Lecture /7: Quantitative
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Selected Social Science Metrics
Degree Distributions and Power Laws
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Social Network Analysis

[0 Many structural metrics have been invented and used by Social
Scientists studying social networks over the past 70+ years.
The Journal Social Networks is the research front

[0 These are well-covered in Wasserman and Faust —Social
Network Analysis (1994) The following slides cover a few
selected examples in one area from that book. The purpose is
to give some feel for the application of such metrics which
attempt to measure structural properties of direct interest for
social network analysis

[0 We should also note that transitivity (clustering) and almost all
other metrics discussed in this lecture were familiar to and
used by social network scientists before the recent upsurge in
activity over the past 10 years.
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Transitivity or Clustering coefficient, C

[0 Measures quantitatively the degree to which nodes™
which each have relationships with a common node
are likely to have a direct relationship.

3 xnumber of trianglesin network
*  number of connected triples of nodes
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Example calculation of
transitivity coefficients

This network has one triangle and eight connected triples, and therefore has a
clustering coefficient, C, of 3 x 1/8 = 3/8 The individual vertices have local
clustering coefficients; of 1, 1, 1/6, 0 and 0, for a mean value, C,

= 13/30.

Source: M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Review, Vol. 45, No. 2, pp . 167-256, 2003 Society for Industrial and Applied Mat
]
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Transitivity or Clustering
coefficient, t7

O (Almost) always > than expected from random networks thus
offering some support for earlier assertions that real networks
have some non-random “structure”

B Thus, assessing clustering is a quick check whether you have a
random graph where C = <k>/n. Indeed the size dependence of
transitivity can be useful to calculate
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Structural Typology (lecture 1)

O Totally » Real things » No Internal structure
regular * The ones we * Perfect gases
B Grids/crys are Interested e Crowds of
tals = n T people
* New methods or « Classical
= _IID_ure adaptations of economics with
rees existing methods invisible hand
® lLayered needed - Stochastic methods
trees used
= Starh e Less regular
A -“Hub and spokes”
[0 Deterministic -“Small Worlds”
methods -Communities
used -Clusters
-Motifs
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Transitivity or Clustering
coefficient, ;1 -continued

O (Almost) always > than expected from random networks
thus offering some support for earlier assertions that real
networks have some non-random “structure”

B Thus, assessing clustering is a quick check whether you have a

random graph where C = <k>/n. Indeed the size dependence
of transitivity can be useful to calculate

0 Higher order clusters (groups of n related nodes) also of
interest but no clean way (yet) to separate lower order and
higher order tendencies. Moreover, Whitney showed in
lecture 4 that methods for calculating higher order clustering
in large networks is unknown territory.

[0 In directed graphs, n=2 effects (the proportion of nodes that
point at each other) can be of interest and is labeled

reciprocity. This is an important social network attribute.
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Centrality

[0 Numerous metrics exist in the Social Networks Literature for
assessing the “centrality” of a social network.

m Centrality metrics attempt to characterize the level of
“centralization” of control or action on this network

B One application is to assess how important a given actor
(node) is in the network (ranking of nodes according to link
information)

B Another application is to assess overall how much of the
control of the network is controlled by the "more important”
actors (group or network centrality)

B The relative importance of single channels/links and groups of
links has also been of interest.

0 We will look at a several of the social science defined metrics and
explore the definitions by looking at “ideal toy graphs”: Team

(family or full) graphs, Circle (or line) graphs and Star graphs.
I ihir
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Degree Centrality

[0 Actor (can be individual,
group or organization Z Xij
depending on what is being C' (n) _ |
studied). The actor in the DA n—1

example we will use is a
“Family”. Most central is the
node with the most links.

_” C max _C _
0 Group (all actors in C, = Z'=1[ o (N)-Cp(m)]
network) [(n—2)]

B =1 for a star graph

m = 0 for a circle graph or
“team”

m = 1/(n-1) for line graph
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Padgett’s Florentine Families:
15th Century Marriage Relations

ns:Castellani
~

: n,,:Pucci
n,:Peruzzi g 12

¥ N,5:Strozzi
D ns:Barbadori

n,:Bischeri

n,5:Ridolfi

n,,:Salvati
—)—

n,g:Tornabuonis -© Nyy:Pazzi

n,:Guadagni®

> n,:Acciaiuoli

_ n,:Ablizzi
ng:Lamberteschi

nﬁ:Genori
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Florentine Families Centrality
Metrics I. Degree

Acciaiuoli
Ablizzi
Barbadori
Bischeri
Castellani
Genori
Guadagni
Lamberteschi
Medici
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati
Strozzi
Tornabuoni

