Massachusetts Institute of Technology

Engineering Approach to Healthcare Delivery

Predictive Modeling Team Suhail Ahmad, Terry Hu, Kangse Kim, Jeongyeon Shim, Sungmin You

Seminar on Healthcare System Innovation October 7, 2010

AGENDA

- Systems Engineering and Management
- Operations Research
- Engineering Healthcare as a Service System
- Process Engineering: A Necessary Step to a Better Public Health System

AGENDA

- Systems Engineering and Management
- Operations Research
- Engineering Healthcare as a Service System
- Process Engineering: A Necessary Step to a Better Public Health System

THE VALUE OF SYSTEMS ENGINEERING FOR HEALTHCARE

Healthcare as a non-system

Value proposition of systems engineering

NAE and IOM Findings

- Nontraditional system
- High organizational barriers
- Systems engineering has been proven in other industries
- Slow adoption of tools in healthcare
- Potential for improvement
- Inadequate attempt to use system engineering in healthcare
- Information systems will be critical
- Few incentives for change
- Active team effort necessary for adoption of system engineering tools

REQUIREMENTS FOR ADOPTING SYSTEMS ENGINEERING TOOLS

Definition of Requirements

Architecture of the System

NAE and IOM Recommendations

- Insurers, employers, and payers should provide incentives to use system tools
- Increase efforts to expand and integrate systems coordination
- NIH Library of Medicine should provide information and access to tools, Government entities should provide support to train people to use tools
- Do not wait in implementing single tools
- Increase support of research for application of systems engineering in healthcare

SYSTEMS ENGINEERING METHODS AND TOOLS

Design	 Tradeoffs, Limits, Objectives Quality Function Deployment, Design Structure Matrices Plausibility Failure Mode and Effects Analysis, Fault Tree Analysis
Analysis	 Modeling performance over time Queuing theory, system dynamics Mathematical programming – allocation of resources Process engineering, supply chain management, risk management
Control	 Compare actual outcomes to desired outcomes, and adjust accordingly Statistical process controls and forecasting Six Sigma, Toyota Production System

AGENDA

- Systems Engineering and Management
- Operations Research
- Engineering Healthcare as a Service System
- Process Engineering: A Necessary Step to a Better Public Health System

THERE ARE THREE KEY AREAS OF OPERATIONS RESEARCH IN HEALTHCARE DELIVERY

Operations management	 Reduce variability in the delivery processes Improve efficiency and effectiveness in the delivery of clinical, ancillary, and administrative services through process analyses 	Optimize across:
Medical management & biomedicine	 Assist in the structuring and support of medical decisions Improve the performance of diagnosis, testing, and treatment strategies 	CostTechnologyQuality
System design and planning	 Facilitate decision-making on services and technology to be provided Assist in planning for level of resources and capacity 	• Access

OPERATIONS MANAGEMENT CAN RESULT IN DIRECT COST SAVINGS THROUGH BETTER PLANNING

Demand forecasting

Workforce planning and scheduling

Inpatient scheduling

Outpatient scheduling

- An ARIMA model on patient demand by type of service and month of the year produced forecast with errors ranging from 3.3% to 21.5% in the UK
- Use of optimization models and tools in managing home health workers has resulted in \$30-45M annual savings in Sweden

OPERATIONS RESEARCH METHOD CAN IMPROVE CLINICAL PRACTICE AS WELL AS BASIC RESEARCH

Individual treatment choice

Procedure performance

Population-level disease screening

Individual-level disease screening

Computational biology

- Direct surgical costs of prostate cancer was reduced by \$5,600 per patient through brachytherapy aided by nonlinear mathematical programming model and real-time imaging
- Operations research method was applied to HIV control in New Haven and NYC, including choice of method and cost implication

