ESD.86 Random Incidence A Major Source of Selection Bias

> Richard C. Larson February 21, 2007

Examples

Waiting for a bus at 77 Mass. Avenue.
 – "Clumping"
 Interview passengers disembarking from an airplane.

Doctoral Exam Question

- You arrive at a bus stop where busses arrive according to a Poisson Process with rate λ per unit time.
- Use no-memory property of Poisson processes. Time until next bus arrives has negative exponential density with mean 1/ λ.
- Looking backwards, time since last bus was at the bus stop has negative exponential density with mean 1/ λ.

Thus, mean time between buses is 2/ λ, not 1/ λ. What's wrong here?

Random Incidence: Tending to "Land" in Bigger Gaps

Photo courtesy of Kevin King. http://www.flickr.com/photos/divemasterking2000/541537501/

Definitions of the random variables:

 Y_i = time interval between the *i*th and *i* + 1st arrival event W = length of the inter-arrival gap in which you fall V = time remaining in the gap in which you fall

All 3 random variables have probability density functions:

$$f_{Y}(x) = f_{Y_{1}}(x) = f_{Y_{2}}(x) = \dots$$

 $f_W(W)$

 $f_V(y)$

The Inter-Arrival Times

- $f_{Y}(x) = f_{Y_{1}}(x) = f_{Y_{2}}(x) = \dots$
- •If the *Y*_{*i*}'s are mutually independent then we have a *renewal process*.
- •But the Random Incidence results we are about to obtain do not require that we have a renewal process.

The Gap We Fall Into by Random Incidence

 $f_W(w)dw = P\{\text{length of gap is between } w \text{ and } w+dw\}$ $f_W(w)dw$ is proportional to two things:

(1) the relative frequency of gaps [w, w+dw]
(2) the length of the gap w (!!).

Thus, normalizing so we have a proper pdf, We can write

 $f_W(w)dw = wf_Y(w)dw/E[Y]$, or

$$f_W(w) = wf_Y(w)/E[Y]$$

Time Remaining in the Gap Until Next Arrival

 $f_V(y)$

Consider $f_{V/W}(y|w)$

We can argue that $f_{V/W}(y|w) = (1/w)$ for 0 < y < w.

So we can write

$$f_{V}(y)dy = dy \int_{y}^{\infty} f_{V|W}(y \mid w) f_{W}(w)dw$$
$$f_{V}(y)dy = dy \int_{y}^{\infty} (1/w) \frac{wf_{Y}(w)}{E[Y]}dw$$
$$f_{V}(y)dy = dy(1 - P\{Y \le y\})/E[Y]$$

Mean Time Until Next Arrival

$$\begin{split} E[V] &= \int_0^\infty E[V \mid w] f_W(w) dw \\ E[V] &= \int_0^\infty (w/2) \frac{w f_Y(w)}{E[Y]} dw \\ E[V] &= E[Y^2] / (2E[Y]) = \frac{\sigma_Y^2 + E^2[Y]}{2E[Y]} \\ E[V] &= E^2[Y] \frac{1 + \sigma_Y^2 / E^2[Y]}{2E[Y]} = E^2[Y] \frac{1 + \eta^2}{2E[Y]}, \end{split}$$

where $\eta \equiv \text{coefficient of variation of } Y = \sigma_Y / E [Y].$

Key result:

$E[V] = E[Y]^{2}(1+\eta^{2})/(2E[Y])$

where

 η = coefficient of variation of the R.V. Y

Let's Visit Several Examples, Including that Bus Stop Doctoral Exam Question!