Spectrum Policy Lecture #1: Spectrum Management Reform

William Lehr

Massachusetts Institute of Technology

ESD 68 :

Communications and Information Policy

Massachusetts Institute of Technology

March 2, 2006

Outline

- □ Why regulate spectrum?
 - What wireless used for?
 - History of wireless technology
 - Broadcasting regulation
- □ Wireless industry trends and pressure for policy reform
 - Changing technology, industry and regulatory context
 - Spectrum management models
 - History of spectrum reform in US
- Stakeholders and Issues
 - Who are the stakeholders?
 - What are some of the issues?

What wireless used for?

- □ Broadcast TV & radio (AM, FM, DBS, PAL; terrestrial & satellite)
- □ Sensing, Imaging, Location (GPS, satellite photo, radar, x-ray)
- Communications (distance/area coverage)
 - WAN: cellular telephony (AMPS, GSM, CDMA, Satellite)
 - MAN: fixed wireless data (Microwave, LMDS, 802.16 WiMAX)
 - LAN: local area data nets (802.11x WiFI)
 - PAN: cable substitutes (Bluetooth, IRDA, Zigbee)
- □ All use RF Spectrum:
 - Who gets to use it, for what services, when?
 - Managing interference
 - Intentional v. Unintentional Radiators (microwave, computer CPUs, etc.)

RF Spectrum

- □ Radio spectrum (3Khz-300GHz): when Frequency \uparrow , then
 - .. bandwidth ↑ (info carrying capacity)
 - .. wavelength \Downarrow (antenna \Downarrow)
 - .. propagation \Downarrow (rain fade \Uparrow , Power Law)
- □ Line of sight?
 - Below 3GHz: not needed
 - Communication services (cellular, pagers)
 - Broadcast services (radio, TV)
 - Above 3 GHZ: needed
 - Point-to-point (e.g., wireless fiber @ 70GHz)
- Spectrum at different RF imperfect substitutes
 - But, usable spectrum expanded over time
 - Technology increases substitutability & opportunity cost

Need Multiple Wireless Networks

- **Bandwidth**
 - Control: <10Kbps (monitoring, signaling)
 - Real-time communications: < 100Kbps (telephone)
 - Broadband: 10-100s Mbps (streaming video)
- □ Coverage (power)
 - PAN (few feet), LAN (on campus, in home), MAN (metro), WAN (satellite)
- □ Architecture
 - Broadcast: one transmitter to many receivers
 - 2-way: point-to-point (fixed or mobile?)
 - Multipoint-to-multipoint (grid)
- □ How integrated are different networks?
 - Lots of technology: incompatible standards, uses, etc.

History of Wireless Technology

Early technology

- □ 1887: Hertz sends/receives radio waves
- **u** 1895: Marconi invents spark transmitter
- **u** 1912: Titanic and Ship radio
- **u** 1918: Armstrong invents superheterodyne receiver

Broadcasting Age: AM radio \rightarrow VHF TV \rightarrow FM radio \rightarrow UHF TV

- 1920: 100-watt KDKA starts broadcasting Pittsburgh
- □ 1922: BBC formed. (1926/27 NBC and CBS formed)
- 1928: Federal Radio Commission established
- □ 1948: CATV for rural
- 1951: CBS broadcasts in color

Wireless Communications: "Push-to-talk" \rightarrow AMPS \rightarrow PCS \rightarrow 3G \rightarrow WiFi

- 1927: Wireless radiotelephone between Britain and US
- **u** 1946: "Push-to-talk" radio communications
- **u** 1983: Commercial AMPS (1G "analog") in Illinois
- □ 1990/1: TDMA digital (2G "digital") overbuilds to AMPs. GSM in Europe.
- □ 1994/5: PCS auctions in US
- **u** 1997: UMTS-Forum (3G "wireless broadband")
- □ 1999: IEEE approves 802.11b ("WiFi")
- **D** 2000: WRC2000: UMTS/W-CDMA

Why regulate spectrum?

