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Social Network Analysisy
� Many structural metrics have been invented and used by Social 

Scientists studying social networks over the past 70+ years. 
The Journal Social Networks is the research front 

� These are well-covered in Wasserman and Faust –Social 
Network Analysis (1994) The following slides cover a few 
selected examples in one area from that book. The purpose is 
to give some feel for the application of such metrics which 
attempt to measure structural properties of direct interest for 

i l  k  l  isocial network analysis 

� We should also note that transitivity (clustering) and almost all 
other metrics discussed in this lecture were familiar to and 
used by social network scientists before the recent upsurge in 
activity over the past 10 years. 
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Transitivity or Clustering coefficient, C 
� Measures quantitatively the degree to which nodes 

which each have relationships with a common node 
are likely to have a direct relationship 

nodesoftriplesconnectedofnumber 

networkintrianglesofnumberxC 
3 

1 = 

are likely to have a direct relationship. 

nodesoftriplesconnectedofnumber 

1 ∑CC ;2 ∑= 
i 

iC
n 

C 

ioncenteredtriplesofnumber 

inodetoconnectedtrianglesofnumberCi = 
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Example calculation of 
transitivity coefficientstransitivity coefficients 

This network has one triangle and eight connected triples, and therefore has a 
clustering coefficient of 3 x 1/8 = 3/8 The individual vertices have local C clustering coefficient, 

, 
of 3 x 1/8 = 3/8 The individual vertices have local 

clustering coefficients, of 1, 1, 1/6, 0 and 0, for a mean value, 
= 13/30. 

1C
2C
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Source: M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Review, Vol. 45, No. 2, pp . 167–256, 2003 Society for Industrial and Applied Mat 
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Transitivity or Clustering 
coefficient  IIcoefficient, II 

� (Almost) always > than expected from random networks thus 
offering some support for earlier assertions that real networks 
have some  non-random “structure” 
� Thus, assessing clustering is a quick check whether you have a 

random graph where C = <k>/n. Indeed the size dependence of 
i  i  i  b  f  l  l  ltransitivity can be useful to calculate 

© 2009 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 
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Structural Typology (lecture 1)Structural Typology (lecture 1) 
� Totally 

regular 
• Real things 

• The ones we 
i d 

• No internal structure 
• Perfect gases 

� Grids/crys 
tals 

� Pure 

are interested 
in 

• New methods or 
adaptations of 

• Crowds of 
people 

• Classical 
i  i  h  Trees 

� Layered 
trees 

adaptations of 
existing methods 
needed 

economics with 
invisible hand 

• Stochastic methods 
d trees 

� Star 
graphs 

� D t  i  i  ti  

used 
• Less regular 

-“Hub and spokes” 
“S ll ld ” � Deterministic 

methods 
used 

-“Small Worlds” 
-Communities 
-Clusters 
Motifs 
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Transitivity or Clustering 
coefficient  II -continuedcoefficient, II continued 

� (Almost) always > than expected from random networks 
thus offering some support for earlier assertions that real 
networks have some non-random “structure” 
� Thus, assessing clustering is a quick check whether you have a 

random graph where C = <k>/n. Indeed the size dependence 
f t iti it  b f l l lof transitivity can be useful to calculate 

� Higher order clusters (groups of n related nodes) also of 
interest but no clean way (yet) to separate lower order and 
highe d  tendencies  Mo  Whitne  sho d inhigher order tendencies. Moreover, Whitney showed in 
lecture 4 that methods for calculating higher order clustering 
in large networks is unknown territory. 

