ESD.36 System Project Management

Prof. Olivier de Weck

Lecture 11

October 16, 2012

- Layers of Risk and Classical Risk Management
- Review: Project NPV, Value at Risk (VAR) Concept
- Example: Garage Case

Layers of Risk Classical Risk Management

Projects entail many types of risks

- Projects bring together many risks
- In energy (petroleum) field
 - Subsurface (e.g. Macondo well)
 - Fiscal
 - Market
 - Technology
 - Partner, contractor
 - Project execution
 - Operability
- Project Manager authority and influence limited relative to set of risks that matter
- Nature, degree of manageability and, therefore, desired mental model, differs by risk type, nature of outcome

Layers of Risk

				Natural Risks
		Ma	urket Risks	• Geology
	Countr	y/Fiscal	• Commodity Prices	• Weather
	Industry/Competitive	Political stabilityTerrorism	 Exchange rates Interest rates Rick promium 	
Technical Project R	/ isks • Industry evolution	• Financial, economic stability,	• Kisk premium	
• Construc • Operation • Partner/a • Technica • Project n	tion ns lly l nanagement • Demand, growth rates • Supply conditions • Competition • Infrastructure	inflation • Regulatory stability or intervention • Contract enforcement • Legal stability		
	High Influence		Low Influence	
	d d		Sr	ource: D. Lessard
ntext: Energy Ind	austry		50	
	Massachusatta In	stitute of Technol		

5

Mission Success and Failure

1992	Mars Observer	US
1996	Mars Global Surveyor	US
1996	Mars 96	USSR
1996	Mars Pathfinder	US
1998	Nozomi	Japan
1998	Mars Climate Orbiter	US
1999	Mars Polar Lander	US
1999	Deep Space 2 Probes	US
2001	Mars Odyssey	US
2003	Mars Express Orbiter	/ ESA
2003	MER Spirit	US
2003	MER- Opportunity	US
2005	MRO	US
2007	Phoenix Mars Lander	US
2012	Mars MSL Curiosity	US

Failure	Lost prior to Mars arrival
Success	More images than all Mars Missions prior
Failure	Launch vehicle failure
Success	Technology experiment lasting 5 times plan
Failure	No orbit insertion; fuel problems
Failure	Lost on arrival
Failure	Lost on arrival
Failure	Lost on arrival (carried on Mars Polar Lander)
Success	High resolution images of Mars
Success/F	ailure Orbiter imaging Mars and lander lost
Success	Operating lifetime of more than 15 times
Success	Operating lifetime of more than
Success	Returned more than 26 terabits of
Sucesss	Landed in North Polar Regions
Success	Landed large RTG powered rover at Gale Crater

Despite recent string of successes less than 50% of pre-2001 missions successful

Massachusetts Institute of Technology

A Risk Management Framework

- Brainstorm Risks
 - Probability that a particular event will occur
 - Impact or Consequence if the event does indeed occur
- Aggregate Into Categories
 - Rule of Thumb Limit @ N≈20
- Score (Based on Opinion & Data)
- Involve <u>All</u> Stakeholders
- ESD.36J SPM

Risk = Probability * Consequence

PROBABILITY	FREQUENT (HI GH)*	PROBABLE (M EDI UM)*	IMPROBABLE (LOW)*	IMPOSSIBLE
CONSEQUENCES	0.7 <p<1.0< td=""><td>0.4<p<0.7< td=""><td>0<p<0.4< td=""><td>P = 0</td></p<0.4<></td></p<0.7<></td></p<1.0<>	0.4 <p<0.7< td=""><td>0<p<0.4< td=""><td>P = 0</td></p<0.4<></td></p<0.7<>	0 <p<0.4< td=""><td>P = 0</td></p<0.4<>	P = 0
CATASTROPHIC	0.9 HIGH	0.7	0.4	0.0
1.0 - 0.9				
CRITICAL	0.8	0.6 M EDIUM	0.3	0.0 NONE
0.8 - 0.7				
M ARGINAL	0.6	0.4	0.2 L OW	0.0
0.6 - 0.4				
NEGLIGA BLE	0.3	0.2	0.1	0.0
0.3 - 0.0				

* Additional terminology, not in US Air Force Guide on Software Risk Abatement Note: Risk rating is consistent with $R = P^*C$

