(Interconnection Module Lectures #2 & #3) Challenges for Convergence: Interconnection

William Lehr

ESD 68 :

Communications and Information Policy

Massachusetts Institute of Technology

April 4 & 6, 2006

©Lehr, 2006

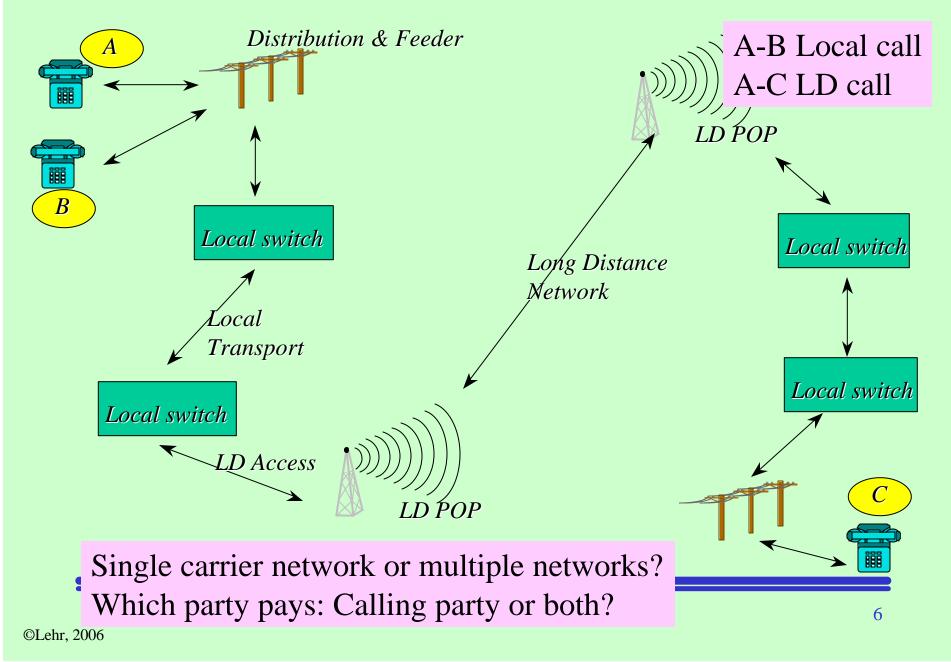
Interconnection Lecture Outline

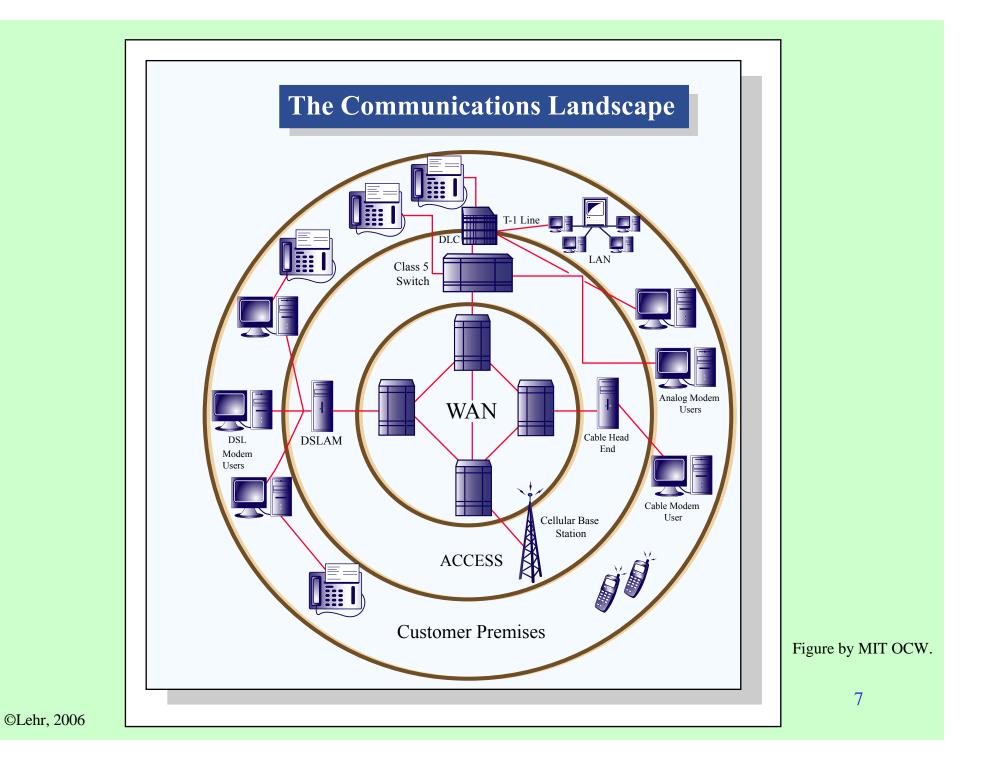
- Examples of interconnection in telecoms
- □ Why regulate interconnection?
- Basic economics of interconnection
- □ Goals of interconnection regulation
- Current models for interconnection
 - Cost-based pricing
 - Negotiated pricing (reciprocal compensation)
 - Bill and Keep