� In directed graphs 2 effects (the proportion of nodes that  � In directed graphs, n=2 effects (the proportion of nodes that  
point at each other) can be of interest and is labeled 

reciprocity. This is an important social network attribute. 
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or 

Centrality 
� Numerous metrics exist in the Social Networks Literature for 

assessing the “centrality” of a social network. 
C t lit  t i tt t t h t i th l l f� Centrality metrics attempt to characterize the level of 
“centralization” of control or action on this network 

� One application is to assess how important a given actor 
( d ) i  i  th t k ( ki f d di t  li k(node) is in the network (ranking of nodes according to link 
information) 

� Another application is to assess overall how much of the 
t l  f th  t  k i  t ll  d  b  th  “  i  t  t”  control of the network is controlled by the “more important” 

actors (group or network centrality) 
� The relative importance of single channels/links and groups of 

links has also been of inte estlinks has also been of interest. 
� We will look at a several of the social science defined metrics and 

explore the definitions by looking at “ideal toy graphs”: Team 
(family full) graphs  Circle (or line) graphs and Star graphs (family or full) graphs, Circle (or line) graphs and Star graphs. 



 

Degree Centrality 
� Actor (can be individual, 

group or organization ∑ xij 
depending on what is being 
studied). The actor in the 
example we will use is a 
“F il ” M  l  i  h  

1
)(' 

− 
= 

n 
nC j 

iD 

“Family”. Most central is the 
node with the most links. 

)]()([
1 

max −∑ nCnCn 

i iDD 
� Group (all actors in 

network) 
� = 1 for a star graph 

)]2[( 
)]()([

1 

− 
= 
∑ = 

n 
C i iDD 

D 

� = 0 for a circle graph or 
“team” 

� = 1/(n-1) for line graph 
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Padgett’s Florentine Families: 
15th Century Marriage Relations15 Century Marriage Relations 

n5:Castellani 

n :Peruzzi n12:Pucci 

n4:Bischeri 

n15:Strozzi 

n11:Peruzzi 

n3:Barbadori 

n :Medici n10:Pazzi 

n13:Ridolfi 

n14:Salvatin16:Tornabuoni 

n1:Acciaiuoli 

n7:Guadagni 

n9:Medici 10 

n8:Lamberteschi 
n2:Ablizzi 
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Florentine Families Centrality 
Metrics I: DegreeMetrics I: Degree

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
Acciaiuoli
Ablizzi
Barbadori
Bischeri
C t ll i

0.071
0.214
0.143
0.214
0 214Castellani

Genori
Guadagni
Lamberteschi
Medici

0.214
0.071
0.286
0.071
0.429

Pazzi
Peruzzi
Pucci
Ridolfi
Salvati

0.071
0.214

---
0.214
0 143Salvati

Strozzi
Tornabuoni

Centralization

0.143
0.286
0.214

0.257
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Closest is shortest

=

� =

Closeness CentralityCloseness Centrality 
� Actor 
� Closest is shortest n 1 

(geodesic) distance from 
other nodes =1 for max 
closeness and 0 for min ∑ 

= 

− 
= n 

j 
ji 

iC 

nnd 

n nC 

1 

' 

),( 

1)( 

� Group 

j 1 

� Group 
� = 0 for circle graph or full 

network 
= 1 for star graph 

)]([ 
1 

'max − 
= 
∑ 
= 

nCC 
C 

n 

i 
iC 

i 
C 

� = 1 for star graph 
� 0.277 for line (7 nodes) 
� can estimate several ways 

i l di  di i 

)32/()1)(2( −−− nnn 
CC 
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Florentine Families Centrality 
Metrics II ClosenessMetrics II Closeness

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
Acciaiuoli
Ablizzi
Barbadori
Bischeri
C t ll i

0.071
0.214
0.143
0.214
0 214

0.368
0.483
0.438
0.400
0 389Castellani

Genori
Guadagni
Lamberteschi
Medici

0.214
0.071
0.286
0.071
0.429

0.389
0.333
0.467
0.326
0.560

Pazzi
Peruzzi
Pucci
Ridolfi
Salvati

0.071
0.214

---
0.214
0 143

0.286
0.368

---
0.500
0 389Salvati

Strozzi
Tornabuoni

Centralization

0.143
0.286
0.214

0.257

0.389
0.438
0.483

0.322
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Betweeness Centrality IBetweeness Centrality I 
� Actor 
� Power or influence� Power or influence 

comes from being 
an intermediary 

� z is the number of 
]2/)2)(1[( 

/)(
)(' 