Often used to track risk history over project

- ESD.36J SPM

Massachusetts Institute of Technology

- Which of the following risks are most challenging to deal with?
 - Low Probability Low Impact
 - Low Probability High Impact
 - High Probability Low Impact
 - High Probability High Impact
 - Medium Probability Medium Impact
 - They are all difficult

Risk Sector Plot (NASA)

Attribu	Attribute: Probability					
Level	Value	Criteria				
5	Near certainty	Everything points to this becoming a problem, always has				
4	Very likely	High chance of this becoming a problem				
3	Likely (50/50)	There is an even chance this may turn into a problem				
2	Unlikely	Risk like this may turn into a problem once in awhile				
1	Improbable	Not much chance this will become problem				

Attribute: Impact							
Level	Value	Technical Criteria	Cost Criteria	Schedule Criteria			
5	Catastrophic	Can't control the vehicle OR Can't perform the mission	> \$10 Million	Slip to level I milestones			
4	Critical	Loss of mission, but asset recoverable in time	\$ 10 M ≤ X < \$ 5 Million	Slip to level II milestones			
3	Moderate	Mission degraded below nominal specified	\$ 5 M ≤ X < \$ 1 Million	Slip to level III milestones			
2	Marginal	Mission performance margins reduced	\$ 1 M ≤ X < \$ 100 K	Loss of more than one month schedule margin			
1	Negligible	Minimum to no impact	Minimum to no impact	Minimum to no impact			

- ESD.36J SPM

Threshold Risk Metric (NASA)

Application to Hum Log DC

- Risks in HumLog Distribution Center Project
 - Technical
 - Fire
 - Blocked Transportation
 - Over or under Capacity
 - Cost
 - Cost overrun by Contractor
 - Donor do not fulfill \$ commitments
 - Schedule
 - Delay in Host Government Approval
 - Programmatic
 - Contractor Non-Performance
 - Political Unrest, Looting, Theft
 - ESD.36J SPM

Risk	Risk Score	Mitigation		
Fire	20	Sprinkler System, Hydrant		
Political Unrest	16	Fence, Evacuation Plan		
Donor \$ Withdrawal	10	Weekly Project Updates, \$ Risk Pool		
Theft	8	Security System, Inventory Tracking		
Approval Delay	6	Government Liaison Officer		
Cost Overrun	6	EVM, Firm Fixed Price Contract		
Transport Blocking	3	Alternate Transport Path (Sea)		
Under-Capacity	1	Lease extra capacity locally		

Review of Project NPV, VAR

NPV as the main criterion

- Net Present Value (NPV)
 - Is typically the <u>key</u> criterion for deciding go/no-go on projects
 - Treats undertaking as an investment project
 - Often used to <u>select</u> among alternative (competing) projects
 - The project will cause <u>expenditures</u>: conceptual design, detailed design, manufacturing, implementation, operations
 - The project will yield <u>revenues</u>: sales from products and services
 - Both expenditures and revenues occur <u>over time</u> and must be discounted.
- Other Financial Metrics
 - Payback period
 - Internal Rate of Return (IRR)
 - Return on Investment (ROI)
 - ESD.36J SPM

Net Present Value (NPV)

- Measure of present value of various cash flows in different periods in the future
- Cash flow in any given period discounted by the value of a dollar today at that point in the future
 - "Time is money"
 - A dollar tomorrow is worth less today since if properly invested, a dollar today would be worth more tomorrow
- Rate at which future cash flows are discounted is determined by the "discount rate" or "hurdle rate"
 - Discount rate is equal to the amount of interest the investor could earn in a single time period (usually a year) if s/he were to invest in an *equally risky* investment

Net Present Value (NPV)

$$NPV = \sum_{t=0}^{T} \frac{C_{t}}{(1+r)^{t}}$$

Program Time, *t* [yrs]

- Forecast the cash flows, C_0 , C_1 , ..., C_T of the project over its economic life
 - Treat investments as negative cash flow
- Determine the appropriate opportunity cost of capital (i.e. determine the discount rate r)
- Use opportunity cost of capital to discount the future cash flow of the project
- Sum the discounted cash flows to get the net present value (NPV)

$$NPV = C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + K + \frac{C_7}{(1+r)^7}$$

DCF example

Period	Discount Factor	Cash Flow	Present Value
0	1	-150,000	-150,000
1	0.935	-100,000	-93,500
2	0.873	+ 300000	+261,000
		_	
Discount rate	70/		¢10,400

