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Introduction 
 
 Networks are arrangements of things and connections between them.  The things can be 
physical, such as cities or people, or they can be abstract such as tasks in a process like 
designing a product.  The connections can be physical, like roads between cities or blood 
relationships between people, or they can be abstract like “sister cities,” friendships 
between people, or information flows between design tasks.  In general, networks can 
represent systems, where the systems consist of things and their inter-relationships.  
Network representations can themselves be quite abstract, conveying little about the 
interconnected things or the connections.  Or they can be more specific, identifying or 
differentiating between the things and between the connections.  The things can be given 
names, levels of importance, size, etc., and the connections can be given lengths, 
capacities, probability of breakdown, etc. 
 
Networks can be represented graphs containing nodes (the things) and links (the 
connections).  If the links are two-way they are called edges; if they are one-way they are 
called arcs.  There is a large body of theory called Graph Theory that deals with the 
properties of graphs. 
 

Graphs and networks have a long history, dating to the time of the mathematician 
Euler.  He represented the bridges of the city of Königsberg as a graph in 1736 and 
proved that it is impossible to walk over all the bridges without walking on at least 

one of them twice.  See Images removed due to copyright restrictions. 
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Figure 1. The Bridges of Königsberg.  Left: The map.  Center: Abstraction of the 
map. Right: Network representation.  The blue nodes represent land and the black 
links (edges) represent the bridges.  Source: 
http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


 
Since that time, graphs have been used to represent transportation and communication 
networks, [Ahuja, Magnanti, and Orlin] social relationships, [Wasserman and Faust] 
ecological food webs, and partial order relationships such as priorities or constraints, 
among many other things.  In turn, transportation networks have been analyzed to find 
shortest paths or maximum capacity paths.  Social networks have been analyzed to find 
social groups or cliques, leading individuals, or patterns of relationships.  Mathematical 
constraints have been analyzed to find means for solving equations.  Physical systems 
and supply chains have been analyzed to find “modules.”  Food webs and communication 
networks have been analyzed to determine their health and robustness.   
 
Graph theorists and network analysts have developed a number of metrics to characterize 
networks.  Along with these metrics are algorithms for calculating them.  We will use 
Matlab to do these calculations where-ever possible.  However, there is no complete set 
of calculating tools available, in part because new metrics and analytical methods keep 
getting invented.  On the web one can find many matlab toolboxes containing graph 
analysis tools.  In addition, there are several closed toolboxes.  Prominent among these 
are UCINET and Pajek.  UCINET is a set of social network analysis tools and is 
available for a modest fee from http://www.analytictech.com/.  It also contains Netdraw, 
a convenient network visualization tool.  Pajek is available free from http://vlado.fmf.uni-
lj.si/pub/networks/pajek/  It provides a number of network analysis tools and drawing 
capabilities.  Pajek and UCINET run on PCs and Pajek runs on Linux.  Neither runs on a 
Mac.  Matlab is available for every platform.  Network analysis in Matlab is limited in 
three ways.  One is the size of networks that can be stored.  The second is the speed of the 
calculations.  The third is the lack of a really good visual representation tool. Pajek in 
particular boasts of its ability to contain and analyze huge networks.  Both Netdraw and 
Pajek have very good representation tools.  Only recently have huge networks become 
available for analysis (the internet, Facebook, both having millions of nodes).  Most real 
networks are much smaller.  Matlab has the advantage that we can write our own 
algorithms or borrow from toolboxes on the Matlab web site or elsewhere on the web. 
 

Network Representation Using Matlab 
 
Networks can be represented conveniently using a matrix called the adjacency matrix.  
The rows and columns are numbered to represent the nodes, and a mark, usually the 
number 1, is placed at the (i,j) intersection if there is an arc from node i to node j.  If the 
link is two-way then a mark is also placed at intersection (j,i).  The matrix is then said to 
be symmetric.  Intersections where there is no link contain the number 0.  A graph with 
all two-way links is called undirected and the corresponding adjacency matrix is 
symmetric.  If the graph has all one-way links, the graph is called directed and the 
adjacency matrix is asymmetric.  A graph with both one-way and two-way links is called 
mixed.  The adjacency matrix is asymmetric. 
 