−− 
= 
∑ < 

nn 

znz 
nC kj jkijk 

iB 

� z is the number of 
geodesics between 
two points 

� Group )]()([ 'max'∑ CCn � Group 
� =1 for star graph 
� =0 for circle 

1 
)]()([

1 
max 

− 

− 
= 
∑ = 

n 

nCnC 
C 

n 

i iBB 
B 

� =0.311 for 7 node 
line 

� Tree Hierarchy = xx 
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Definition of HierarchyDefinition of Hierarchy 
� Hierarchy: A description of a group of elements (system?) 

where each element is graded or ranked and then arranged in 
a structure that separates elements according to rank which 
each descending rank being in some way subordinate to the 
next higher rank (this leads to a level number or node 
d  h)  Al  h  h hi  h  f  d  ib  h  idepth). Although hierarchy often describes power or authority 
relationships, it is also used in describing levels of abstraction 
and other system features. Flow and containment hierarchies 
have also been distinguishedhave also been distinguished. 

� Hierarchies can take on a variety of structures ranging from 
Pure layers to pure trees. (Moses next week) 
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Florentine Families Centrality 
Metrics:Betweeness

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
Acciaiuoli
Ablizzi
Barbadori
Bischeri
C t ll i

0.071
0.214
0.143
0.214
0 214

0.368
0.483
0.438
0.400
0 389

0.000
0.212
0.093
0.104
0 055Castellani

Genori
Guadagni
Lamberteschi
Medici

0.214
0.071
0.286
0.071
0.429

0.389
0.333
0.467
0.326
0.560

0.055
0.000
0.255
0.000
0.522

Pazzi
Peruzzi
Pucci
Ridolfi
Salvati

0.071
0.214

---
0.214
0 143

0.286
0.368

---
0.500
0 389

0.000
0.022

---
0.114
0 143Salvati

Strozzi
Tornabuoni

Centralization

0.143
0.286
0.214

0.257

0.389
0.438
0.483

0.322

0.143
0.103
0.092

0.437
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Padgett’s Florentine Families: 
15th Century Marriage Relations15 Century Marriage Relations 

n5:Castellani 

n :Peruzzi n12:Pucci 

n4:Bischeri 

n15:Strozzi 

n11:Peruzzi 

n3:Barbadori 

n :Medici n10:Pazzi 

n13:Ridolfi 

n14:Salvatin16:Tornabuoni 

n1:Acciaiuoli 

n7:Guadagni 

n9:Medici 10 

n8:Lamberteschi 
n2:Ablizzi 
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n6:Genori 



 

Betweeness Centrality IIBetweeness Centrality II 
� Actor 
� Power or influence comes 

f b ifrom being an
intermediary 

� z is the number of 
geodesics between two 

]2/)2)(1[( 

/)(
)(' 

−− 
= 
∑ < 

nn 

znz 
nC kj jkijk 

iB 

geodesics between two 
points 

� Group 
� =1 for star graph 

)]()([ 'max'∑ CCn 
� =0 for circle 
� =0.311 for 7 node line 1 

)]()([
1 

max 

− 

− 
= 
∑ = 

n 

nCnC 
C 

n 

i iBB 
B 

� Betweeness Centrality has 
been most applied of the 
centrality metrics in Social 
Network Analysis (1994) 
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Network Analysis (1994) 



Information CentralityInformation Centrality 
� Actor 

� Estimates the information 
1 value of the connections 

� shorter distances are better 
but are not the only paths 
sed 

nRTc 
nC 

ii 
iI /)2( 

1)( 
−+ 

= 

used 
� T is the trace, R a row sum and 

c an element in a matrix 
constructed from theconstructed from the 
sociomatrix with information 
content 

� Actor indices are proportions 
∑

= 
i iI 

iI 
iI nC 

nC nC 
)( 

)()(' 

of total “information” flow 
controlled by a single actor 
and sums to 1 in network 

� No group index (1997) 

Professor C. Magee, 2007 
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� No group index (1997) 



