ESD.86

Markov Processes and their Application to Queueing

Richard C. Larson March 5, 2007

Outline

Spatial Poisson Processes, one more time
Introduction to Queueing Systems
Little's Law
Markov Processes

Spatial Poisson Processes

Courtesy of Andy Long. Used with permission.

http://zappa.nku.edu/~longa/geomed/modules/ss1/lec/poisson.gif

Spatial Poisson Processes

- Entities distributed in space (Examples?)
 Follow postulates of the (time) Poisson process
 - λdt = Probability of a Poisson event in dt
 - History not relevant
 - What happens in disjoint time intervals is independent, one from the other
 - The probability of a two or more Possion events in dt is second order in dt and can be ignored

Let's fill in the spatial analogue.....

Set S has area A(S). Poisson intensity is γ Poisson entities/(unit area). X(S) is a random variable X(S) = number of Poisson entities in S

$$P\{X(S) = k\} = \frac{(\gamma A(S))^k}{k!} e^{-\gamma A(S)}, \ k = 0, 1, 2, \dots$$

S

Nearest Neighbors: Euclidean

Define D_2 = distance from a random point to nearest Poisson entity Want to derive $f_{D_2}(r)$. Happiness: $F_{D_2}(r) \equiv P\{D_2 \le r\} = 1 - P\{D_2 > r\}$ $F_{D_2}(r) = 1 - \Pr{ob}\{\text{no Poisson entities in circle of radius } r\}$ $F_{D_2}(r) = 1 - e^{-\gamma \pi r^2}$ $r \ge 0$

$$f_{D_2}(r) = \frac{d}{dr} F_{D_2}(r) = 2r\gamma \pi e^{-\gamma \pi r^2} \quad r \ge 1$$

Rayleigh pdf with parameter $\sqrt{2\gamma\pi}$

Nearest Neighbors: Euclidean

Define D_2 = distance from a random point to nearest Poisson entity Want to derive $f_{D_2}(r)$.

$$E[D_2] = (1/2) \sqrt{\frac{1}{\gamma}} \quad "Square Root Law"$$
$$\sigma_{D_2}^2 = (2 - \pi/2) \frac{1}{2\pi\gamma}$$

$$f_{D_2}(r) = \frac{d}{dr} F_{D_2}(r) = 2r\gamma \pi e^{-\gamma \pi r^2} \quad r \ge$$

Rayleigh pdf with parameter $\sqrt{2\gamma\pi}$

Random Point

Nearest Neighbor: Taxi Metric

 $F_{D_1}(r) \equiv P\{D_1 \le r\}$ $F_{D_1}(r) = 1 - \Pr\{\text{no Poisson entities in diamond}\}$

How Might you Derive the PDF for the *k*th Nearest Neighbor?

Blackboard exercise!

To Queue or Not to Queue, That May be a Question!

Figure by MIT OCW.

What Kinds of Queues Occur in Systems of Interest to ESD?

ESD Queues?

Photos courtesy, from top left, clockwise: U.S. FAA: Flickr user "*keng" <u>http://www.flickr.com/photos/kengz/67187556/;</u> Luke Hoersten http://www.flickr.com/photos/lukehoersten/532375235/)

Little's Law for Queues

a(t) = cumulative # arrivals to system in (0,t] d(t) = cumulative # departures from system in (0,t] L(t) = a(t) - d(t) L(t) = number of customers in the system(in queue and in service) at time t

Little's Law for Queues

$$\gamma(t) = \int_0^t [a(\tau) - d(\tau)] d\tau = \int_0^t L(\tau) d\tau$$

 $\gamma(t)$ = total number of customer minutes spent in the system

a(t) = cumulative # arrivals to system in (0,t] d(t) = cumulative # departures from system in (0,t] L(t) = a(t) - d(t) L(t) = number of customers in the system(in queue and in service) at time t

Let's Get an expression for Each of 3 Quantities

 $\lambda_t \equiv \text{average customer arrival rate} = a(t)/t$

$$L_{t} = \frac{\gamma(t)}{t} = \frac{a(t)}{t} \frac{\gamma(t)}{a(t)} = \lambda_{t} W_{t}$$

In the limit,
 $L = \lambda W$, Little's Law

Key Issues

♦ L in a time-average. Explain

- λ is average of arrival rate of customers
 who actually enter the system
- W is average time in system (in queue and in service) for actual customers who enter the system

More Issues

 Little's Law is general. It does not depend on

- Arrival process
- Service process
- -# servers
- Queue discipline
- Renewal assumptions, etc.

◆ It just requires that the 3 limits exist.

 $\frac{\text{Still More}}{\text{Issues}} \quad L = \lambda W$

What about balking? Reneging? Finite capacity?

Oo we need iid service times? Iid interarrival times?

One we need each busy period to behave statistically identically?

• Look at role of $\gamma(t)$. Can change queue statistics by changing queue discipline.

Cumulative # of Arrivals FCFS=First Come, First Served SJF=Shortest Job First

"System" is $L = \lambda W$

 Our results apply to entire queue system, queue plus service facility

◆ But they could apply to queue only!

• Or to service facility only!

$$L_{SF} = \lambda W_{SF} = \lambda / \mu$$

1/ μ = mean service time

All of this means, "You buy one, you get the other 3 for free!"

W = $L \neq L_q + L_{SF} = L_q + \frac{\lambda}{L_{SF}} = L_q + \frac{\lambda$ μ $L = \lambda W$

Utilization Factor ρ

• Single Server. Set
$$Y = \begin{cases} 1 \text{ if server is busy} \\ 0 \text{ if server is idle} \end{cases}$$

 $E[Y] = 1 * P\{\text{server is busy}\} + 0 * P\{\text{server is idle}\}$

 $E[Y] = 1*\rho + 0 = \rho = E[\# \text{ customers in SF}] = ?$

 E[Y] is time-average number of customers in the SF

Buy Little's Law,

$$\rho = \lambda/\mu < 1$$

Utilization Factor ρ

Similar logic for N identical parallel servers gives

$$\rho = (\frac{\lambda}{N}) \frac{1}{\mu} = \frac{\lambda}{N\mu} < 1$$

• Here, λ/μ corresponds to the timeaverage number of servers busy

Markov Queues

Markov here means, "No Memory"

State-transition diagram for the fundamental birth-and-death model.

Balance of Flow Equations

$$\lambda_0 P_0 = \mu_1 P_1$$

($\lambda_n + \mu_n$) $P_n = \lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1}$ for $n = 1, 2, 3, ...$

To be continued.....