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Spatial Poisson Processes, one more time
Introduction to Queueing Systems
Little’s Law
Markov Processes 



http://zappa.nku.edu/~longa/geomed/modules/ss1/lec/poisson.gif

Spatial
Poisson
Processes

Courtesy of Andy Long. Used with permission.



Spatial Poisson Processes

Entities distributed in space (Examples?)
Follow postulates of the (time) Poisson 
process
– λdt = Probability of a Poisson event in dt 
– History not relevant
– What happens in disjoint time intervals is 

independent, one from the other
– The probability of a two or more Possion events in 

dt is second order in dt  and can be ignored 

Let’s fill in the spatial analogue…..



S

Set S has area A(S).
Poisson intensity is γ
Poisson entities/(unit area).

X(S) is a random variable 
X(S) = number of Poisson

entities in S

P{X(S) = k} = (γA(S))k

k!
e−γA (S ),  k = 0,1,2,...



Nearest Neighbors:  Euclidean

Define D2= distance from a random point
to nearest Poisson entity

Want to derive fD2(r).

r

Random 
Point

Happiness:
FD2

(r) ≡ P{D2 ≤ r} =1− P{D2 > r}

FD2
(r) =1−Prob{no Poisson entities in circle of radius r}

FD2
(r) =1− e−γπr 2

  r ≥ 0

fD2
(r) = d

dr
FD2

(r) = 2rγπe−γπr 2

  r ≥ 0

Rayleigh pdf with parameter 2γπ



Nearest Neighbors:  Euclidean

Define D2= distance from a random point
to nearest Poisson entity

Want to derive fD2(r).

r

Random 
Point

fD2
(r) = d

dr
FD2

(r) = 2rγπe−γπr 2

  r ≥ 0

Rayleigh pdf with parameter 2γπ

E[D2] = (1/2) 1
γ

   "Square Root Law"

σD2

2 = (2 −π /2) 1
2πγ



Nearest Neighbor:  Taxi Metric

r

FD1
(r) ≡ P{D1 ≤ r}

FD1
(r) =1−Pr{no Poisson entities in diamond}

FD1
(r) =1− e−γ 2r 2

fD1
(r) = d

dr
FD1

(r) = 4rγe−2γr 2



How Might you Derive the PDF 
fo the kth Nearest Neighbor?

Blackboard exercise!



To Queue or Not to Queue,
That May be a Question!



Queue of Waiting Customers

Queueing System

Arriving Customers

Departing Customers

Service 
Facility

Figure by MIT OCW.



Finite or 
Infinite?

Finite or 
Infinite?

Queue 
Discipline:
How queuers
Are selected 
for service

Servers:
Statistical Clones?

Source: Larson and Odoni, Urban Operations Research



What Kinds of Queues Occur in 
Systems of Interest to ESD?

ESD 
Queues?

Photos courtesy, from top left, clockwise: U.S. FAA: Flickr user “*keng” http://www.flickr.com/photos/kengz/67187556/; 
Luke Hoersten http://www.flickr.com/photos/lukehoersten/532375235/) 

http://www.flickr.com/photos/kengz/67187556/


Little’s Law for Queues

a(t) = cumulative # arrivals to system in (0,t]
d(t) = cumulative #  departures from system in (0,t]
L(t) = a(t) − d(t)
L(t) = number of customers in the system 
           (in queue and in service) at time t

d(t)

a(t)

L(t)

Source: Larson and Odoni, Urban Operations Research



Little’s Law for Queues

a(t) = cumulative # arrivals to system in (0,t]
d(t) = cumulative #  departures from system in (0,t]
L(t) = a(t) − d(t)
L(t) = number of customers in the system 
           (in queue and in service) at time t

γ(t) = [a(τ ) − d(τ)]dτ
0

t∫ = L(τ )dτ
0

t∫
γ(t) = total number of customer minutes spent in the system



Let’s Get an expression for Each of 3 Quantities
λt ≡ average customer arrival rate = a(t) / t
Wt ≡ average time that an arrived customer has spent in the system
Wt = γ(t) /a(t)
Lt = time average #  customers in system during (0,t]

Lt =
1
t

L(τ )dτ = γ(t) / t
0

t∫

Lt =
γ(t)

t
=

a(t)
t

γ(t)
a(t)

= λtWt

In the limit,
L = λW ,     Little's Law



Key Issues

L in a time-average.  Explain
λ is average of arrival rate of customers 
who actually enter the system
W is average time in system (in queue 
and in service) for actual customers 
who enter the system

L = λW



More Issues

Little’s Law is general. It does not 
depend on
– Arrival process
– Service process
– # servers
– Queue discipline
– Renewal assumptions, etc.

It just requires that the 3 limits exist.

L = λW



Still More 
Issues

What about balking?  Reneging? Finite 
capacity?
Do we need iid service times? Iid inter-
arrival times?
Do we need each busy period to behave 
statistically identically?
Look at role of γ(t).  Can change queue 
statistics by changing queue discipline.

L = λW



t = time

Cumulative # of Arrivals

0

L(t)

FCFS

SJF
LSJF(t)

FCFS=First Come, First Served
SJF=Shortest Job First

What about LJF,
Longest Job 1st?



“System” is 
General

Our results apply to entire queue 
system, queue plus service facility
But they could apply to queue only!

Or to service facility only!

L = λW

S.F. Lq = λWq

LSF = λWSF = λ /μ
1/μ = mean service time



All of this means,
“You buy one, you get the other 3 for free!”

W =
1
μ
+W q

L = Lq + LSF = Lq +
λ
μ

L = λW



Utilization Factor ρ

Single Server.  Set

E[Y] is time-average number of 
customers in the SF
Buy Little’s Law, 

Y ={1 if server is busy
0 if server is idle

E[Y] =1* P{server is busy}+ 0 * P{server is idle}
E[Y] =1* ρ + 0 = ρ = E[#  customers in SF] = ?

ρ = λ /μ <1



Utilization Factor ρ

Similar logic for N identical parallel 
servers gives

Here, λ/μ corresponds to the time-
average number of servers busy

ρ = ( λ
N

) 1
μ
=

λ
Nμ

 <1



Markov Queues

Markov here means, “No Memory”



Source: Larson and Odoni, Urban Operations Research



Balance of Flow Equations

To be continued…………..

λ0P0 = μ1P1

(λn + μn )Pn = λn−1Pn−1 + μn+1Pn+1 for n =1,2,3,...
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