Matlab is an array-oriented system and is well-suited to represent matrices.  In Matlab, 
anything contained in […] is an array.  Arrays can be created by typing them in directly 

http://www.analytictech.com/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/


or they can be read from files.  The files can have different delimiters between the entries, 
such as commas, spaces, or tab characters.  Matlab usually can determine what the 
delimiter is, so one can use the command dlmread to bring an array in and use dlmwrite 
to write it out.  Arrays stored as comma-delimited (.csv) can be created using Excel.  
Tab-delimited arrays can be created in Word or a text editor. 1

 
Matlab can also read and write Lotus 1-2-3 formats called wk1 using wk1read and 
wk1write.  This is convenient because UCINET can also read and write wk1 files.  Excel 
matrices can be pasted directly into UCINET and UCINET can read Excel files. 
 
Here is an example of array creation directly in Matlab: 
 
>> row1=[1 2 5 8] 
row1 = 
     1     2     5     8 
>> row2=[10 6 5 9] 
row2 = 
    10     6     5     9 
>> matrix1=[row1;row2] 
matrix1 = 
     1     2     5     8 
    10     6     5     9 
>> matrix2=[row1 row2] 
matrix2 = 
     1     2     5     8    10     6     5     9 

Table 1. Making Arrays in Matlab 
The above shows that the elements of a row are separated by spaces.  Also, rows can be 
stacked by separating them with ;.  Rows stacked this way must be of the same length. 
(Note: If you don’t want Matlab to print on the screen the output of any line, end the line 
with a semicolon (;)). 
 

Data Input 
 
Typing in a large matrix is really tedious and prone to errors.  Two standard alternatives 
exist, called the node list and the edge list.  A node list is a list of each node and the 
nodes that it connects to with outgoing links.  An edge list is a list of the edges containing 
the nodes linked by them, with the “from” node listed first.  It is fairly easy to take a 
drawing of a network, number each node, and prepare a node list, checking off each edge 
on each node as one goes through the network. 

                                                 
1 Any time you want to understand what a matlab routine or command does, just make up 
a simple vector or matrix having 5 or 10 elements and use the routine or command on it.  
Make sure you choose something simple so that you can see by yourself what the answer 
should be or so that you can trace the results and understand them. 



 
Figure 2 contains examples of a node list and an edge list: 
 

                

     1     2
     1     8
     1    43
     1    49
     1    50
     1    51
     1    52
     1    53
     1    54
     1    55
     2     3
     2     9
     2    44
     2    56
     3     4
     3    10
     3    45
     3    57
     3    58
     4     5
     4    11
     4    46
     4    59
     4    60  

 

Figure 2.  Left: A node list put into Excel.  The source node numbers are in column 
A and the destination nodes are listed to the right. An arc extends from the source to 
each destination.  In this case the network is symmetric: Node 2 is a source for node 
8 and node 8 is a source for node 2.  Right: An edge list.  In the first column are 
source nodes.  Each edge is listed separately and its destination node is in the second 
column.  Thus node 1 is the source for 10 different nodes.  This list is evidently not 
symmetric, since node 2 is a destination for node 1 but node 1 is not a destination for 
node 2.   
 
