networks, Reka Albert and Albert-Laszlo Barabasi, Fig. 32, 2001
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Source: Statistical Mechanics of Complex Networks, Reka Albert and Albert-Laszlo Barabasi, 2001

Application to these actual networks (particularly the Internet) has been shown to be mistakenly based upon 
assumptions about the structure  of the Internet being known because of a power law degree distribution
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Robustness summary #1
• Targeted attack on selected nodes is a more severe test of 

robustness in networks where communication distance and/or 
connectivity is an indicator of functional performance

• Scale free structure (vs. random) is positive for random failure
but is a negative feature for targeted attack. 

• Prior level of connectivity is positive for robustness for either 
type of vulnerability

• At the model-definition level of approximation, most other 
structural features are not important for robustness

• As far as structure-property relationships, this work results  in 
a sort of “Duh”.
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Cascades
• Cascades can be thought of as “multipliers” of the functional 

performance change for a given initial disturbance
• Why do some relatively small initial disturbances cause a very 

large system response?
• Cascades (blackouts, fads, innovation diffusion, 

organizational breakdown)
• In this case, robustness ~ inverse probability of cascade

• What is the influence of network structure on such 
phenomena?
• Connectivity, degree distribution
• Node heterogeneity

• Watts (2002) developed a simple model to address these 
questions based on percolation in generalized random 
networks
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The Watts Model for Global Cascades I

• Model
• Binary Decisions with Externalities 
• nodes decide based on fraction of linked nodes making the 

same decision
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Local Dependency

Source: Six Degrees: The Science of a Connected Age, Duncan J. Watts, Fig. 8.2, 2003
Figure by MIT OCW. After Watts.
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The Watts Model for Global Cascades II

• Model
• Binary Decisions with Externalities 
• nodes decide based on fraction of linked nodes making the 

same decision

• There is heterogeneity in the number of links, k, (degree 
distribution) and in the vulnerability of each node
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Hetereogeneity of Resistance

Source: Six Degrees: The Science of a Connected Age, Duncan J. Watts, Fig. 8.3, 2003
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Source: Six Degrees: The Science of a Connected Age, Duncan J. Watts, Fig. 8.4, 2003
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The Watts Model for Global Cascades III

• Model
• Binary Decisions with Externalities 
• nodes decide based on fraction of linked nodes making the 

same decision
• There is heterogeneity in the number of links, k, (degree 

distribution) and in the susceptibility of each node

• This model differs from many others that seem the same in 
having local dependencies, fractional thresholds and 
heterogeneity. All of these factors turn out to be important 
in cascades.

• Changeover (or failure) is triggered by a small seed (as 
small as one node)

• Sparse networks
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The Watts Model for Global Cascades IV

• Outputs of model
• Phase transformations at critical values of <k> and 

threshold (two different boundaries)
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“Phase Diagram” for Cascades

Source: A simple model of global cascades on random networks, Duncan J. Watts, Fig. 1, 2001

Courtesy of National Academy of Sciences, U.S.A. Used with permission. 
Source: Watts, D. J.  "A Simple model of global cascades on random networks."  
Proc Natl Acad Sci 99 (2002): 5766-5771. (c) National Academy of Sciences, U.S.A.
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The Watts Model for Global Cascades V

• Outputs of model
• Phase transformations at critical values of <k> and 

threshold 
• Probability of global cascade
• Vulnerable nodes and clusters
• The size of the global cascade
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Size of vulnerable cluster and cascade
18.=φ

Source: A simple model of global cascades on random networks, Duncan J. Watts, Fig. 2, 2001

Courtesy of National Academy of Sciences, U.S.A. Used with permission. 
Source:  Watts, D. J.  "A Simple model of global cascades on random networks."  Proc Natl Acad Sci 99 (2002): 5766-5771.

 (c) National Academy of Sciences, U.S.A.
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The Watts Model for Global Cascades VI

• Outputs of model
• Phase transformations at critical values of <k> and 

threshold –at the high <k> end, they are improbable but 
total- a particularly nasty kind of vulnerability

• Probability of global cascade
• Vulnerable nodes and clusters
• The size of the global cascade

• Influence of structure on global cascade
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Structural Effects on Cascade Phase 
Diagrams

Source: A simple model of global cascades on random networks, Duncan J. Watts, Figs. 4a, 4b, 2001

Courtesy of National Academy of Sciences, U.S.A. Used with permission. 
Source: Watts, D. J. "A Simple model of global cascades on random networks."  
Proc Natl Acad Sci 99 (2002): 5766-5771. (c) National Academy of Sciences, U.S.A.
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The Watts Model for Global Cascades VII