Florentine Families Centrality 
MetricsMetrics

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
Acciaiuoli
Ablizzi
Barbadori
Bischeri
C t ll i

0.071
0.214
0.143
0.214
0 214

0.368
0.483
0.438
0.400
0 389

0.000
0.212
0.093
0.104
0 055

0.049
0.074
0.068
0.074
0 070Castellani

Genori
Guadagni
Lamberteschi
Medici

0.214
0.071
0.286
0.071
0.429

0.389
0.333
0.467
0.326
0.560

0.055
0.000
0.255
0.000
0.522

0.070
0.043
0.081
0.043
0.095

Pazzi
Peruzzi
Pucci
Ridolfi
Salvati

0.071
0.214

---
0.214
0 143

0.286
0.368

---
0.500
0 389

0.000
0.022

---
0.114
0 143

0.033
0.069

---
0.080
0 050Salvati

Strozzi
Tornabuoni

Centralization

0.143
0.286
0.214

0.257

0.389
0.438
0.483

0.322

0.143
0.103
0.092

0.437

0.050
0.070
0.080

---
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o a e b a et o t e t ces a d a u

Eigenvector Centrality-UCINETEigenvector Centrality UCINET 
� UCINET-help, help topics, index (on toolbar), eigenvector centrality 
� Given an adjacency matrix A, the centrality of vertex i (denoted ci), 

is given by ci aSAijcj where a is a parameter  The centrality of is given by ci =aSAijcj where a is a parameter. The centrality of 
each vertex is therefore determined by the centrality of the vertices 
it is connected to. The parameter á is required to give the equations 
a non-trivial solution and is therefore the reciprocal of an eigenvalue.  
It follows that the centralities will be the elements of the 
corresponding eigenvector   The normalized eigenvector centrality is corresponding eigenvector.  The normalized eigenvector centrality is 
the scaled eigenvector centrality divided by the maximum difference 
possible expressed as a percentage. 

� For a given binary network with vertices v1....vn and maximumg y
eigenvector centrality cmax, the network eigenvector centralization 
measure is S(cmax - c(vi)) divided by the maximum value possible, 
where c(vi) is the eigenvector centrality of vertex vi. 

� This routine calculates these measures and some descriptive � This routine calculates these measures and some descriptive 
statistics based on these measures. This routine only handles
symmetric data and in these circumstances the eigenvalues
provide a measure of the accuracy of the centrality measure. To help interpretation the routine calculates all positive eigenvalues but 
only gives the eigenvector corresponding to the largest eigenvalue 
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only gives the eigenvector corresponding to the largest eigenvalue. 



       

    

Eigenvector Centrality (from 
Newman and Brin and Page)Newman and Brin and Page) 

� Each node has a weight  that is 
defined to be proportional to the 

ix
weights of all nodes that point to the 
node (i) 

� And jj iji xAx ∑−= 1λ 

� And then 
Ax = 

x 

jj iji ∑ 

λ � And then 
Ax = 

x 
� Thus the weights are an eigenvector of 

the adjacency matrix (A) with 
eigenvalue λ 

λ 

eigenvalue λ 
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Florentine Families Centrality 
Metrics (with Eigenvector Centrality)Metrics (with Eigenvector Centrality)

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
Acciaiuoli
Ablizzi
Barbadori
Bischeri
C t ll i

0.071
0.214
0.143
0.214
0 214

0.368
0.483
0.438
0.400
0 389

0.000
0.212
0.093
0.104
0 055

0.049
0.074
0.068
0.074
0 070

.19

.35

.30

.40
37Castellani

Genori
Guadagni
Lamberteschi
Medici

0.214
0.071
0.286
0.071
0.429

0.389
0.333
0.467
0.326
0.560

0.055
0.000
0.255
0.000
0.522

0.070
0.043
0.081
0.043
0.095

.37

.11

.41

.12

.61
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati

0.071
0.214

---
0.214
0 143

0.286
0.368

---
0.500
0 389

0.000
0.022

---
0.114
0 143

0.033
0.069

---
0.080
0 050

.06

.39
0

.48
20Salvati

Strozzi
Tornabuoni

Centralization

0.143
0.286
0.214

0.257

0.389
0.438
0.483

0.322

0.143
0.103
0.092

0.437

0.050
0.070
0.080

---

.20

.50

.46

.43
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Centrality II 
� Numerous metrics exist in the Social Networks Literature for assessing 

the “centrality” of a social network. 
� Centrality metrics attempt to characterize the level of y p

