ESD.36 System Project Management

Lecture 1

Instructor(s)

Prof. Olivier de Weck Dr. James Lyneis, Prof. Dan Braha

Today's Agenda

- Welcome and Introductions
- Definitions Initial Discussion
- Course Objectives
- Schedule
- Term Project, Homeworks
- Questions?

Introductions

Olivier de Weck

- Dipl. Ing. Industrial Engineering ETH Zurich '93
- 1993-1997 Engineering Program Manager Swiss
 F/A-18 Project, McDonnell Douglas, St. Louis
- S.M. '99 Ph.D. '01 Aerospace Systems MIT
- Associate Professor dual appointment AA and ESD, Executive Director Production in Innovation Economy (PIE) Study
- Research:
 - Systems Engineering for Changeability and Commonality
 - http://strategic.mit.edu
 - Space Logistics
 - http://spacelogistics.mit.edu

Introductions

James Lyneis

- S.B.s MIT EE and System Dynamics ('71)
- PhD Univ. of Michigan (Mgt. Science; '74)
- Sloan Faculty '74-'78; Senior Lecturer '98-Present
- Professor of the Practice, WPI '02-Present
- Consultant with Pugh-Roberts Associates, '78-'02, working on many project models

Introductions

Dan Braha

- Professor at University of Massachusetts
- Sabbatical at MIT ESD in AY 2012/13
- Affiliation with New England Complex Systems Institute (NECSI)
- Specializes in Complexity research, with application to complex projects and human organizations

The Structure and Diffusion Dynamics of Large Scale Organizational

Networks Social Network Analysis of ProductDesign and Development Organizational Networks

Let's go around the room & remote sites

- Name
- Company and Job (present or past)
- One observation on project management

Project Definition

A Project is a set of tasks that

- Are related to each other
- Have a specific objective to be completed within certain specifications
- Have defined start and end dates
- Have funding limits
- Consume resources

System Definition

A **System** is a set of physical or virtual objects whose interrelationships enable desired function(s).

- more than the sum of its parts
- Undesired (emergent) functions often exist
- System complexity scales with the number of objects as well as the type and number of interconnections between them
- Instantaneously available functions, versus "lifecycle" properties (scalability, flexibility, robustness ...)
- A Product is a "System" sold for profit

Example System: F/A-18 Aircraft

- Clean sheet design \sim 1978 F/A-18 A/B
- Re-designs: C/D (1987), E/F (1999)
- Hardware, Software, Humans ...
 - What is inside the system boundary?

Project Management

Project Management comprises a body of methods and tools that facilitate the achievement of project objectives

- Within time
- Within cost
- Within scope
 - At the desired performance/specification level
- While effectively and efficiently utilizing resources
- While carefully managing risks and opportunities

Research and Development

Research, Technology Development

R

- Unstructured methods
- Difficult to plan
- Unpredictable

Product/System Development

- Structured methods
- Generally planned
- Predictable

Discussion Point 1: Why is complex (S)PM hard?

Main obstacles to easy project success:

- Poorly defined project objectives or shifting system requirements
- What do you think? ...

Concept Question 1 (DEMO)

A project is

- A ongoing management of facilities
- B a finite undertaking with a specific goal
- C task-based design
- D doomed to failure from the outset
- E all of the above
- F none of the above

Relationship w/other SDM core classes

System Architecture (ESD.34) is about the "DNA" of the ARTIFACTS themselves – atomic unit: <u>object</u>

- Concept, form, function, decomposition ...
- Systems Engineering (ESD.33) is about the PROCESSES to understand and design systems – atomic unit: process
 - QFD, DOE, Requirements Analysis and Verification, ...
- Integrating the Lean Enterprise (ESD.61J) is about the PEOPLE and ORGANIZATIONS atomic unit: <u>person</u>
 - Principles of lean manufacturing, organizational models
- System Project Management (ESD.36) is about how to best utilize resources to implement a set of objectives – atomic unit: <u>task</u>
 - CPM, DSM, System Dynamics

Course Objectives

Introduce advanced methods and tools of Project Management in a development context