- □ Government stewardship of public asset (airwaves)
- □ Scarce resource => how to allocate when congested
 - Interference regulation
 - Regulation or markets (Ronald Coase)?
 - Market failure? e.g., International spectrum harmonization
- Service/Industry structure regulation
 - Broadcast/Media Regulation (content/editorial)
 - Communications Regulation (common carrier)
- Other
 - Safety (harmful RF emissions)
 - Emergency services (policy access) & defense
 - Equipment licensing/certification (Trade policy)
 - Privacy, eCommerce, government revenues, etc.

How spectrum regulated?

- Government owns spectrum --- "national asset"
 - Defense/government uses major user
 - Licensed commercial applications second (in US, about 6% spectrum below 3GHz)
 - Unlicensed 2% of spectrum in use (amateur radio, science, WLANs)
 - Unregulated
 - "What not forbidden is permitted" or "what not permitted is forbidden"
 - e.g., Above 50GHz
- Expert federal agency: allocates and assigns spectrum, regulates services, general competition law
 - in US: NTIA (Government) & FCC (Commercial/Private); in UK: Ofcom
 - internationally, ITU-T
 - requires sophisticated engineering and technical oversight
- □ Command & control (tight admin of freq bands) => flexibility
 - Licenses specify (1) service (content?); (2) technology; (3) Ownership (foreign, transferability)
 - Renewal: Pro-forma or real review?
 - Allocation: assignment, fee, or auctions?

Broadcast/Media

- □ Radio & TV
 - Broadcast architecture: one-to-many
 - Free (advertiser supported) vs. Subscription (Pay-TV)
- □ Access to media channels (scarcity)
 - Public broadcasting
 - In US: "Free speech" 1st Amendment
- **Content diversity**
 - Industry structure? (Media cross-ownership rules, foreign ownership)
 - Local content requirements
 - Censorship (filtering)
- □ Current Issues: Transition from analog PAL/NTSC => digital
 - HDTV?
 - Over-the-air vs. cable/satellite?
- □ Content (Media)/Conduit (Telecom) convergence
 - Does Broadcast law apply to Telecoms or visa versa?

Legacy of Wireless Technology

□ Transmitter & Dumb Receivers: frequency allocation

- Armstrong: Superhet transceiver (1918).
 - Information modulated on carrier frequency.
 - Radio receiver demodulates signal and extracts information.
- Multiple signals arriving at receiver, receiver cannot extract useful information (other signals are regarded as noise)
- Assign a frequency band (channel) to specific use in each area
- Range: S/N above floor at farthest receiver. Non-uniform signal density
- Spectrum coordination/management needed to limit destructive interference
 - Exclusive frequency allocation/assignment in geographic areas

Lots of Wireless Technology

- □ All along the RF spectrum (different RF not perfect substitutes)
 - Microwave
 - Satellite (geosync, LEO)
 - Mobile 2G => 3G (4G?)
 - WLANs (*e.g.*, WiFi) => WISPs and MESH (Tropos)
 - BWFA: MMDS => Alvarion => WiMax (802.16)
 - Free Space Optics, UWB, etc.
- □ Lots of complementary technology
 - Smart antennas, software radio, MUD, ad hoc routing, mesh networking, OFDM, etc.

Technology => Spectrum Efficiency oo

- Digital signal processing: From analog to digital "0s & 1s"
 - Regenerate, not amplify
 - Moore's Law
 - Computation instead of digitization (spread spectrum)
 - Multimedia
- Networking and Communications Theory
 - Mobile routing. Smaller cell sizes
 - Modulation and signal processing
- □ Information Theory:
 - Capacity channel proportional to bandwidth (Shannon)
 - Multiuser theory => cooperation gain. Wireless grids.
- □ Smart antennas (spatial diversity, multipath can help)
- □ Software radios (cognitive radios: smart edge devices)

Changing industry/regulatory context

- Merging of computing & communications
 - WWII-1960s: Mainframes & dumb terminals
 - 1970s: Minicomputers & distributed processing
 - 1980s: PCs and LANs (edge-based computing)
 - 1990s: Internet (data services for masses) and Mobile Cellular (wireless services for the masses)
 - 2000s: Wireless broadband (3G, WiFi, Satellite, etc.)
- □ Merging of wireless & wireline
 - Pervasive computing: always on, connected
 - Mobility: ubiquity, flexibility, portability (nomadicity)