Readings

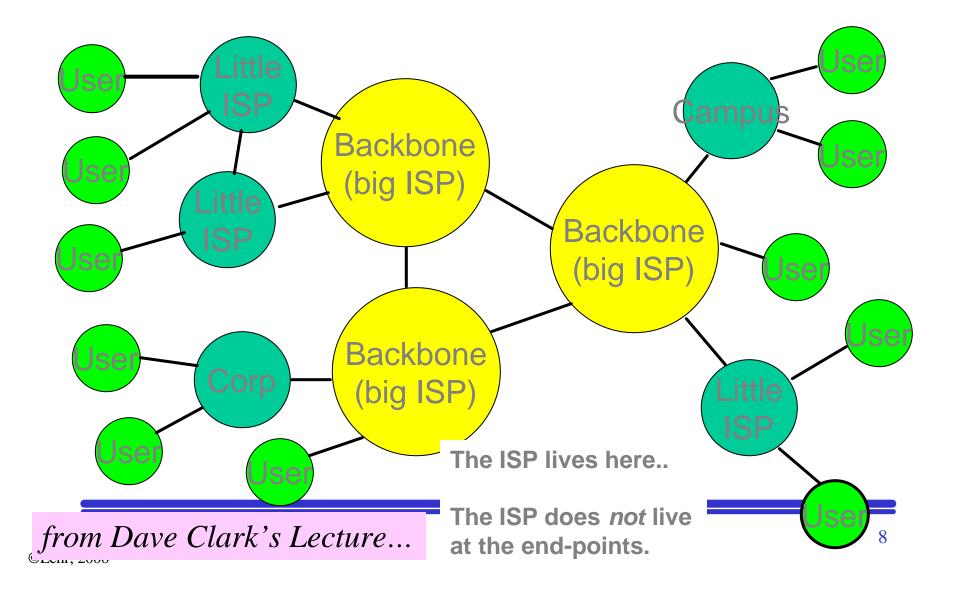
- Sicker, Douglas (2002), "Further Defining a Layered Model for Telecommunications Policy," draft mimeo, October 2002.
- DeGraba, Patrick, "Bill and Keep at the Central Office As the Efficient Interconnection Regime," OPP Working Paper Series No. 33, Federal Communications Commission, December 2000.
- Kende, Michael "The Digital Handshake: Connecting Internet Backbones," OPP Working Paper Series No. 32, Federal Communications Commission, 2000.

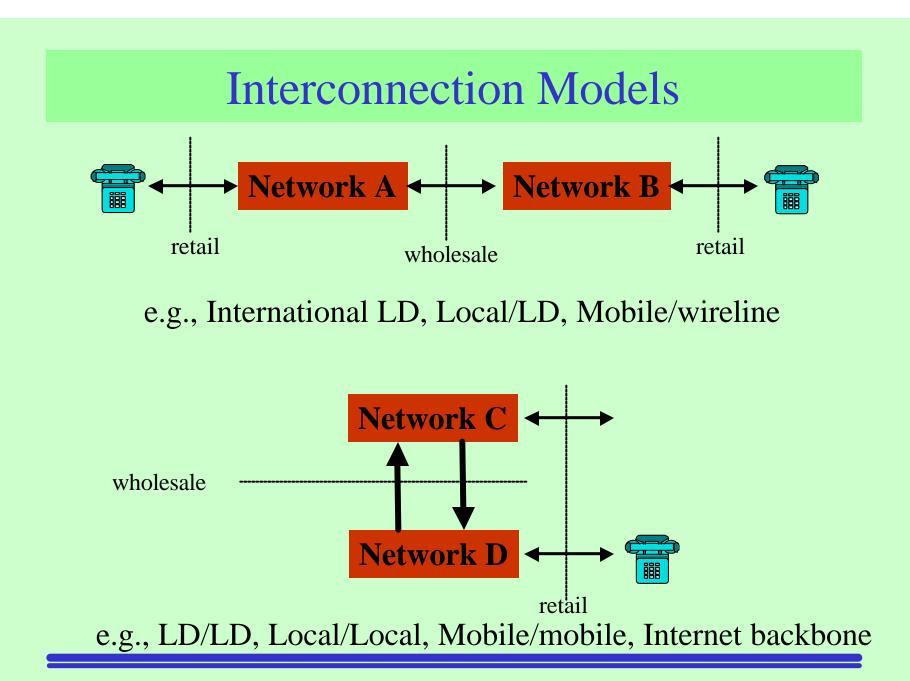
What is interconnection issue?