- CPM/PERT, Critical Chain, Design Structure Matrix
- System Dynamics
- Earned Value Management
- Understand how methods work (strengths, limitations)
 - Industry Examples
- Gain appreciation for organizational and human aspects
 - Case Studies
 - Managing International Projects, Portfolios of Projects ...
- Learn from each other
 - Class Discussions
 - Project Assignments

■ → Improve development projects in your career/firm

Business Trip

ESD.36 Class Schedule - Fall Term 2012 (13 Tuesdays, 13 Thursdays)

System Project Management

Tuesday		Thursday	
Sep 4		Sep 6	
Registration Day		L1: Class Introduction	dWo,JL,DB
		Project Assignment out	
Sep 11		Sep 13	
L2: Critical Path Method	dWo	L3: Critical Chain Method	DB
HW1 out			
Sep 18		Sep 20	
L4: Design Structure Matrix (DSM)	dWo	L5: Managing Iterations with DSM	dWo
Project Proposal due		HW2 out	
Sep 25		Sep 27	
L6: Introduction to Project Dynamics	л	L7: The Rework Cycle	$\mathbf{J}\mathbf{L}$
HW1 due– Project Approvals given			
Oct 2		Oct 4	
L8: Project Dynamics Simulation	л	L9: Probabilistic Scheduling	л
HW3 out		HW2 due	
Oct 9		Oct 11	
No Class, Columbus Day Holiday		L10: Budgeting and Cost Control	dWo
Oct 16		Oct 18	
L11: Risk Management	dWo	L12: Project Strategic Issues	П
HW3 due	dire	Lize i roject strategie issues	12
Oct 23 Business Trin Week		Oct 25 Business Trip Week	
Case 1: Construction Project	G	Case 2: Aerospace Project	G
	-	Project Update due	U U

Required Readings

- NO Paper Class Reader Packet
- Read ahead of lecture ~ 1-2 papers/chapters per session
 - Check reading assignments in the syllabus
- <u>Next</u>:
 - MIT Press Book Chapter: Introduction to PM
 - ABCs of the Critical Path Method (1963)
- Optional Readings
 - Textbooks
 - Available at MIT Library (Dewey)
 - Purchase only if you think useful beyond class
 - (e.g. MIT COOP, amazon.com etc)

Draft Textbook

"Successfully Designing and Managing Complex Projects"

- de Weck, Lyneis
- MIT Press, draft in development
- textbook to support SDM core class ESD.36
- current draft ~ 300 pages

Case Studies

- Case 1: Civil Engineering Project
 - BAE Systems: DIA Baggage Handling System
 - HBS-9-396-311
 - or "live case" BP Wind Farm Development
- Case 2: Aerospace Project
 - Raise and Fall of Iridium (or Mission to Mars HBS-9-603-083)

Massachusetts Institute of Technology

- HBS-9-601-040
- Presented by Prof. Joel Schindall
- Case 3: Software Project
 - Microsoft .Net (and/or Microsoft Office 2000)
 - HBS-9-602-086
 - Presented by Prof. Paulo Gomes
- Case 4: Voted by Students

Project Assignment

Apply Design Structure Matrix (DSM) method, generally at your sponsor company site

- System Dynamics Project (incl. simulation)
- Survey of Methods & Tools in company
- Analyze Success or Failure of a significant Past Product/System Development Project
 - Work in teams of 4 (nominally)
 - 1-page project proposals due on 9/18
 - Get approval by 9/25
 - Project Update due on: 10/25
 - Final presentation in class on December 4 or 6