Changing industry/regulatory context

- From regulation to markets
 - Global trend towards privatization, liberalization
 - Transport (airlines, RR), Gas/electric power, banking, and telecoms
 - Inefficiency of government:
 - Soviet-style central planning vs. Western Capitalism
 - Slow: non-responsive to innovation
 - Vulnerable to capture/rent-seeking
 - Coase & Chicago School: Property rights & markets
- □ Telecom Crash of 2000
 - dot-com bomb: collapse in demand
 - Spectrum auctions (3G)
 - Worldwide recession (telecom/IT capital intensive)

Implications of Wireless Technology

- □ Increased performance
 - Spectral efficiency, NLOS, Improved reliability/security/QoS
- □ Lower costs
 - Moore's Law, Scale/scope economies, Standardization.
 - New architectures.
- Distributed control
 - MESH networks, edge-based networking => toward cognitive radio
 - Towards smart radio systems (antennas, receivers)
- □ Wireless everywhere..
 - WPANs, WLANs, MANs
 - Fixed & Mobile

Wireless Industry Trends

- **Gamma** Standardization:
 - Proprietary physical layers giving way to few industry standards (3G, 802.11, 802.16). Driven by chip economics.
- □ Trade-off between bit rate and reach & cost deploy
 - Rooftop antennas => high speed, long-reach
 - Desktop antennas => inexpensive deployment (and need to address mobility => PC cards, PDAs, etc.)
- □ Competing architectures: Large cell v. Small cell
 - Large => long reach => few cells => wired backhaul (Alvarion)
 - Small => short reach => lots of cells => wireless backhaul or mesh (Tropos)
 - New designs include QoS capability (VoIP)
- □ Merging of wireless & wireline
 - Pervasive computing: always on, connected
 - Mobility: ubiquity, flexibility, portability (nomadicity)
- □ Multiple models for spectrum mgmt: Unlicensed v. Licensed
 - Unlicensed => rapid, low-cost entry for WISPs
 - Licensed => better protection against congestion (QoS)

Why spectrum reform now?

- Lots of new technology and services that are being held back by legacy regulations...
 - Insufficient spectrum for commercial use
 - What is available, is not used efficiently
 - License rules limit market flexibility
- Problem: Artificial spectrum scarcity!
 - Sharing opportunities missed
 - Innovation blockaded: services, devices, and business models
 - High marginal cost for spectrum (auctions bankrupt providers)
- □ Solution: Spectrum Reform...

Goals for Spectrum Policy Reform

- □ Eliminate artificial scarcity: introduce market forces
 - Flexible use, secondary market trading
- □ Accelerate wireless broadband revolution
 - Convergence of Internet & wireless
 - Promote evolution from 2G to 3G
- □ Promote adoption of advanced technology
 - Refarm underused spectrum to high value uses
 - Enable new capabilities, promote investment (smart receivers)
- □ Last mile bottleneck: unleash 3rd mile competition
 - New, low cost infrastructure in developing world
- □ Enable new business models:
 - MVNOs and value-added service providers
 - Wireless grids and edge-based networks

Spectrum Management Models

- □ Three basic models:
 - Command & Control: (legacy model under attack)
 - Technology, provider, services specified by regulator
 - Exclusive license: "Property rights"
 - Flexible, transferable licenses to operate in area/band.
 - Licensee chooses technology, services
 - Secondary markets: licensee can trade rights to third parties
 - Unlicensed: "Commons"
 - Underlay: UWB, Part 15 devices (secondary use)
 - Opportunistic: interleaving, use white space (secondary use)
 - Dedicated: ISM 2.4 and 5 GHz bands used by WiFi
- Policy recommendation: increased reliance on exclusive licensed for scarce spectrum or commons otherwise
 - Especially for spectrum below 3GHz