4
Cp(ny)
0.071
0.214
0.143
0.214
0.214
0.071
0.286
0.071
0.429
0.071
0.214
0.214
0.143
0.286
0.214

Cc(m) Cg(n)  Ci(m)

Centralization 0.257
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Closeness Centrality

[0 Actor
B Closest is shortest | n—1
(geodesic) distance from Ce (ni) =—
other nodes =1 for max Zd(ni ’ nj)
-1

closeness and O for min

0 Group

m = O for circle graph or full i : :
network Z[Clcmax -C. ()]
i=1

= = 1 for star graph C. —
m 0.277 for line (7 nodes) (n=2)(n-1)/(2n-3)

B can estimate several ways
M ihir
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Florentine Families Centrality
Metrics II Closeness

!/ !/
Co(m)  Ce(n)  Cg(n)  Ci(ny)

Acciaiuoli 0.071 0.368
Ablizzi 0.214 0.483
Barbadori 0.143 0.438
Bischeri 0.214 0.400
Castellani 0.214 0.389
Genori 0.071 0.333
Guadagni 0.286 0.467
Lamberteschi 0.071 0.326
Medici 0.429 0.560
Pazzi 0.071 0.286
Peruzzi 0.214 0.368
Pucci

Ridolfi 0.214 0.500
Salvati 0.143 0.389
Strozzi 0.286 0.438
Tornabuoni 0.214 0.483

Centralization
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Betweeness Centrality I

[0 Actor
B Power or influence Z (n)/
comes from bein . L) 1 2y
= CB (ni): Ik :

an intermediary [(n-1)(n-2)/2]
B Zis the number of
geodesics between

two points
5= > [C™(n)—Cq(n)]
m =1 for star graph Cg === "
B =0 for circle
B =0.311 for 7 node
line
B Tree Hierarchy = xx

m Professor C. Magee, 2010 Page 14 III I
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Definition of Hierarchy

[0 Hierarchy: A description of a group of elements (system?)
where each element is graded or ranked and then arranged in
a structure that separates elements according to rank which
each descending rank being in some way subordinate to the
next higher rank (this leads to a level number or node
depth). Although hierarchy often describes power or authority
relationships, it is also used in describing levels of abstraction
and other system features. Flow and containment hierarchies
have also been distinguished.

[0 Hierarchies can take on a variety of structures ranging from
Pure layers to pure trees. (Moses next week)
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Florentine Families Centrality
Metrics: Betweeness

!/ !/ !/ !/
Co(n)  Cc(n)  Cg(n)  Ci(nmy)

Acciaiuoli 0.071 0.368 0.000
Ablizzi 0.214 0.483 0.212
Barbadori 0.143 0.438 0.093
Bischeri 0.214 0.400 0.104
Castellani 0.214 0.389 0.055
Genori 0.071 0.333 0.000
Guadagni 0.286 0.467 0.255
Lamberteschi 0.071 0.326 0.000
Medici 0.429 0.560 0.522
Pazzi 0.071 0.286 0.000
Peruzzi 0.214 0.368 0.022
Pucci

Ridolfi 0.214 0.500 0.114
Salvati 0.143 0.389 0.143
Strozzi 0.286 0.438 0.103
Tornabuoni 0.214 0.483 0.092

Centralization
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Padgett’s Florentine Families:
15th Century Marriage Relations

ns:Castellani
~

: n,,:Pucci
n,:Peruzzi g 12

¥ N,5:Strozzi
D ns:Barbadori

n,:Bischeri

n,5:Ridolfi

n,,:Salvati
—)—

n,g:Tornabuonis -© Nyy:Pazzi

n,:Guadagni®

> n,:Acciaiuoli

_ n,:Ablizzi
ng:Lamberteschi

nﬁ:Genori
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Betweeness Centrality II

[0 Actor
O Fowerbo_r influence comes
rom being an
intermediary C. (n) = Zj<k ij(ni)/zjk
B zis the number of BN tn=D(n=2)/2
geodesics between two LC ) )/2]

points
0 Group
B =1 for star graph —— ,
m =0 for circle Zizl[CBmaX (n)-Cg(n;)]
B =0.311 for 7 node line Cp = n—1

—=> Betweeness Centrality has
been most applied of the
centrality metrics in Social
Network Analysis (1994)

e . - f Technology Professor C. Magee, 2010 Page 18 I I I

ssachusetts Institute of
Enginsering Sysiems Division



Information Centrality

[0 Actor
B Estimates the information
value of the connections C (n) _ 1
B shorter distances are better e c. +(T —2R)/n
but are not the only paths
used

