Industry Socio-Tech System Study

MIT Auto Industry System Study (2003.001 v1.0)

Integrating Social and Technical Systems

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0

Overview and Expected Outcomes – Unit 1

Overview

- Welcome and overview
- The "big picture"
- Social and technical framework
- Exercise: Focus on the Seven Wastes and the 5 S's
- Sample Socio-Tech Implementation
- Exercise: Cellular Design Socio-Tech Analysis
- Conclusion

Expected outcomes

- Awareness of shifts in social and technical systems over time
- Understanding of the interdependency between social and technical systems
- Identification of potential "guiding principles" for designing, implementing and sustaining change in social and technical aspects of new work systems

The "Big Picture"

<u>Technical</u> Systems

Craft Production

Decentralized Enterprises Mastery of Craft Custom Manufacture Specialized Tools

Mass Production

Vertical Hierarchies Scientific management Assembly Line Interchangeable Parts

Knowledge-DrivenNetwork AlliancesWorkTeam-Based Work Sy

Flexible Specialization

Team-Based Work Systems Information Systems

Adapted from: "Knowledge-Driven Work: Unexpected Lessons from Japanese and United States Work Practices" (Oxford University Press, 1998)

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0

Sample Social System Transformation Initiatives

•	 Socio-Technical Work Systems Sen 1950s-1980s 	ni-autonomous teams
•	 Employee Involvement/QWLEI/G Late 1970s-1990s 	QWL groups (off-line)
•	 Total Quality Management Qua Early 1980s-1990s 	ality circles (off-line)
•	 Re-engineering	rk-out events (off-line)
•	 Six Sigma Blace 1990s-present 	ck belt let project teams (off-line)
•	 Lean Production/Enterprise Systems Lea 1950s-present 	n production teams/Integrated product & Process teams

Sample Social and Technical Systems Framework

* Note: Context boundaries vary as appropriate with the systems under consideration

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0

Focus on Social / Organizational Systems

Structure & Sub-Systems

- Structure
 - Groups
 - Organizations
 - Institutions
- Sub-Systems
 - Communications
 - Information
 - Rewards & reinforcement
 - Selection & retention
 - Learning and feedback
 - Conflict resolution

Social Interaction Processes

- Leadership
- Negotiations
- Problem-solving
- Decision-making
- Partnership

Capability & Motivation

- Individual knowledge, skills & ability
- Group stages of development
- Fear, satisfaction and commitment

Auto 2003.001 v1.0

Focus on Technical Systems

Machines (Equipment & New Technology)

- Equipment and machinery
- Physical infrastructure
- Information technology
- Nano-technology, bio-technology, and other developments at the frontiers of science

Methods (Processes)

- Job design/office design
- Work flow/process mapping methods
- Value stream mapping
- Constraint analysis
- Statistical Process Control (SPC)
- System optimization and decomposition methods

Materials (Components & Supply Chain)

- Assembly Interchangeable parts and mass production systems
- Logistics Just-In-Time delivery (JIT) systems and Synchronous material flow systems
- e-commerce and supply chains

Focus on Contextual Systems

Economic Systems

- Markets
- Incentives
- Trade relations
- Public, private, and non-profit sectors
- Industry structures
- Product/firm/industry life-cycles
- Externalities and other "market failures"

* Note: Context boundaries vary as appropriate with the systems under consideration

Physical / Natural Systems

- Atmospheric systems
- Geo-thermal systems
- Aqueous systems
- Biological systems
- Chemical systems
- Bio-chemical systems
- Sub-atomic systems
- Laws of physics
- Extra-terrestrial systems

Political / Societal Systems

- Regulatory systems
- Standards and protocols
- Institutional arrangements
- History
- Cultures and subcultures
- Values and assumptions

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0

Exercise: The Seven Wastes and the Five S's

The Seven Wastes

- Over Production
- Waiting
- Transportation
- Inventory
- Processing
- Motion
- Defects

The Five S's

- Simplify or Sort
- Straighten or Simplify
- Scrub or Shine
- Stabilize or Standardize
- Sustain or Self-Discipline

How are social and technical systems interdependent when it comes to addressing the Seven Waste?

How are they interdependent when it comes to the 5S's?

Sample Socio-Tech Implementation

Data on Technical Milestones

Adapted from MIT Sloan Fellows thesis by Sean Hilburt MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Data on Social Milestones

Adapted from MIT Sloan Fellows thesis by Sean Hilburt MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Socio-Tech Data

Adapted from MIT Sloan Fellows thesis by Sean Hilburt MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Exercise: Cellular Manufacturing Socio-Tech Analysis

Step 1: Group Formation and Stakeholder Analysis

Form small groups of 2-3 people (individuals at remote locations may link by phone), study the "current state" and "desired state" illustrations on a hypothetical cellular manufacturing intervention (next slide), and list stakeholders involved in your phase of this intervention.

Note: Some groups will be assigned to "Preparing," "Implementing," and "Sustaining" phases of this intervention

Step 2: Social Systems

Identify the most important social system changes in this work system that are relevant to your phase of the intervention.

Step 3: Technical Systems

Identify the most important technical changes in this work system that are relevant to your phase of the intervention.

Step 4: Integration and Guiding Principles

Discuss ways in which the social and technical changes are or are not interdependent. Derive 1-3 "Guiding Principles" for implementing a systems change of this type.

Exercise: Cellular Manufacturing

© Joel Cutcher-Gershenfeld space Initiative Fieldbook

Auto 2003.001 v1.0

Revisit the Social and Technical Systems Framework

* Note: Context boundaries vary as appropriate with the systems under consideration

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0

Conclusion

A unique historical moment

The constant challenge and opportunity presented by social and technical interdependency

A fragile foundation for a global transformation

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System © Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0

Appendix: Japanese Model of Production System and "Humanware"

Source HaruoShimada and John Paul MacDuffie, Industrial Relations and "Humanware" (Slaon School of Management Work Paper, September, 1986)

MIT Auto Industry Systems Study 2003.001 v1.0 Unit1: Integrating Social and Technical System 0 Joel Cutcher-Gershenfeld

Auto 2003.001 v1.0