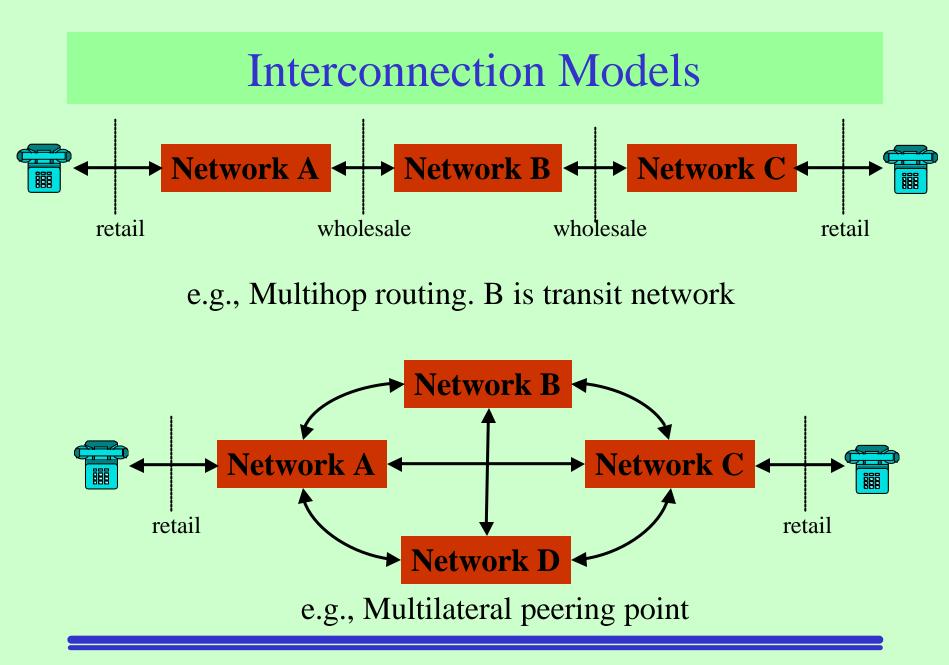

- Two (or more) networks exchange traffic, they need to be interconnected.
 - Physical point(s) of interconnection
 - Technical/operational issues
 - Commercial relationship: who pays what?
- □ Why problem for convergence?
 - From silos \rightarrow platforms
 - Regulation still based on silos


Interconnection & Access Pricing (Theory)

• One way access:


- Incumbent sells essential input to entrant
- Incumbent could be vertically integrated or not (does incumbent compete in retail market with entrant?)
- e.g., Local loop unbundling
- □ Two way access:
 - Network interconnection problem
 - Reciprocal needs to terminate traffic
 - One or both could have market power
 - e.g., Internet peering or transit, mobile/wireline network interconnection charges, international settlements


Telephone Network: a network of networks



A more realistic picture

Current models for interconnection

□ Examples:

- International settlements: negotiated rates for terminating calls. May not be symmetric, generally well above costs.
- Long distance pay per minute access charges for local termination.
- VoIP calls avoid charges
- Internet peering using "bill and keep"
- Different prices for similar situations: inefficient pricing

Interconnection Models

- □ Technology of networks: same or different?
 - Wireline/wireline, wireline/wireless, packet/circuit, etc.
- □ Type of traffic? (e.g., Web browsing vs. telephone call)
 - Balanced or asymmetric flows?
 - QoS needs: delay sensitivity? BER sensitivity?
- □ Size of networks: same or different?
- □ National or international?
- □ Regulated or negotiated?

Different costs, business relationships, and regulatory treatment. Not a problem when telcos were regulated monopolies...

Elements of Interconnection Agreement

- □ Scope and Purpose of Interconnection
 - Who are parties?
 - Types of traffic? Networks? Architecture?
 - Points of Interconnection
- Quality of Service and technical specifications
 - Quality of service and performance standards
 - Technical interconnection specs and capacity
 - Infrastructure sharing, collocation
 - Traffic measurement and routing
- Billing and payment terms
 - Pricing
- Enforcement/Dispute Resolution

Why regulate interconnection?