Once Matlab has the nodelist or edgelist, one can use routines called adjbuildn or 
adjbuilde to create an adjacency matrix from the lists.   
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Figure 3. Top: Example Matrix. Bottom: Its nodelist and edgelist. The nodelist is 
saved as testmatrix.csv while the edgelist is saved as testmatrix2.csv 

Here is the way the nodelist is read in by Matlab and converted by adjbuildn to the 
adjacency matrix testadj: 
 
>> test=dlmread('testmatrix.csv') 
test = 
     1     2     5 
     2     4     0 
     3     1     0 
     4     5     0 
     5     2     0 
>> testadj=adjbuildn(test) 
testadj = 
     0     1     0     0     1 
     0     0     0     1     0 
     1     0     0     0     0 
     0     0     0     0     1 
     0     1     0     0     0 

Table 2. Using adjbuildn 
Here is the way the edgelist is read in by Matlab and converted by adjbuilde to the (same) 
adjacency matrix testadj2.  The routine adjbuilde creates it as a sparse matrix, to save 
space. The command full is used next to convert it to a full matrix using the Matlab 



command full.2  The sparse representation holds and displays only the non-zero entries, 
along with the (i,j) where they occur.  Since most networks have far more nodes than 
edges, most adjacency matrices have only a few non-zero entries, so sparse representation 
saves processing time and storage space when there are very many nodes, say thousands 
or tens of thousands. 
 
test2=dlmread('testmatrix2.csv') 
test2 = 
     1     2 
     1     5 
     4     5 
     2     4 
     5     2 
     3     1 
>> test2adj=adjbuilde(test2) 
numnodes = 
     5 
num_edges = 
     6 
test2adj = 
   (3,1)        1 
   (1,2)        1 
   (5,2)        1 
   (2,4)        1 
   (1,5)        1 
   (4,5)        1 
>> test2adj=full(test2adj) 
test2adj = 
     0     1     0     0     1 
     0     0     0     1     0 
     1     0     0     0     0 
     0     0     0     0     1 
     0     1     0     0     0 

Table 3. Using adjbuilde 
Since the network is directed, the resulting adjacency matrix is not symmetric. 
 
Several other routines are available for helping input and output.  For example, adj2pajek 
converts an adjacency matrix to the input format needed by Pajek. 
 

                                                 
2 Some Matlab functions do not work on sparse matrices.  The error messages can be 
cryptic but usually mention “sparse” so that is your clue.  For example, you can’t make a 
histogram of sparse data. 



Simple Matrix Operations 
 
Here are a few useful facts about Matlab operations on matrices: 
 
A’ = the transpose of A 
sum(A) adds up each column and stores the result as a row vector 
sum(A’) adds up each row and stores the result as a row vector 
sum(sum(A)) adds up all the entries in A 
length(x) counts the number of entries in vector x 
size(A) lists the lengths of the dimensions of matrix A.  If A is 3x4 then size(A) = 3 4 .  
If you want the size of A’s kth dimension, use size(A,k).  In the above example 
size(A,2) = 4 . 

Table 4. Matlab Operations on Matrices 

Logical Operations and Extraction of Submatrices 
 

find(x logical expr) returns the subscripts of entries in x that satisfy the logical expression 
using linear indexing. (Linear indexing gives every entry one subscript.)  The answer, 
when placed in x(ans), returns the values of x corresponding to the subscripts. 
length(find(x logical expr)) tells how many entries in x satisfy the logical expression 
[i,j]= find(x logical expr) returns the i and j subscripts of entries in matrix x that satisfy 
the logical expression 
unitize(A) makes all the non-zero entries in A equal to 1. 
Here are some examples using row1 and testadj from Table 1: 
>> find(row1>1) 
ans = 
     2     3       % the 2nd and 3rd entries of row1 satisfy the condition that they are > 13

>> row1(ans)  % the value of “ans” is whatever was last output 
ans = 
     2     5       % these are the 2nd and 3rd entries of row1 

Table 5. Use of Logical Expressions 
Note that the result of a logical operation like find is a logical matrix, not a numerical 
matrix, so you can’t do arithmetic on the result.  This makes it useless for many of the 
calculations described below.  You can convert a logical matrix  into a numerical one 
simply by adding 0: .  The unitize routine makes use of this: 

B
B = B+ 0

 

 

 

                                                 
3 % is the delimiter that begins a comment in Matlab. 



function unitize=unitize(A) 
% unitizes a matrix, makes all non zero entries = 1 
unitize = A > 0; % entries of unitize are logical 1 where A 
> 0 
unitize = unitize + 0; % now entries of unitize are 
numerical 1 where previously they were logical 1 
 