B Tis the trace, R a row sum and

c an element in a matrix

constructed from the

sociomatrix with information C(n)= C,(n;)

content P Z-Cl (n.)
B Actor indices are proportions |

of total “information” flow

controlled by a single actor

and sums to 1 in network

[0 No group index (1997)

m Professor C. Magee, 2007 III I
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Florentine Families Centrality
Metrics

Co(n)  Colm)  Ce(ny)  Cilny)

Acciaiuoli 0.071 0.368 0.000 0.049
Ablizzi 0.214 0.483 0.212 0.074
Barbadori 0.143 0.438 0.093 0.068
Bischeri 0.214 0.400 0.104 0.074
Castellani 0.214 0.389 0.055 0.070
Genori 0.071 0.333 0.000 0.043
Guadagni 0.286 0.467 0.255 0.081
Lamberteschi 0.071 0.326 0.000 0.043
Medici 0.429 0.560 0.522 0.095
Pazzi 0.071 0.286 0.000 0.033
Peruzzi 0.214 0.368 0.022 0.069
Pucci -=- -=- === --=

Ridolfi 0.214 0.500 0.114 0.080
Salvati 0.143 0.389 0.143 0.050
Strozzi 0.286 0.438 0.103 0.070
Tornabuoni 0.214 0.483 0.092 0.080

Centralization
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Eigenvector Centrality-UCINET

00

UCINET-help, help topics, index (on toolbar), eigenvector centrality

Given an adjacency matrix A, the centrality of vertex i (denoted ci),
is given by ci =aSAijcj where a is a parameter. The centrality of
each vertex is therefore determined by the centrality of the vertices
it is connected to. The parameter a is required to give the equations
a non-trivial solution and is therefore the reciprocal of an eigenvalue.
It follows that the centralities will be the elements of the -
corresponding eigenvector. The normalized eigenvector centrality is
the scaled eigenvector centrality divided by thé maximum difference
possible expressed as a percentage.

[0 For a given binary network with vertices v1....vn and maximum
eigenvector centrality cmax, the network eigenvector centralization
measure is S(cmax - c(vi)) divided bY’ the maximum value possible,
where c(vi) is the eigenvector centrality of vertex vi.

O This routine calculates these measures and some descriptive
statistics based on these measures. This routine only handles
symmetric data and in these circumstances the eigenvalues
Rrow_de a measure of the accuracy of the centrality measure. 1

elp interpretation the routine calculates all E)05|t|ve eigenvaiues but

only gives the eigenvector corresponding to the largest eigenvalue.
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Eigenvector Centrality (from
Newman and Brin and Page)

O Each node has a weight X that is
defined to be proportional to the
weights of all nodes that point to the
node (i)

O And then A X

[0 Thus the weights are an eigenvector of
the adjacency matrix (A) with
eigenvalue A

- —
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Florentine Families Centrality
Metrics (with Eigenvector Centrality)

Co(n)  Ce(n)  Ci(n)  Ci(ny)

Acciaiuoli 0.071 0.368 0.000 0.049 .19
Ablizzi 0.214 0.483 0.212 0.074 .35
Barbadori 0.143 0.438 0.093 0.068 .30
Bischeri 0.214 0.400 0.104 0.074 .40
Castellani 0.214 0.389 0.055 0.070 .37
Genori 0.071 0.333 0.000 0.043 A1
Guadagni 0.286 0.467 0.255 0.081 41
Lamberteschi 0.071 0.326 0.000 0.043 12
Medici 0.429 0.560 0.522 0.095 .61
Pazzi 0.071 0.286 0.000 0.033 .06
Peruzzi 0.214 0.368 0.022 0.069 .39
Pucci 0

Ridolfi 0.214 0.500 0.114 0.080 .48
Salvati 0.143 0.389 0.143 0.050 .20
Strozzi 0.286 0.438 0.103 0.070 .50
Tornabuoni 0.214 0.483 0.092 0.080 46
Centralization 43
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Centrality II

O Numerous metrics exist in the Social Networks Literature for assessing
the “centrality” of a social network.

B Centrality metrics attempt to characterize the level of
“centralization” of control or action on this network

B One application is to assess how important a given actor (node) is
in the network

B Another application is to assess overall how much of the control of
the network is controlled by the "more important” actors

B The relative importance of single channels/links and groups of
links has also been of interest.

O Centrality utility:

B The calculation methods have been applied in search, navigation
and community structure models but otherwise the “"Network
Science” Communitg does not utilize these measures. CM bias is
that they are probably useful in social and other networks.