DECISION ON INFRASTRUCTURE INVESTMENT AND SERVICE PROVISION CAN BE FACILITATED THROUGH OPERATIONS METHOD

Planning and strategy

Technology assessment and adoption

Regionalization of services &technology

Location of facilities

Capacity planning and analysis

- UK's NICE using a costeffectiveness model to determine whether to make a specific technology available to its population
- Mixed-integer programming was used to select optimal locations of traumatic brain injury units for VAMC in Florida
- Cincinnati Children's Hospital Medical Center avoided construction of 102 additional beds through better capacity planning and demand forecasting

DEMAND FORECASTING, FOLLOWED BY WORKFORCE PLANNING ARE AREAS WHERE MORE RESEARCH HAS TAKEN PLACE

Demand forecasting

- Enable revenue and resource planning
- Avoid shortfall, quality decrease, and cost hike

- Pre-hospital care and ambulance staffing
- Inpatient service by type and month
- Need for intermediate home nursing

Method/ Need

 Various regression methods incorporating exogenous and/or institutional variables

Workforce planning and scheduling

- Develop capability to match staffing resources to a fluctuating demand
- Improve operating efficiency and quality of service
- Levels of decision:

 Corrective allocation: day
 Shift schedule: 1-2 months
 Workforce plan: quarter to year
- Typical practice: cyclic scheduling or self-scheduling for shifts
- Approach incorporating patient demand and higher level decision
- Multiple regression model based on ARIMA for workload forecasting
- Optimization through mathematical programming

AGENDA

- Systems Engineering and Management
- Operations Research
- Engineering Healthcare as a Service System
- Process Engineering: A Necessary Step to a Better Public Health System

Healthcare Service System

Essential components of Healthcare Services

Healthcare Service System

Complexity of Healthcare Services

Healthcare as an integrated system

Healthcare as an adaptive system

Healthcare as a Complex System

17

AGENDA

- Systems Engineering and Management
- Operations Research
- Engineering Healthcare as a Service System
- Process Engineering: A Necessary Step to a Better Public Health System

DESPITE ITS COMPLEXITY, PUBLIC HEALTH SYSTEM ENCOUNTERS INCREASING NEEDS OF PROCESS ENGINEERING

Public Health System

- Role: Intervention and prevention of disease and injury to protect entire population
- Complex, fragmented nature of public health system:
 - -No single point of control
 - -Function or programspecific silos of information
 - Complex array of governing regulation (Federal, state and local)/

Challenges and New Approach

- Recognition of commonality: Increasing demand for interoperable, adaptive information system across U.S. health system
- New approach of process engineering: Need comprehensive analysis and understanding of the core business process

PROCESS ENGINEERING CONSISTS OF THREE PHASES: BUSINESS PROCESS ANALYSIS, BUSINESS PROCESS REDESIGN AND SYSTEM REQUIREMENT DEFINITION

Descriptions

Business process analysis	 Analyze how organization's work is performed Produce documentation of core business process Use graphical tools such as context diagrams and task flows
Business process redesign	 Redesign how the work should be performed Produce documentation of which processes can be restructured to improve efficiency
System requirement definition	 Develop requirements based on the redesigned business process Describe how information system should be built to support the new process

APPENDIX

PATIENT SCHEDULING IS AN AREA WHERE MORE RESEARCH COULD TAKE PLACE

Inpatient scheduling

Outpatient scheduling

Objective

- Control demand while optimizing
- throughput and quality of outcome
- Reduce staffing costs and congestion

Method/

Need

- Type of scheduling:

 OScheduling of elective admissions
 ODaily scheduling of inpatients to appropriate care units
 ODischarge scheduling
- Typical practice of assigning slots or beds to specific specialty creating artificial variation
- Forecast based on estimation of length of stay
- Need to incorporate bottlenecks within the hospital system

Typical practice includes:
 OBlock scheduling
 OModified block scheduling
 OIndividual scheduling

- Queuing theory
- Truncated Poisson distribution for patient arrival
- Separate modeling of emergency and scheduled patients

OPERATIONAL RESEARCH CONTRIBUTES TO IMPROVEMENT IN PROVIDER...