The syntax is  Au = unitize(A)

The following examples show how to extract a range of entries from an array: 

>> testadj(1,:)  % the : represents the entire row, so it says to extract row 1 
ans = 
     0     1     0     0     1 
>> testadj(:,2)  % the : represents the whole column, so it says to extract column 2 
ans = 
     1 
     0 
     0 
     0 
     1 
>> testadj(2:5,2:5)  % this extracts rows 2 – 5 and columns 2 - 5 
ans = 
     0     0     1     0 
     0     0     0     0 
     0     0     0     1 
     1     0     0     0 
 

Non-adjacent elements of a matrix may be extracted as follows: 

>> A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25] 
A = 
     1     2     3     4     5 
     6     7     8     9    10 
    11    12    13    14    15 
    16    17    18    19    20 
    21    22    23    24    25 
 
>> idx=[3,5] 
idx = 
     3     5 
>> A(idx,idx) 
ans = 
    13    15 
    23    25 
>> 



The array idx is used as an argument in matrix A to extract all the entries in A that are 
combinations of the individual entries in the array idx.  So the (3,3), (3,5), (5,3), and (5,5) 
entries of A are extracted by the above code.  For example, if A were a network 
adjacency matrix, then A(idx,idx) would be the submatrix containing the links between 
the nodes listed in idx, in this case, between nodes 3 and 5. 

Basic Facts About Undirected Graphs 
 

Undirected graphs have symmetric adjacency matrices.  The number of rows in the 
matrix is the number of nodes, while the number of non-zero entries in the matrix is twice 
the number of edges.  If a row and column of the matrix have no entries then the 
corresponding node has no edges and is called an isolate.  The number of edges on a 
node, called the average nodal degree, is denoted by k  and the average  number of edges 
per node in the network is alternately denoted < k >  (which is typical statistics notation) 
or by  (this is typical physics notation, used by the many mathematical physicists who 
have entered the network field.)  If  is the number of nodes and  is the number of 
edges, then 

z
n m

  Equation 1  < k >= z = 2m
n

 

Each network has a degree sequence, which is simply a list of the nodes giving their 
respective degrees:   .  Sometimes this list is sorted with the largest degree 
first.  In an undirected graph, the sum of the members of the degree sequence is an even 
number: 

D = [d1,d2,K]

dk
k
∑ = 2m .  The degree sequence D of an undirected network whose adjacency 

matrix is  can be obtained in matlab as  A
 

  Equation 2  D = sum(A) 

 
From the above equations,  
 

  Equation 3  sum(sum(A)) = 2m  
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Figure 4. Example Undirected Network 



The function kvec(A) finds the degree sequence using Equation 2.  The syntax is 
kvA = kvec(A) where  is the adjacency matrix and  is the name of the resulting 
degree sequence.  For the network in Figure 4, the (sorted) degree sequence is 

, whose sum is 12.  For this network 

A kvA

D = [3 3 3 2 1] < k >=12 /5 = 2.4 .  A list can be 
sorted in Matlab using its sort routine.  To sort in descending order, use 
Dsorted = sort(D,'descend'); To sort an adjacency matrix so that the first row has the 
node with the most edges, use the routine sortbyk: Asorted = sortbyk(A);  To visualize a 
degree sequence, use Matlab’s plot routine.  The result of doing this on a random matrix 
with 1000 nodes and < k >= 5 is shown in Figure 5: 
 

 
Figure 5. Plot of the Sorted Degree Sequence of a Random Matrix 
 
Not all sequences of numbers are valid degree sequences, even if they add to an even 
number because the edge list and the node list must be consistent.  The Erdös-Gallai 
theorem performs the necessary calculations and the function isgraphic implements them.  
The syntax is isgraphic(D) where D is the degree sequence to be tested.  If it passes, the 
answer is 1 (meaning true in Matlab notation), otherwise the answer is 0 (false). 