□ Promote interconnection: larger networks more valuable

- Positive network externalities
 - Scale & Scope economies \rightarrow lower costs
 - Complementary goods \rightarrow more choice
 - More people to call (subscriber externality)
- \Box Coordinate interoperability \rightarrow standards
- □ Control market power
 - Promote competition \rightarrow facilitate entry
 - Protect consumers from monopoly power

Challenge of Regulating Interconnection

- □ Promoting "interconnection" \rightarrow easy when regulated end-to-end monopoly
 - International is negotiated bilateral/multilateral treaty (trade issue)
 - Interconnection rates include implicit subsidies, but lots of other regulatory levers to address distortions
 - Control of "rate base" monitors investment
 - Retail rate regulation protects consumers
 - Silos minimize challenge of cross-platform interconnection
- □ But, Convergence \rightarrow Telecom becomes a "network of networks"
 - Traffic passes between networks owned/operated by different carriers, or across regulatory boundaries.
 - Need physical point(s) of interconnection and business rules (pricing, QoS) to exchange traffic.
- □ And, Competition \rightarrow Transition to wholesale regulation
 - Interconnection is a "wholesale market"
 - Between carriers, services are ingredient to a retail service

Interconnection and Market power

- □ Interconnection rates set to exploit/leverage market power
 - Originating monopoly problem
 - Is their competition for subscribers? If so, then competition assures originating carrier cannot extract surplus rents.
 - Switching costs (e.g., incomplete information re: alternatives pay phones; lack of address portability – email addresses, etc.)
 - International mobile roaming
 - MCI "Friends & Family": discriminate between on-net and off-net calls
 - No? Then access a bottleneck.
 - Terminating monopoly problem
 - Only one path to terminate
 - Subscribers care more about what they pay than what those who call them pay
 - Incentive for terminating network to set high fees

Interconnection and Market Power

- □ Incentives to interconnect?
 - Network externalities: larger network more valuable
 - No market power, providers interconnect to increase value of both networks
 - Competition for subscribers (which network to join?)
- □ If market power, then may seek to abuse interconnection
 - Natural monopoly, scarce resource, or first-mover advantage
 - Incumbent w/ large network has market power relative to smaller (newer) networks
 - Collusion: bilateral setting of high rates (international settlements, mobile roaming)
- □ Modes of abuse
 - Denial of access: foreclose competition
 - Discriminatory access: inferior access to 3rd parties relative to affiliated subsidiary
 - Monopoly pricing: price access significantly above cost
- Regulatory response
 - Common Carriage \rightarrow non-discriminatory access and interconnection obligation
 - Mandatory unbundling and interconnection
 - Price and terms of interconnection regulated
 - Line of business restrictions (preclude retail entry)

Regulating Carrier Interconnection

- □ Regulating both retail *and* wholesale rates problematic
- What price to set for interconnection?
 - Efficiency: P=Incremental cost of termination
 - Economic (forward-looking), not accounting costs.
 - Costs of network "access" recovered on originating end (unbundling)
 - Wholsale rate > cost \rightarrow arbitrage, inefficient bypass (distort investment)
 - Historically, interconnection prices include subsidies (for universal service, for non-traffic sensitive "access" costs, etc.)
- □ Who sets rate?
 - Regulators: Expensive proceedings to set cost-based rates
 - Contribution to shared/common costs? Implicit subsidies?
 - Markets: Arbitrage enforces "Law of One Price"
 - International Bypass, Voice-over-IP
 - Negotiated: mandate "reciprocal compensation"
 - OK if costs symmetric, but what if not? Mobile v. Wired. Traffic asymmetric.
- Which party pays?
 - Calling (Sending) party pays: problem of mobile termination
 - "Bill and Keep"

Unified Carrier Compensation Scheme

Drivers:

- Convergence: symmetric regulation
- Liberalization: markets not regulation
- Globalization: promote free trade (e.g., WTO)
- □ FCC Unified Intercarrier comp regime (2001): Bill & Keep?
- European Commission: Interconnection directive
 - Competitive markets: allow flexible negotiation
 - When competition lacking, regulators may enforce interconnection, which includes rate setting
 - Symmetric rules
- One size fits all??