24

Previous Project Examples

DSM Project

Exhaust System Design

1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40 41
Marketing & Competition Research			1	1																																			
Cost Risk Analysis to Bid	1		1																																				
Customer Requirement Negotiation	1	1																																					
Technical Screening for Qualification	1	1	1																																				
Project Authorization & Kick off		1	1	1																																			
Failure Effect Mode Analysis																																							
Control of Engineering Changes																																							
Design for Catalyst Volume & Emissions			-			1	-		1										1																				
CAE for Catalyst Volume & Emission						1	1	1											1																				
Design for Tuning Volume, Pressure & Flow			-			1	1			X	1									1																			
CAE for Tuning Volume, Pressure & Fow						1	1			1										1																			
Design for Legal Noise and Sound Quality			1			1	1					Х	1								1																		
CAE for Legal Noise and Sound Quality						1	1					1									1																		
Design for Durability Target			1			1	1							Х	1			1							1										1				
CAE for Durability Target						1	1							1				1							1										1				
Cost Analysis for Manufacturing								1		-		1		1			1																						
Prototype for DV Test & Pre-prod Build								1	1	1	1	1	1	1	1	1																							
Design Verification Test														1	1																								
Testing for Emission								1	┯										Х																				
Testing for Tuning Volume, Pressure & Flow										1	1									х																			
Testing for Legal Noise and Sound Quality												1	1								х																		
Sub-tier Supplier DV Bench Testing								1		1		1		1		1																							
Vehicular Proving Ground Testing								1	1	1	1	1	1	1	1		1	1	1	1	1																		
Data Analysis and Editing																							1																
Sub-System Durability Testing																							1	1											1				
Design Release							1	1		1		1		1																									
Release of Accurate 3D Geometry								1		1		1		1																									
Issues Sales Authority to Release (SAR)																										1	1												
Creation and Release of all 2D drawings																										1	1	1											
Mfg Facility Lineup & Tooling Process																1	1															1	1						
Mfg Cell Setup and Fine Tuning																1	1													1		1	1		1				
PSO & "Run-at-Rate" Demonstration																1	1													1	1								
Quality Control for Manufacturing																1	1													1	1	1							
Mfg Process Evalution																1	1													1	1	1	1						
Product Verification Testing														1				1							1										х				
Sub-tier Supplier PV Testing														1	1			1				1	1	1	1										1				
Production Part Approval Process																														1	1	1			1				
Production																														1	1				1				
Warranty Cost Analysis		1										1	1	1	1			1							1								1	1	1		1		
Customer Satisfaction Evaluation			1	1			1																					1				1	1				1	1	1

- Understand Iterations
- Reduce Expected Project Duration

Understanding the sources of change External factors; management responses; side effects **Out-of-Sequence** Work, Worksite Congestion, Coordination Fatigue, **Problems**, **Burnout** Morale Problems Average Productivity Quality People **Employee Skill** and Quality Progress Work Work ∇ **Overtime** Λ To Be Done **Really Done** Scope Customer Growth **Schedule** Changes Acceleration Undiscovered Known Rework Rework Rework Discovery Hiring Apparent _ Progress

Understand the dynamics of a cancelled project at NASA

What can lead to projects failing ?

- What is success/failure?
- Project Manager is unqualified and overwhelmed.
- What else...

Homework Assignments

- 6 Individual assignments, but can cooperate (acknowledge !)
- Don't spend more than ~10-15 hours per HW !

Electrical CityCar Design Project

HW1: Critical Path and Network of Tasks HW2: Design Structure Matrix and Iterations HW3: System Dynamics – Initial Model HW4: Budgeting and Earned Value HW5: System Dynamics – Brook's Law HW6: Project Organizational Design

Homeworks

- Project Assignment
- Active Participation
 - Total

25% 15% 100%

60%

- Each HW counts 10%
- All project team members receive same project grade, work together
- People in this class do get A,B,C ...even F ... you want a good grade? ... you have to earn it !

The Course Site Getting Started

- SDM students should add themselves to the class list (if not already there)
- Non-SDM students get permission from instructors
 - Contact TA via email to be added
- Course number is ESD.36
 - Make sure you go to the Fall 2012 version

The Course Site Main features

- Syllabus (under > Materials > General)
- Calendar
 - Schedule
- Handouts
 - Go to "Materials" (store all shared files)
 - will be posted before each lecture
- Homework
 - Submit assignments through the course site
 - Receive comments and grades
- FAQ / Forums
 - Forum will be used for various topics

Read the syllabus!

- Answers many of your questions
- Take a look at what's already uploaded
 - Reading for <u>next class</u>
- Sign up on the course site if needed
- Non-SDM students need permission of instructor to enroll.
- Use your name cards every class.
- PLEASE ... okay, pay attention
 - Laptops needed to answer concept questions
 - IM TA's during lecture from remote sites if problems surface

ESD.HÎ Ù^• ơ\{ ÁÚ¦[b/\&oAT æ)}æ* ^{ ^} c Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.