Network Metrics 
 
In this section we calculate basic measures of a network, such as the number of nodes, 
edges, average nodal degree, and others defined as we go. 
 
The routine numnodes calculates the number of nodes: 
 
function numnodes=numnodes(A) 
%finds number of nodes in A including isolates 
numnodes=size(A,1); 
 
If you want to exclude any isolates, use numnonisonodes: 
 
function nodes = numnonisonodes(A) 



% counts non-isolated nodes in a matrix  
A=unitize(A+A'); 
nodes=min(length(find(sum(A')~=0)),length(find(sum(A)~=0))); 
 
To find the number of edges, we showed above that it is just sum(A).  But if the network is 
mixed (having some directed and some undirected links) then we can find the sum of 
directed and undirected by making the adjacency matrix symmetric first: 
 
function numedges = numedges(A) 
%counts edges in matrix A, symmetric or not 
%works when not all nodes have edges 
AT=A+A'; 
numedges=sum(sum(AT~=0))/2; 
 
To see if a matrix is symmetric, use Matlab’s issymmetric function: issymmetric(A) .  The 
answer will be 1 if  A is symmetric and 0 if not. 
 
The clustering coefficient is a metric that seeks to measure the extent to which nodes are 
linked to each other.  It is one of many metrics that seek to do this in one way or another.  
Its origins are in the social network community where the goal is to see how many of your 
friends are friends; that is, how many of the nodes linked to a node are linked to each 
other?  The essence of the calculation is to see how many potential triangles are in fact 
complete.  Newman’s review paper shows that there are in fact two similar ways to 
calculate this, as indicated in Figure 6. 
 
 
 

Image removed due to copyright restrictions. 
 
 
 

Figure 6. Illustrating the two ways to calculate the clustering coefficient [Newman] 
The Matlab routine library for ESD.342 contains two routines called respectively 
clustEq3 and clustEq5.  The text of the first is below, while the opening lines of the 
second follow.  clustEq5 returns the Newman value if it is invoked simply as clustEq5.  It 
returns three items if invoked as [clustNewman,clustSchneiderman,clustbynode] = 
clustEq5(A).  The last item is Newman’s equation 5, the local clustering coefficient of 
each node.  If the matrix is large then this will be a big list.  To suppress printing of this 
list, put a ; at the end of the call. 
 
function clust3=clustEq3(B) 
% finds clustering coefficient according to Eq 3 in Newman 
review paper 
tr=0; 
for i = 1:size(B,1) 
if sum(B(i,:))>1 
tr(i)=nchoosek(sum(B(i,:)),2); %finds number of connected 



triples of each node 
end 
end 
triangles3=sum(.5*diag(B^3)); %finds 3*number of triangles 
clust3=triangles3/sum(tr); 
 
 
function [clustNewman,clustSchneiderman,clustbynode] = 
clustEq5(A) 
%  calculates the clustering coefficient according to Eq 5 
in Newman review paper 
%   
% adapted from code by Ed Schneiderman of Johns Hopkins U. 
% Schneiderman calculates the average clustering coefficient 
ONLY for those 
% vertices where the number of neighbors is >1. Newman 
calculates it for all vertices. 
 
Another interesting property of a graph is the average shortest distance between nodes.  
Included in this is the concept of network diameter, which is the largest of shortest 
distances between all pairs of nodes.  Calculating true shortest distances can be 
computationally intensive, requiring a shortest path algorithm.  Simpler methods can be 
use if the graph obeys some assumptions.  Chief among these is that the distance between 
adjacent nodes is taken to be unity.  This will not do for geographic networks like roads 
or railways but it works for social interactions or other unweighted binary relationships. 
 