“centralization” of control or action on this network 
� One application is to assess how important a given actor (node) is 

in the network 
� Another application is to assess overall how much of the control of pp

the network is controlled by the “more important” actors 
� The relative importance of single channels/links and groups of 

links has also been of interest. 
� Centrality utility:y y 

� The calculation methods have been applied in search, navigation 
and community structure models but otherwise the “Network 
Science” Community does not utilize these measures. CM bias is 
that they are probably useful in social and other networks. 

� Hidden Hierarchy, robustness –communication and other 
meanings are all dependent on effects such as those defined and 
some of these measures (betweenness and eigenvector 
centrality) deserve more attention in modern network 

l i 
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analysis. 



Related newer Centrality-like 
metricsmetrics 
� Jon Kleinberg (Computer Science at Cornell) has 

done much of the leading work in search anddone much of the leading work in search and 
navigation (more later). 

� In some of his earliest work on this topic (1997­
1999), he “invented” some useful new metrics for 
looking at important nodes (particularly on 
directed networks and probably most useful in the p y 
domain he was interested in-- the www) 

� He looked for ways to find related sets of 
“Authorities” and “Hubs” and differentiated these 
from single “high in-degree nodes” 
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Prestige and Acquaintance 
CalculationCalculation

Authority: not only referred to by many nodes, but also by 
 H b   ( t  ti )many Hubs.  (measurement: prestige)

Hub: not only refers to many nodes, but also to many 
Authorities.
(measurement: acquaintance)

Ax = λy
A : adjacency matrix

These metrics proved useful in directed citation networks 

Solve for x and y.
Ax = λy
ATy = μx

xi : prestige (of node i)
yi : acquaintance

These metrics proved useful in directed citation networks 
(Mo-Han Hsieh thesis work on Internet Standards)
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Lecture 7: Quantitative Aspects 
Of Networks III: OutlineOf Networks III: Outline 
� Some Social Network Concepts-intuition and 

calculation 
� clustering (transitivity) 
� centrality 
� degree, closeness, betweenness, information, eigeng , , , , g 

� prestige and acquaintance 

� degree distributions 
k  (  d  k  ) di  ib  i� skew (and non-skew) distributions 

� fitting power laws to observed data 
� the normality of power laws 
� truncation 
� Structural implications and growth assumptions 
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�

Degree DistributionsDegree Distributions 
� Define      as the fraction of nodes in a network with 

degree k. This is equivalent to the probability of 
kp

g q p y 
randomly picking a node of degree k 

� A plot of can be formed by making a histogram of 
the degrees of the nodes. This is the degree 

kp
the degrees of the nodes. This is the degree 
distribution of the network. 

� Histograms 
Normal (and nearly so)� Normal (and nearly so) 

� Skewed (and heavily skewed) 
� Suggest some normal or nearly normal 

distributions..and some not likely to be normal 
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Degree Distributions IIDegree Distributions II 
� Define      as the fraction of nodes in a network with degree k. This is 

equivalent to the probability of randomly picking a node of degree k 
kp

� A plot of  can be formed by making a histogram of the degrees of 
the nodes. This is the degree distribution of the network. 

� Histograms 
l (  d  l  )  

kp

� Normal (and nearly so) 
� Skewed (and heavily skewed) 

� Reasons for normal vs. skewed? 

� Power law (skewed)  α−kpk ~ 

� Plot ln     vs. ln k, slope =    
Why might cumulative plot be superior? 