B Hidden Hierarch?/, robustness —communication and other
meanings are all dependent on effects such as those defined and
some of these measures (betweenness and eigenvector
centrality) deserve more attention in modern network

analysis.
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Related newer Centrality-like
metrics

[0 Jon Kleinberg (Computer Science at Cornell) has
done much of the leading work in search and
navigation (more later).

[0 In some of his earliest work on this topic (1997
1999), he “invented” some useful new metrics for
looking at important nodes (particularly on
directed networks and probably most useful in the
domain he was interested in-- the www)

[0 He looked for ways to find related sets of
“Authorities” and "Hubs” and differentiated these
from single “high in-degree nodes”

I I I - ——
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Prestige and Acquaintance
Calculation

Authority: not only referred to by many nodes, but also by
many Hubs. (measurement: prestige)

Hub: not only refers to many nodes, but also to many
Authorities.
(measurement: acquaintance)

(A - adjacency matrix.
X;: prestige (of node i) Ax = Ay
Y;: acquaintance A’y = ux| Solve for x and y.

These metrics proved useful in directed citation networks
(Mo-Han Hsieh thesis work on Internet Standards)
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Lecture /. Quantitative Aspects

Of Networks III: Outline
[0 Some Social Network Concepts-intuition and

calculation

B clustering (transitivity)

B centrality
[0 degree, closeness, betweenness, information, eigen

B prestige and acquaintance

—t* degree distributions

m skew (and non-skew) distributions

fitting power laws to observed data

the normality of power laws

truncation

Structural implications and growth assumptions
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Degree Distributions

[0 Define p. as the fraction of nodes in a network with
degree k. This is equivalent to the probability of
randomly picking a node of degree k

[0 A plot of p, can be formed by making a histogram of
the degrees of the nodes. This is the degree
distribution of the network.

[0 Histograms
= Normal (and nearly so)
B Skewed (and heavily skewed)

[0 Suggest some normal or nearly normal
distributions..and some not likely to be normal

Em - - T Professor C. Magee, 2010 Page 29 I I I
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Degree Distributions II

O Define P« as the fraction of nodes in a network with degree k. This is
equivalent to the probability of randomly picking a node of degree k

[0 A plot of Pk can be formed by making a histogram of the degrees of
the nodes. This is the degree distribution of the network.

[0 Histograms
B Normal (and nearly so)
B Skewed (and heavily skewed)

—t% Reasons for normal vs. skewed?

0 Power law (skewed)

Pe = k=

O PlotIn Pcvs. In k, slope = X
Why might cumulative plot be superior?
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Comparison of Models with Structural
Metrics : Degree distribution

[0 Does the existence of a power law for degree distributions for
networks indicate existence of a specific mechanism for
formation?

B No, power laws are consistent with a wide variety of mechanisms
for network formation (Newman, “Power laws, Pareto distributions
and Zipf's law”2004/5)

[0 Does the existence of power laws for degree distributions for
networks indicate the existence of a certain kind of structure for
the network?

B No, power laws are consistent with a wide variety of networks
having various structures and some without central hubs (Li et al)

B Moreover, power laws are the equivalent of normal
distributions at high variation (Samorodnitsky and Tagqu)

m I I I LR ]
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Central Limit theorem

[0 The central limit theorem states that given a
distribution with a mean y and variance o2, the
sampling distribution of the mean approaches a
normal distribution with a mean (J) and a variance
02/N as N, the sample size, increases. The amazing
and counter-intuitive thing about the central limit
theorem is that no matter what the shape of the
original distribution, the sampling distribution of
the mean approaches a normal distribution.
Furthermore, for most distributions, a normal
distribution is approached very quickly as N
InCreases.

I I I - ——
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Central Limit Theorem

The mean of a sequence of n iid
random variables with

B Finite 1 (and variance)
EUXF_E(K)

2+0

]<w o >0

approximates a normal distribution
in the limit of a large n.

m III-_
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Marginal and Markov process
defined

0 Marginal probability- In a multivariate
distribution, the probability of one variable, or
function of several of these variables, taking a
specific value (or falling in a range)

B Metric: U An outer measure on a
product space, by restriction to one of the
two factors: if ¢ is an outer measure on
X x Y , the marginal probability is a measure

that satisfies a(A) = 1(AXY)

[0 Markov chain or process. A sequence of events,
usually called states, the probability of each of
which is dependent only the event immediately
preceding it.
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Power laws are ubiquitous

% :
Low I—.Ilgh.
variability variability
Gaussian Exponential Power law
Central Limit Marginalization CLT
Theorem (Markov property) Marginalization
(CLT) Maximization
|_Mixtures
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Comparison of Models with Structural

Metrics : Degree distribution

[0 Does the existence of a power law for degree distributions for
networks indicate existence of a specific mechanism for
formation?