If adjacent nodes are separated by unit distance, then the distances between all pairs of 
nodes can be found by taking powers of the adjacency matrix.  If a unit entry in a(i, j)of 
adjacency matrix A means that nodes i and j are directly adjacent, then a non-zero entry 
in a2(i, j) of A2 = A2  means that there is a two-step path from i to j.  Similarly, a non-
zero entry in a3(i, j) of A3= A3  means that there is a three-step path from i to j.  (The 
clustering coefficient routines find triangles, three-step paths from node i to itself, by 
finding non-zero elements in the (  or diagonal entries in i,i) A3.)  If we observe every 
element ak(i, j) in successive Ak and note the value of k  at the moment each element 
becomes non-zero for the first time, we can tell when the first path of length k  has been 
established between nodes i and j.  This first path is the shortest, since no shorter one 
appeared during the process.  The routine distmat uses this method, which is described on 
page 151 of [Wasserman and Faust].  The first few lines of distmat are: 
 
function [diagdist,avgpath,diam] = distmat(B) 
% Routine to find the distance matrix of symmetric adjacency 
matrix B 
% and then calculate the average distance between all pairs 
of nodes. 
% Matrix B cannot have any isolated nodes and must have 
entries = 0 or 1. 
 



Diagdist is the matrix of distances, which can be large if the network is large.  Avgpath is 
the average of all shortest paths and diam is the diameter of the network.  For the network 
in Figure 4, the result of applying distmat is 
 
[d,e,f]=distmat(As) 
d = 
     0     1     1     2     1 
     1     0     2     1     1 
     1     2     0     3     2 
     2     1     3     0     1 
     1     1     2     1     0 
e = 
    1.5000 
f = 
     3 
 
distmat can be used on any network, but analytical solutions can be written if the network 
has a regular structure.  Leonard Miller, late of NIST, found such solutions for a variety 
of regular lattices in the interests of understanding cell phone network performance, 
where the number of hops between antennas or central stations is important in signal 
quality.  For example, for a rectangular grid of  nodes, the average hop distance NxM m  
between any pair of nodes is  
 

  Equation 4  m = M + N
3

 

Function distmat works only if the network is connected.  If a network is disconnected 
then one has to find all the isolated components and separately calculate their diameter 
and average path length.  Before discussing how to find these components, we will show 
how to find out if a network is connected.  The relevant routine is called isconnected and 
its use on the network in Figure 4 gives  
 
isconnected(As) 
ans =  
    1 
 
The first few lines of the routine are 
 
function yn = isconnected(g) 
% isconnected(g) -- determine if g is a connected graph 
% Gives the right answer only if g is undirected 
% Works by asking if node 1 can be reached from every node 
 
If the network is directed, then routine isconnectedasym must be used.  The first few lines 
of this routine are 
 



function ynn = isconnectedasym(g) 
% isconnectedasym(g) -- determine if g is a connected graph 
% Gives the right answer when g is directed 
% Works by applying the method of isconnected successively 
to every node. 
 
As promised, here is the routine that finds disconnected components, written by ESD 
PhD Dr Mo-Han Hsieh.  Here are the first few lines: 
 
% [componentCount] is used to generate the component partition 
of a matrix. 
% Its input is the adjacency matrix, A.   
% Its output are partition, componentList, mainNum, and 
singletonNum. 
% /partition/ maps each node to different components. 
% /componentList/ is a list of components and the number of 
nodes in the 
% components.  Its format is: [component ID, number of nodes in 
it]. 
% /mainNum/ is the number of components which has members of at 
least two, and  
% /singletonNum/ is the number of singletons. 
  
function 
[partition,componentList,mainNum,singletonNum]=componentCount(A) 
 
Here is an example disconnected network with 2 components: 
 

1

3 2

4  
Figure 7. Example network with two components 
 
Here is how to use componentCount to find out about this network: 
 
AC = 
     0     1     1     0 
     0     0     0     0 
     1     0     0     0 
     0     0     0     0 
>> [aa,bb,cc,dd]=componentCount(AC) 
aa = 
     1 