αkp
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Comparison of Models with Structural 
Metrics : Degree distributionMetrics : Degree distribution 
� Does the existence of a power law for degree distributions for 

networks indicate existence of a specific mechanism for 
f i ?formation? 
� No, power laws are consistent with a wide variety of mechanisms 

for network formation (Newman, “Power laws, Pareto distributions 
and Zipf’s law”2004/5)and Zipf s law 2004/5) 

� Does the existence of power laws for degree distributions for 
networks indicate the existence of a certain kind of structure for 
the network?the network? 
� No, power laws are consistent with a wide variety of networks 

having various structures and some without central hubs (Li et al) 
� Moreover, power laws are the equivalent of normal � Moreover, power laws are the equivalent of normal 

distributions at high variation (Samorodnitsky and Taqqu) 
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Central Limit theoremCentral Limit theorem 

� The central limit theorem states that given a 
distribution with a mean μ and variance σ², the 
sampling distribution of the mean approaches a 
normal distribution with a mean (μ) and a variancenormal distribution with a mean (μ) and a variance 
σ²/N as N, the sample size, increases. The amazing 
and counter-intuitive thing about the central limit 
theorem is that no matter what the shape of thetheorem is that no matter what the shape of the 
original distribution, the sampling distribution of 
the mean approaches a normal distribution. 
Furthermore, for most distributions, a normal 
distribution is approached very quickly as N 
increases.increases. 

© 2010 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 



Central Limit TheoremCentral Limit Theorem 

The mean of a sequence of n iid 
random variables with 

� Finite μ (and variance) 

( ) 0<)( 2 >∞− 
+ δδ xExE 

approximates a normal distribution 
i  th  li it f l 

( ) 0<)( >∞ δii xExE 

in the limit of a large n. 
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μ

Marginal and Markov process 
defineddefined 
� Marginal probability- In a multivariate 

distribution, the probability of one variable, or, p y , 
function of several of these variables, taking a 
specific value (or falling in a range) 
� Metric: An outer measure on aμMetric: An outer measure on a 

product space, by restriction to one of the 
two factors: if  is an outer measure on 
X x Y , the marginal probability is a measure 

α 
, g p y 

that satisfies 

� Markov chain or process A sequence of events 

)()( YxAA μα = 

� Markov chain or process. A sequence of events, 
usually called states, the probability of each of 
which is dependent only the event immediately 
preceding it 
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preceding it. 



Power laws are ubiquitous

Low 
variability

High 
variability

Gaussian Exponential Power law

Central Limit Marginalization CLT
Theorem 

(CLT)

g
(Markov property) Marginalization

Maximization
Mixtures
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Comparison of Models with Structural 
Metrics : Degree distributionMetrics : Degree distribution 
� Does the existence of a power law for degree distributions for 

networks indicate existence of a specific mechanism for 
formation? 
� No, power laws are consistent with a wide variety of mechanisms 

for network formation (Newman, “Power laws, Pareto distributions
and Zipf’s law”2004/5) 

� Does the existence of power laws for degree distributions for � Does the existence of power laws for degree distributions for 
networks indicate the existence of a certain kind of structure for 
the network? 
� No, power laws are consistent with a wide variety of networks 

having various structures and some without central hubs (Li et al)having various structures and some without central hubs (Li et al) 
� Moreover, power laws are the equivalent of normal distributions at 

high variation (Samorodnitsky and Taqqu) 
� Power laws are very useful for representation and 

manipulation of data but are not at all indicative ofmanipulation of data but are not at all indicative of 
structure or behavior (despite what you may read) 
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Degree Distributions IIIDegree Distributions III 
� Define      as the fraction of nodes in a network with 

degree k. This is equivalent to the probability of 
kp

g q p y 
randomly picking a node of degree k 

� A plot of can be formed by making a histogram of 
the degrees of the vertices. This is the degree 

kp

the degrees of the vertices. This is the degree 
distribution of the network. Some distributions 