• Outputs of model
• Phase transformations at critical values of <k> and 

threshold 
• Probability of global cascade
• Vulnerable nodes and clusters
• The size of the global cascade

• Influence of structure on global cascade
• Heterogeneity effects differ between susceptibility and 

nodal degree
• Targeted attack at high k nodes is still a vulnerability 

but not when <k> is high
• Further progress needs observations and specific functions 

described
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Epidemics and viruses

• Robustness also relates to the ability of a system to reject 
an infectious disease
• This is clearly similar to the Cascade problem and 

many models have been developed but all involve 1-
on- 1 disease spreading

• SIR model
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SIR Model for Epidemics

Source: Six Degrees: The Science of a Connected Age, Duncan J. Watts, Fig. 6.1, 2003
Figure by MIT OCW. After Watts.
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Epidemics and viruses

• Robustness also relates to the ability of a system to reject 
an infectious disease
• This is clearly similar to the Cascade problem and 

many models have been developed but all involve 1-
on- 1 disease spreading

• SIR model
• Susceptible individuals ,S,

who can get the disease 
• Infected individuals, i, who can 

pass it on and
• Recovered individuals, R, who 

are immune (or dead)
This is an old model but solving it
for realistic networks is new.

i
dt
dR

iiS
dt
di

iS
dt
dS

γ

γβ

β

=

−=

−=

,

,
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Applying network theory to epidemics: 
Healthcare Institution Network

Source: Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae, Ancel, Newman, Fig. 1

Courtesy of U.S. Centers for Disease Control. 
Source:  L. A. Meyers, M. E. J. Newman, M. Martin and S. Schrag. 
 "Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae."  
Emerg Infect Dis (February 2003).
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Simulated (1000runs) Outbreak Sizes

Source: Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae, Ancel, Newman, Fig. 6

Courtesy of U.S. Centers for Disease Control. 
Source:  L.

 
A. Meyers, M.

 
E.

 
J. Newman, M. Martin, and S. Schrag. 

 "Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae."  
Emerg Infect Dis (February 2003).




Professor C. Magee, 2006
Page 64

Comparison of simulation and analytical 
prediction

Source: Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae, Ancel, Newman, Fig. 7

Courtesy of U.S. Centers for Disease Control. 
Source:  L.

 
A. Meyers, M.

 
E.

 
J. Newman, M. Martin, and S. Schrag. 

 "Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae."  
Emerg Infect Dis (February 2003).
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Comparison to actual outbreak at 
Evansville Indiana Hospital

Source: Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae, Ancel, Newman, Fig. 7

Courtesy of U.S. Centers for Disease Control. 
Source:  L.

 
A. Meyers, M.

 
E.

 
J. Newman, M. Martin, and S. Schrag. 

 "Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae."  
Emerg Infect Dis (February 2003).
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Evansville Case Study

• Use of Case study leads to a well-grounded simulation

• Simulation allows many details to be studied and policy 
options explored

• The work demonstrated the criticality of the number of wards 
served by a caregiver despite the fact that low numbers of 
caregivers are infected.
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SIS Model

• No immunity just re-infection

• Phase transitions between regions where disease persists 
and where it does not

• Power law degree distributions results in no non-zero 
epidemic threshold and no non-zero value for disease 
persistence (computer viruses may live forever on the 
web)

iiS
dt
diiS

dt
dS γββ −=−= ,
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SIS Network Structural Effects

Source: Six Degrees: The Science of a Connected Age, Duncan J. Watts, Fig. 6.10, 2003
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Figure by MIT OCW. After Watts.
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Robustness Observations

• Almost all models and observations thus far show a difficult 
mixture of robustness and fragility 

• Robustness is very dependent on the specific regime of 
change/disruption that is of importance. The quantitative 
results thus far (are limited in their own robustness but) 
indicate that the influence of structure changes is very different 
in these different regimes. We will return to a richer robustness 
study in a lecture on “organizational modeling”. Nonetheless, 
practical architecting for robustness is  challenging.

• Generalization seems inappropriate but specific grounded 
cases appear to lead to better understanding (and thus indicate 
a path to better engineering practice)
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References for lecture 12

• Watts, Six Degrees; Newman, “Structure and  Function of 
Complex Networks”; Albert, R. and Barabasi, A-L., 
“Statistical Mechanics of Complex Networks”

• Watts, “ A simple  model  of global cascades on random 
networks”, Proc. Natl. Acad. Sci. USA 99, 5766-5771 (2002)

• Meyers, M. A.  Newman, M. E. J., Martin, M. Schrag, S. 
“Applying network theory to epidemics: Control  measures for 
outbreaks of Mycoplasma pneumoniae” Emerging Infectious 
Diseases, 9, 204-210 (2003)
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