

MAPK Signaling Pathway Analysis

ESD.342 – Spring 2006

March 23rd, 2006

Presentation by:

Gergana Bounova, Michael Hanowsky and Nandan Sudarsanam Faculty: Chris Magee

Agenda

- Introduction
- Network Description and Interpretation
- Preliminary Model and Analysis
- Future Directions and Scope

The MAPK Signaling Pathway

Biological Network

- Signaling pathways are used to respond to external stimuli and regulate cellular activities
- MAPK's (Mitogen Activated Protein Kinase) Transfer information through chemical reactions.

Signaling Pathway

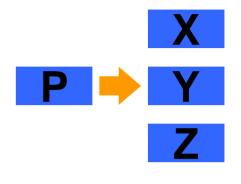
- Data Sources: The KEGG Database
- System boundaries: Inputs and Outputs
- Compounds and enzymes
- Activation and Inhibition

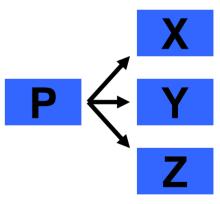
MAPK Pathway (Directed)

Image removed for copyright reasons.

See: http://www.genome.jp/dbget-bin/get_pathway?org_name=ko_hsa&mapno=04010

Network Description and Interpretation

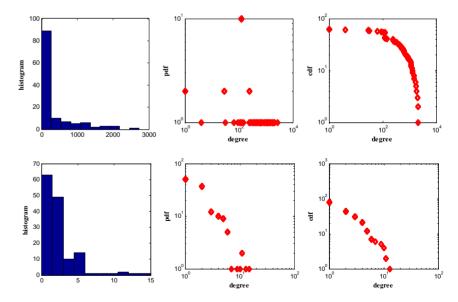

- Nodes
 - Proteins and metabolites
 - Exist at different levels of activity
- Edges
 - Are the paths along which information flows
 - Express the relationship between different proteins
 - Activation and Inhibition
 - Actions are directed



Preliminary Model – Adjacency Matrix

- The key challenge is to identify the relationships between specific nodes
 - All relationships are bidirectional
 - Nodes are de-aggregated
 - All relationship types are equivalent

		1	2	3	4	5	6	7	8	9	10	11
		AKT	ner's c	l-apopt	poptos	ARRB	ASK1	ASK2	ATF-2	BDNF	Ca2+	CACN
1	AKT						1					
2	Alzheimer's d											
3	anti-apoptos											
4	Apoptosis											
5	ARRB											
6	ASK1	1										
- 7	ASK2											
8	ATF-2											
9	BDNF											
.0	Ca2+											1
.1	CACN										1	



Statistics for MAPK Reference Pathway

- Adjacency matrix 143x143
- Giant component 126 nodes
- 15 disconnected components
- Stats
 - Network diameter: 16
 - Mean path length: 6.2
 - Deg corr: -0.338
 - Clust Coeff: 0.0082

(GC: 0.0094)

Distributions: betweenness (top), degrees (bottom)

MAPK Reference Pathway - Pajek

Open Future Directions, Project Scope

- Calculate network statistics and compare to statistic tables for other (biological) systems
- Identify network structure, functional modules (motifs-recurring patterns)
- Compare statistics and structural properties for pathway in different evolving species
- Suggestions?