Discount rate = 7%

NPV = \$18,400

- The cash flows on a project are expected to be -\$10M (year 0), \$5M (year 1), \$5M (year 2) and \$5M (year 3). What is the NPV with a discount rate of r=10%?
 - +\$5M
 - -\$4.5M
 - +\$2.2M
 - -\$1.2M
 - \$0M
 - Please ... no more concept questions ;{

Development Cost Model

Cashflow profiles based on beta curve:

$$c(t) = Kt^{\alpha - 1} (1 - t)^{\beta - 1}$$

- Typical development time ~1-6 years
- Learning effects captured span, cost

- DCF analysis assumes a fixed schedule of cash flows
- What about uncertainty?
- Common approach: use a risk-adjusted discount rate
- The discount rate is often used to reflect the risk associated with a project: the riskier the project, use a higher discount rate
- Typical discount rates for technology programs: 12-20%
- Issues with this approach?

- Value at Risk (VAR) recognizes fundamental reality: actual value of any design or project can only be known probabilistically
- Because of inevitable uncertainty in
 - Future demands on system
 - Future performance of technology
 - Many other market, political factors

- Value at Risk (VAR) definition:
 - A loss that will not be exceeded at some specified confidence level
 - "We are p percent certain that we will not loose more than V dollars for this project."
- VAR easy to see on cumulative probability distribution (see next figure)

- Look at distribution of NPV of designs A, B:
 - 90% VAR for NPVA is -\$91
 - 90% VAR for NPVB is \$102

VAR and Flexibility

- VAR is a common financial concept
- It stresses downside losses, risks
- However, designers also need to look at upside potential: "Value of Gain"
- Flexible design provides value by both:
 - Decreasing downside risk
 - Increasing upside potential
 - See next figure

- ESD.36J SPM

Cut downside ; Expand Upside

Massachusetts Institute of Technology

Parking Garage Project Example

Valuing Options by Spreadsheet: Parking Garage Case Example Richard de Neufville, Stefan Scholtes and Tao Wang -- ASCE Journal of Infrastructure Systems, Vol.12, No.2. pp. 107-111, 2006

- Design project for fixed objective (mission or specifications) is engineering base case
- Recognizing variability => different design (because of system non-linearities)
- Recognizing flexibility => even better design (it avoids costs, expands only as needed)

- This is a simplified educational case
- But similar real world situations exist
- Applicable to general technical projects

Bluewater development in England (http://www.bluewater.co.uk/)

Image by John Winfield http://bit.ly/16Eala4> on Wikimedia Commons. License: CC-BY-SA

Parking Garage Case

- Garage in area where population expands
 - New commercial/retail opportunities
- Actual demand is necessarily uncertain
 - Demand drives capacity for # of parking spots
- Design Opportunity: Strengthened structure
 - enables future addition of floor(s) (flexibility)
 - costs more initially (flexibility costs)
- Design issue: is extra cost worthwhile?

Parking Garage Case details

- Demand
 - At start is for 750 spaces
 - Over next 10 years is expected to rise (exponentially) by another 750 spaces
 - After year 10 maybe 250 more spaces
 - could be 50% off the projections, either way;
 - Annual volatility for growth is 10%
 - Consider 20 years
- Average annual revenue/space used = \$10,000
- The discount rate is taken to be 12%

Parking Garage details (Cont)

Costs

- annual operating costs (staff, cleaning, etc.) = \$2,000 /year/space available
 (note: spaces used is often < spaces available)
- Annual lease of the land = \$3.6 Million
- construction cost = \$16,000/space + 10% for each level above the first level

Site can accommodate 200 cars per level

Massachusetts Institute of Technology

Demand growth as predicted, no variability

Year	0	1	2	3	11	19	20
Demand		750	893	1,015	//	1,688	1,696
Capacity		1,200	1,200	1,200		1,200	1,200
Revenue		\$7,500,000	\$8,930,000	\$10,150,000	$\langle \langle \rangle$	\$12,000,000	\$12,000,000
Recurring Costs							
Operating cost		\$2,400,000	\$2,400,000	\$2,400,000		\$2,400,000	\$2,400,000
Land leasing cost	\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000	-]]	\$3,600,000	\$3,600,000
Cash flow		\$1,500,000	\$2,930,000	\$4,150,000		\$6,000,000	\$6,000,000
Discounted Cash Flow		\$1,339,286	\$2,335,778	\$2,953,888		\$696,641	\$622,001
Present value of cash flow	\$32,574,736	2					
Capacity costs for up to two levels Capacity costs for levels above 2 Net present value	\$6,400,000 \$16,336,320 \$6,238,416	} capex=	= capital	expendit	ures=	initial inv=	estment