� Random Graph- binomial 
(poisson at large n) k 

ek p 
kk 

k 

><−><
≅

k(poisson at large n) 
� Exponential 

!k
pk 

κ 
k 

k ep 
− 

≈ 

� Power Law 

� lognormal 

α−kpk ~ 

))(ln()(l 
2μ−kk 
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Power law with cutoff is 

d s bu o s o e o eac o ode

Degree Distributions IVDegree Distributions IV 
� Other Distributions 
� Power law with exponential cutoff is exponential 

“common” 
� For bipartite graphs, there are two degree 

distributions, one for each type of node, ype 
(multipartite one for each type of node) 

� For directed graphs, each node has an in-
degree and an out-degree and the degreeg g g 
distribution becomes a function of two 
variables (j and k for in and out degrees). 
Since in and out degrees can be strongly 
correlated, the joint distribution also 
contains information about the network. 

� Maximum Degree (Power Law) )1/(1
max ~ −αnk 
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Network Metrics (from lectures 2, 3, 4 
and now lecture 7)

�  th b f d�n, the number of nodes 
�m, the number of links 
�2m/n is the average degree <k> as the number of links on a 

given node, k, is the degree. 
�m/[(n)(n-1)] or <k>/(n-1)is the “sparseness” or normalized 

interconnection “density” 
�Path length, l 

∑ 
≥− 

= 
ji 

ijd
nn 

l 
)1(

2 
1 

1 

�Connectivity 
�Cl ste ing (2 definitions) 

2 

�Clustering (2 definitions) 
�Centrality (5 definitions + prestige and acquaintance) 
�Degree Distribution 
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�Compare some systems (See Table 2 in Newman review article) 



Networks structural characteristics: 
Preliminary summary of resultsPreliminary summary of results 
� Most measures-even simple ones- show that real systems 

(represented as networks) have “structure” (linking 
regularities beyond random)regularities beyond random). 

� Real system architectures will not be describable by a single 
structural metric or feature. One must consider, size, 
sparseness degree distribution  transitivity (and probablysparseness, degree distribution, transitivity (and probably 
centrality and others) simultaneously in order to begin to 
understand a specific complex system and its 
similarities/differences from other complex systems.similarities/differences from other complex systems. 

� Although there are numerous metrics available, these are 
not necessarily (or even likely) to be the simplest or best to 
describe the systems we are interested in compactly.describe the systems we are interested in compactly. 

� However, invention of new characteristics without fully 
understanding and exploring existing metrics is most likely 
to introduce unnecessary confusion rather than 
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to introduce unnecessary confusion rather than 
enlightenment (the 2 clustering metrics is an example) 



o Ce t a t e ated

� -

�

References for Lecture 7 

� Overall key references 
� Wasserman and Faust, Social Network Analysis: Methods and

Applications, Cambridge University Press (1994)pp , g y ( ) 
� M. E. J. Newman, “The structure and function of complex networks” SIAM 

Review vol. 45, 167-256 (2003)
� J. Scott, Social Network Analysis: A Handbook Sage Publications (2000) 

� For Centrality relatedy 
� W & F (above) plus UCINET help and Hanneman book 
� Jon. M. Kleinberg “Authoriative Sources in a Hyperlinked Environment” 

Journal of the ACM, Vol. 46, no. 5, 1999,pp 604-632 
� For Power Laws 

M  E  J  Newman  “Power Laws  Pareto Distrubutions and Zipf’s law cond­� M. E. J. Newman, Power Laws, Pareto Distrubutions and Zipf s law, cond 
mat/0412004v2 

� Samorodnitsky,G. and Taqqu, S., Stable Non-Gaussian Random 
Processes: Stochastic Processes with Infinite Variance, Chapman
and Hall, London, (1994) 
A Barabasi and R  Albert  “The Emergence of Scaling Laws in Random � A Barabasi and R. Albert, “The Emergence of Scaling Laws in Random 
Networks”, Science 286, pp 509-512 (1999) 

� Amaral, L. A. N., Scala, A., Bertelemy, M. and Stanley, H. E. “Classes of 
Small World Networks”, Proc. Nat. Acad. Sci. 97, 11149-52 (2000) 
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