B No, power laws are consistent with a wide variety of mechanisms
for network formation (Newman, “Power laws, Pareto distributions
and Zipf's law”2004/5)

[0 Does the existence of power laws for degree distributions for
networks indicate the existence of a certain kind of structure for
the network?

B No, power laws are consistent with a wide variety of networks
having various structures and some without central hubs (Li et al)

B Moreover, power laws are the equivalent of normal distributions at
high variation (Samorodnitsky and Taqqu)
-=—»Power laws are very useful for representation and
manipulation of data but are not at all indicative of
structure or behavior (despite what you may read)
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Degree Distributions III

[0 Define p. as the fraction of nodes in a network with
degree k. This is equivalent to the probability of
randomly picking a node of degree k

[0 A plot of P can be formed by making a histogram of
the degrees of the vertices. This is the degree
distribution of the network. Some distributions

[0 Random Graph- binomial < k >k g~k
(poisson at large n) x Pe= "

O Exponential P, ~ex

O Power Law P, ~ k¢

2
O lognormal o(Ink) ~ exp(= UMK =4)"
O
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Degree Distributions IV

[0 Other Distributions

B Power law with exponential cutoff is
“common”

B For bipartite graphs, there are two degree
distributions, one for each type of node
(multipartite one for each type of node)

B For directed graphs, each node has an in-
degree and an out-degree and the degree
distribution becomes a function of two
variables (j and k for in and out degrees).
Since in and out degrees can be strongly
correlated, the joint distribution also
contains information about the network.

0 Maximum Degree (Power Law) kmax ~ ntle-D)

Em T - Professor C. Magee, 2010 Page 43 III I

assachusetts Institute of Technology
Enginsering Sysiems Division




Network Metrics (from lectures 2, 3, 4
and now lecture 7)

[In, the number of nodes
[O0m, the number of links

O2m/n is the average degree <k> as the number of links on a
given node, k, is the degree.

Om/[(n)(n-1)] or <k>/(n-1)is the “sparseness” or normalized
interconnection “density”

COPath length, | 1
=>4,

—n(n-1) ™=
A=)

[OConnectivity

COClustering (2 definitions)

COCentrality (5 definitions + prestige and acquaintance)
[O0Degree Distribution

—+#1Compare some systems (See Table 2 in-Newman-review=arti¢le:)m=
m@ - Tec Professor C. Magee, 2010 Page 44 III-I_
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Networks structural characteristics:

Preliminary summary of results

[0 Most measures-even simple ones- show that real systems
(represented as networks) have “structure” (linking
regularities beyond random).

[0 Real system architectures will not be describable by a single
structural metric or feature. One must consider, size,
sparseness, degree distribution, transitivity (and probably
centrality and others) simultaneously in order to begin to
understand a specific complex system and its
similarities/differences from other complex systems.

O Although there are numerous metrics available, these are
not necessarily (or even likely) to be the simplest or best to
describe the systems we are interested in compactly.

0 However, invention of new characteristics without fully
understanding and exploring existing metrics is most likely
to introduce unnecessary confusion rather than

enllghtenment (the 2 clustering"metricsisTanmexamptey—
P Iir
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References for Lecture 7

0 Overall key references

B Wasserman and Faust, Social Network Analysis: Methods and
Applications, Cambridge University Press (1994)

m M. E. J. Newman, "The structure and function of complex networks” SIAM
Review vol. 45, 167-256 (2003)

B ]. Scott, Social Network Analysis: A Handbook Sage Publications (2000)
0 For Centrality related
B W &F (above) plus UCINET help and Hanneman book

B Jon. M. Kleinberg “Authoriative Sources in a H(ﬁ)erlinked Environment”
Journal of the ACM, Vol. 46, no. 5, 1999,pp 604-632
0 For Power Laws

®m M. E. J. Newman, "Power Laws, Pareto Distrubutions and Zipf’'s law, condl]
mat/0412004v2

B Samorodnitsky,G. and Taqqu, S., Stable Non-Gaussian Random

Processes: Stochastic Processes with Infinite Variance, Chapman
and Hall, London, (1994)

B A Barabasi and R. Albert, “The Emerzqence of Scaling Laws in Random
Networks”, Science 286, pp 509-512 (1999)

® Amaral L. A. N,, Scala, A., Bertelemy, M. and Stanley, H. E. "Classes of
Small World Networks”, Proc. Nat. Acad. Sci. 97, 11149-52 (2000)
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