Optimal design for base case (no uncertainty) is 6 floors

Step 2: Simulate uncertainty

Compare Actual (5 FI) with (unrealistic) fixed 6 FI design

Massachusetts Institute of Technology

Recognizing uncertainty => different design (5 floors)

Step 3: Introduce flexibility into design (expand when needed)

Year	0	1	2	3	11	19	20
Demand		820	924	1,044		1,519	1,647
Capacity		800	800	1,200		1,600	1,600
Decision on expansion			expand				
Extra capacity			400				
Revenue		\$8,000,000	\$8,000,000	\$10,440,000	$\langle \rangle$	\$15,190,000	\$16,000,000
Recurring Costs							
Operating cost		\$1,600,000	\$1,600,000	\$2,400,000		\$3,200,000	\$3,200,000
Land leasing cost	\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000		\$3,600,000	\$3,600,000
Expansion cost			\$8,944,320				
Cash flow		\$2,800,000	-\$6,144,320	\$4,440,000		\$8,390,000	\$9,200,000
Discounted Cash Flow		\$2,500,000	-\$4,898,214	\$3,160,304		\$974,136	\$953,734
Present value of cash flow	\$30,270,287						
Capacity cost for up to two levels	\$6,400,000						
Capacity costs for levels above 2	\$7,392,000						
Price for the option	\$689,600						
Net present value	\$12,878,287						

Including Flexibility => Another, better design: 4 Floors with strengthened structure enabling expansion

Summary of design results from different perspectives

Perspective	Simulation	Option Embedded	Design	Estimated Expected NPV
Deterministic	No	No	6 levels	\$6,238,416
Recognizing Uncertainty	Yes	No	5 levels	\$3,536,474
Incorporating Flexibilty	Yes	Yes	4 levels with strengthened structure	\$10,517,140

Why is the optimal design much better when we design with flexibility?

1) Minimize exposure to downside risk

Sources of value for flexibility:

2) Maximize potential for upside gain

Comparison of designs with and without flexibility

Design	Design with Flexibility Thinking	Design without Flexibility thinking	Comparison
	(4 levels, strengthened structure)	(5 levels)	
Initial Investment	\$18,081,600	\$21,651,200	Better with options
Expected NPV	\$10,517,140	\$3,536,474	Better with options
Minimum Value	-\$13,138,168	-\$18,024,062	Better with options
Maximum Value	\$29,790,838	\$8,316,602	Better with options

Wow! Everything is better! How did it happen?

Root cause: change the framing of the problem

- recognize uncertainty
- add in flexibility thinking

Summary from Garage Case

Sources of value for flexibility

- Cut downside risk
- Expand upside potential
- VAR chart is a neat way to represent the sources of value for project flexibility
- Spreadsheet with simulation is a powerful tool for estimating value of flexibility

Real World meets Academia

Screenshot of the news article, "Logan Parking Squeeze Could Reach Crisis Level," from Boston Business Journal removed due to copyright restrictions. Please see http://www.bizjournals.com/boston/stories/2001/11/05/story3.html for further reference.

Summary

- Layers of Risk
- Classical Risk Management
 - Risk = Probability of Event X Impact of Event
 - Risk Management Cycle (identify, Analyze, Plan, Track, Control)
 - Risk Identification is not enough, must do something
- One way to aggregate risks is NPV
 - Some issues such as system safety need to be tracked in addition to NPV
- NPV is uncertain
 - Compute Value-at-Risk (VAR) curves
 - Shape VAR curves by embedding flexibility
- Real Options embody formal concept of flexibility

- Prof. Don Lessard
 - Concept of the Layers of Risk
- Prof. Richard de Neufville
 - Garage Case Study
 - Tao Wang, ESD PhD Real Options "in" Projects and Systems Design -- Identification of Options and Solutions for Path Dependency, Doctoral Dissertation, MIT, May, 2005

ESD.HÎ Ù^• ơ\{ ÁÚ¦[b/\&oAT æ)}æ* ^{ ^} c Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.