     1 
     1 
     2 
bb = 
     1     3 
     2     1 
cc = 
     1 
dd = 
     1 
>> maxcompsize=max(bb(:,2)) 
maxcompsize = 
     3 
maxcompnum=find(bb(:,2)==maxcompsize) 
maxcompnum = 
     1 
>> maxcompnodes=find(aa==maxcompnum) 
maxcompnodes = 
     1 
     2 
     3 
maxcompgraph=AC(maxcompnodes, maxcompnodes) 
maxcompgraph = 
     0     1     1 
     0     0     0 
     1     0     0 
 
The above code finds aa, the list of nodes, assigning each to a component. (The nodes are 
numbered consecutively so the list of node numbers is not printed.  All you get is the 
component number assignment.)  This list says that nodes 1, 2, and 3 belong to 
component 1 while node 4 belongs to component 2.  It then finds bb, the list containing 
the component numbers in the first column and the number of nodes in each component 
in column 2.  This list says that component 1 has 3 nodes while component 2 has 1 node.  
cc and dd are respectively the number of components that have more than one node and 
the number of nodes with no neighbors.  Following this is code that uses bb and aa to 
obtain the size of the largest component, its number, and a list of its nodes.  Finally there 
is code that extracts the adjacency matrix comprising this component, called 
maxcompgraph, from the original adjacency matrix.  Neither of these adjacency matrices 
is symmetric because the original graph has one directed link. 
 

Appendix 1: Random Networks 
 
Random networks represent the opposite in regularity from grids and lattices discussed 
above.  Random networks can be analyzed and there is a large literature on them [Erdös 
and Rényi].  A random network can be built by selecting pairs of nodes and linking them 



with some probability.  (The Matlab code for doing this is discussed in the notes called 
Basic Network Metrics, where routines for generating various kinds of networks are 
discussed.)  When one builds a random network this way one gets a degree sequence that 
has a Poisson distribution.  That is, p(k) = e− z z k /k!.  Two example degree distributions 
are shown in Figure 8. 
 

 

Figure 8. Degree Distributions for Two Random Networks, One with  and the 
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 node approaching one there is a path between any randomly selected pair of nodes.  Each

has on average z  neighbors, and if the network is tree-like, then each of them has z  
neighbors, and so on, so that there are  z l  nodes at a distance  l

n 
 from a typical node.  

Suppose d  is the shortest distance all the way across a network of n total nodes.  The
n ~ z d  o dr ~ ln(n) / ln(z) , providing a scaling rule for the diame er and average path 

 

t
length of a random network. 

Appendix 2: Matlab Syntax 
 



The following is the Matlab code for the rou
 nodelist. 

tine adjbuildn, which builds a network from 
a
 
function adjbuildn = adjbuildn(NL) 
%builds an adjacency matrix from a directed nodelist 
%column 1 is the node number, nodes it links to are in the 
row 
[rows,colms]=size(NL); 
numnodes=rows; 
maxk=colms; 
  
B=zeros(numnodes,numnodes); 
  
for i = 1:numnodes 
    for j = 2:maxk 
        if NL(i,j)~=0 
            B(i, NL(i,j))=1; 
        end 
    end 
end 
adjbuildn=B; 
 
The first line of cod

ariable that the rou
e tells how to use the routine.  The left side of the = is the name of the 
tine calculates and passes back to the user.  On the right is the name 

odelist you want converted to an adjacency matrix, while 
 resulting matrix.  If there is any discrepancy between the 

 

as.  
owing example shows: 

v
of the routine followed by a list of input arguments.  The routine is called adjbuildn and 
is stored as file adjbuildn.m  To call the routine, type the following into Matlab 
 
>> testadj=adjbuildn(test) 
 
Test is your name for the n
estadj is your name for thet

name of the routine in the “function” line and the filename under which the routine is
stored, use the filename when you call the routine in Matlab. 
 
If a routine has multiple input or output arguments, their names are separated by comm

ut the list of output arguments is enclosed in […], as the follB
 
function 
[partition,componentList,mainNum,singletonNum]=componentCount(A) 
 
This routine finds the isolated connected components of network A and returns the 
nformation in four separate arrays. i
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