Spectrum Mgmt in U.S.: a brief history

- □ pre-1927: Priority in use, Commons model
 - (Radio Act 1912: spectrum use requires Federal license)
- □ Radio Act 1927, then Communications Act 1934: Exclusive use
 - Federal agency (FCC) manages commercial spectrum, NTIA manages government.
 - (1) Block Allocation; then, (2) Assignment
 - Exclusive use, restrictive licenses: Technology/Service/Build-out/Transferability all limited by FCC
 - Minimum frequency allocation per license to deliver service.
 - Interference model based on capabilities of dumb receivers
 - Unlicensed for low power, not valuable spectrum
- □ Slow trend towards liberalization
 - Waivers, Private management interference, sharing, overlays
- □ Auctions authorized in 1993 for license assignment.
 - Beauty Pageant (1927-1981), then lotteries (1981-1993)
- □ Telecom Act 1996
 - Eliminate cap for non-broadcast licenses; increased flex for broadcast spectrum use; and authorized spectrum fees

A history of "regulatory capture" by broadcast industry (Hazlett, 2001) *e.g.*, AM blocks FM (1930s), Du Mont fails (1950s), VHF blocks CATV (1960s), etc.

Spectrum Management and Wireless Markets

- □ Broadcasting Spectrum (exclusive, inflexible licenses) example of problem
 - Architecture for high power transmission for over-the-air broadcasters uses (low power) spectrum inefficiently
 - Move terrestrial TV to satellites or wires (cable)
 - Encourage development of smart receivers
 - Legacy of using "interference" threat to oppose competition (FM radio, UHF broadcasting) and slow to deploy new technology (digital TV conversion)
 - What about over-the-air digital TV?
- □ Mobile Telephone Services (exclusive, (semi)-flexible licenses) success!
 - Poster child for competition success: consumer choice, declining prices, service innovation.
 - Use spectrum very efficiently. Lots of sharing.
 - Allocated via auctions (but what about 3G auctions and telecom meltdown in 2000?)
 - Benefits of mandating a single standard? 2G in Europe v. US
 - Further growth constrained by lack of access to available spectrum
- □ WiFi success (open access, unlicensed) success!
 - Power limits on equipment. No exclusive right to interference protection.
 - Congestion emerging as problem.
 - Is this model generalizable?

Stakeholders in Spectrum Debates: perspective?

- □ Users: Commercial: consumers & businesses (small/large) v. Govt.
- □ Providers Value chain...
 - Equipment: chips, software, edge and network hardware and software
 - Network service providers: mobile, BWFA, DBS
 - Content/Application providers: Hollywood, music, games
- Regulators/governments
- □ Industries: Broadcast v. Telecom (Internet) v. Users
- **D** Entrants v. Incumbents
- □ Nations (and w/in nations, cities v. states v. feds; member states v. EC)

e.g., Why is govt spectrum different from commercial?

- □ In US and abroad: largest share of spectrum is government
- **Government spectrum:**
 - US: NTIA \rightarrow government spectrum; FCC \rightarrow commercial
 - Government: Defense, Public safety, Aviation, NASA, Agriculture, etc.
- **Commercial v. Government**
 - Profit/Competition v. Mission/Bureaucracy
 - Trade and business law v. Constitution/treaties
- □ But if spectrum is scarce, shouldn't all users bear opportunity cost?
 - Resources that have alternative uses have value.
 - Opportunity Cost = Value in next best use
 - WHAT IS VALUE? HOW TO ESTIMATE?

Summing Up

- □ Wireless industry and technology: rapid growth and seismic changes
 - From analog \rightarrow digital
 - From broadcast \rightarrow communications \rightarrow multimedia
 - From dedicated to shared use
- **□** From regulation to markets: deregulation
 - Promote innovation, investment, and competition
 - Key issues:
 - (1) Markets v. Regulation
 - (2) Auctions v. Free Use
 - (3) Spectrum scarcity & transaction costs
 - (4) Defining interference
 - (5) Industry structure and models for management
 - Transition politics, Windfall Gains
 - (6) International Coordination
 - (7) Commercial v. government spectrum use
- **Balancing stakeholder interests**
 - Incumbents v. Entrants
 - Service providers v. equipment makers
 - Suppliers v. end-users (existing or new apps?)

How best to introduce market forces:

* Managing the transition?

* Licensed v. Unlicensed models?