Calling party pays

□ Calling party pays incremental cost of termination

- Doesn't address call externality (value called party)
- Good incentive for quality of service when terminating
- Vulnerable to terminating monopoly problem
- Vulnerable to monopoly leveraging if market power
- Reciprocal compensation
 - Technology same
 - Negotiated termination fees, but requirement for reciprocal rates reduces bargaining power of incumbent
 - e.g., debate over ISP Reciprocal Compensation in U.S.
- □ Incentives to collude? (mobile roaming)
- □ Implications for retail rate regulation?

Bill and Keep

- □ Recover all costs from network's own subscribers
 - Wholesale rate for interconnection = 0
 - Carriers each pay own costs for interconnection
- □ Used in Internet backbone. Could be used more generally.
- **Benefits**?
 - Simple to implement. No inter-carrier fees paid.
 - Deregulatory: no longer need to set prices for termination.
 - Efficient if:
 - Costs of termination symmetric & traffic balanced \rightarrow net payment~0 anyway.
 - Costs termination close to zero
- □ Issues:
 - Hot potato routing
 - Asymmetric costs/values (e.g., mobile/wireline)
 - Asymmetric traffic (Web browsing, streaming media)
 - Incentive to terminate with high quality? (Free riding)

Interconnection Tussle

- □ Issues/Perspectives
 - Efficient pricing: usage v. flat rate charges, elimination of implicit subsidies
 - Market power? (Terminating or originating monopoly)
 - VoIP?
 - Usage v. Flat rate charges?
 - Jurisdiction?
- □ Stakeholders:
 - Rural Telcos \rightarrow high rates, retain subsidies, regulate VoIP
 - ILECs \rightarrow move usage subsidies into SLC, move to BnK
 - CLECs \rightarrow competitive neutrality (cost-based), reciprocal comp
 - States \rightarrow retain state autonomy to set local/intrastate rates
 - FCC \rightarrow BnK to simplify and increase cross-platform competition

Additional Slides

©Lehr, 2006

Costs of terminating traffic

- □ Economic not accounting (historic)
 - Resources priced at opportunity cost
 - Forward-looking: ignore sunk/history irrelevant
 - Incremental: short-run or long-run?
 - Short-run: take capacity as fixed. Exclude fixed/sunk.
 - Marginal costs = dTC/dq
 - Long-run: investment in capacity.
 - Long-run Incremental Cost (LRIC)
 - Exclude costs already recovered in access (origination)
 - Per minute (switching), per call (set-up), per month (capacity)?
- How to estimate?
 - Market data (comparables?)
 - Engineering cost models
 - Accounting data, adjusted to reflect productivity gains
- □ Costs variable? e.g., Hot potato routing.

Externalities

- Externality: benefits (or costs) imposed on others as result of individuals actions.
 - Prices which do not reflect all benefits (costs) result in too little (too much) usage
 - Examples: pollution, traffic jams, spectrum interference
- Solution: internalize the externality so individual cost/benefit reflects all impacts
 - Example: pollution fines, road tolls, spectrum fees
- □ Relevant examples for interconnection
 - Network ("subscriber") externality (positive)
 - Calling externality (positive)
 - Congestion externality (negative)

Network Externality

- □ Bigger network more valuable. Impact positive.
 - Direct: expanded connectivity. More options for calling.
 - Indirect: more complementary goods, lower costs
- Subscriber externality
 - Early adopters convey benefit on later (justify penetration pricing?)
 - Diminishing marginal returns
- Examples: Universal service, Microsoft Windows, Internet
- Should small network pay more when connecting to big network?

Calling Party Externality

- □ Both called and calling party benefit from call
- Typically only calling party pays: makes fewer calls than optimal
- □ Costs of terminating calls may not be symmetric
 - e.g., Mobile to wireline, Web browsing
 - Origination vs. termination (e.g., switch usage)
 - Not always positive: SPAM
- **Given Solutions:**
 - Both parties pay (in US, mobile caller and called party pay)
 - Inter-temporal alternating direction of origination
 - Flat rate billing
- □ Should called and calling party pay? Metering/privacy?

Congestion externality

- Caller's traffic slows down everyone else's traffic when network congested. Delay imposed on other's is ignored by sender.
- □ Solutions:
 - Congestion pricing: internalize externality
 - Peak-load pricing: time varying prices (e.g., time of day tariffs)

Arbitrage

- □ "Law of One Price"
 - Close substitutes ought to have similar prices.
 - Buy one and sell other.
- □ Examples:
 - Call-back in International Telephone
 - VoIP to avoid telephone charges
 - Reciprocal Comp: ISPs and CLECs in US
- □ Is it efficient?
 - Forces prices in line with costs (e.g., financial markets)
 - Makes difficult to sustain regulatory subsidies