Individual treatment choice

Objective

 Facilitate complex decisions by identifying critical nodes influencing outcome

- Expected cost and QALY calculation in total hip arthroplasty vs. no surgery
- Choice of treatment for prostate cancer

Method/ Need

- Decision trees
- Dynamic influence diagrams
- Sensitivity analysis
- Modeling ambiguous outcome

Procedure performance

- Improve the quality and reduce costs of diagnosis and treatment procedures through real-time support and standardization
- Interpretation of mammograms
- Selection and sequencing of tests for HIV screening in blood donation
- Radiation treatment planning
- Bayesian network or decision model
- Optimization tools through MATLAB

...AS WELL AS PUBLIC HEALTH POLICIES AND BASIC RESEARCH

 Minimize prevalence, given resource limit

Population-level

disease screening

 Facilitate decision on cost, technology, test frequency, and compliance implication

Method/

Need

- Epidemic control models of HIV and other infectious diseases
- Mass-screening protocol for retinopathy or cancer
- Simulation models

Individual-level disease screening

- Minimize detection delay or maximize lead time, over individual lifetime
- Policy on screening interval for various cancer, taking into account variables such as age, sex, and history
- Bayesian network
- Comprehensive sensitivity analysis

Computational biology

- Leverage operations research methodology to biology research
- Sequence alignment algorithm of palindromes
- Phylogenetic trees of virus
- Protein folding simulation and structure prediction
- Mathematical programs
- Data mining
- Stochastic models
- Simulations

SYSTEM-WIDE DESIGN OR POLICY CAN ALSO REAP BENEFITS FROM OPERATIONS RESEARCH SUCH AS OPTIMIZATION...

Planning and strategy

 Facilitate healthcare system-wide design and planning on national level

- Optimization of strategic choices (e.g., accessibility, copay, formularies)
- Organizational performance analysis

 Data envelopment analysis Technology assessment and adoption

- Assess the cost and benefit of new medical technology or drug
- UK's NICE assessing the cost effectiveness model in making decisions on whether to introduce a specific technology
- Cost effectiveness analysis
- Cost benefit analysis

Regionalization of services and technology

- Support decisions on regionalization, health districting, and the expansion and contraction of services
- Reconfiguration model of US Military Health System
- Decision support system for HIV/AIDS services in UK (AIDSPLAN)
- Optimal clustering
- Decision support system
- System dynamics model

...AS WELL AS PLANNING AT A REGIONAL SCALE

Location of facilities

• Support decision on regionalization, opening or removal of a facility, or the location for specific services

- Computerized Ambulance Location Logic (CALL)
- Optimizing location for preventive services (GA, QB) or traumatic brain injury units (VAMC)
- Regionalization of CT scanners in Germany
- Supply chain management in blood and blood products in a region
- Hooke-Jeeves algorithm
- Location set covering model, maximal covering model, P-median model
- Various mathematical models

Capacity planning and analysis

- Plan addition, expansion, or contraction of services and facilities, taking into account the interdependence between services
- Estimation of the number of beds required given demand, occupancy, seasonality, organizational issues, and HR allocation
- Impact of obstetric service consolidation to hospital case load and profitability
- Various techniques such as demand forecasting, utilization optimization, throughput analysis

HEALTHCARE AS A COMPLEX SYSTEM

Dynamic

• No fixed equilibriums, chaotic by appearance

Independent Agents

- Individual behavior not dictated by the system
- Differing objectives lead to competition and conflict

Adaptive

- Individuals adapt their behaviors with learning, thereby changing the system over time
- Adaptations due to learning are not designed by the system
- Adaptive systems with unpredictable behaviors cannot be directly controlled, but rather influenced

ESD.69 / HST.926J Seminar on Health Care Systems Innovation Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.