Complexity of Games & Puzzles

[Demaine, Hearn & many others]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>0 players (simulation)</th>
<th>1 player (puzzle)</th>
<th>2 players (game)</th>
<th>Team, imperfect info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded</td>
<td>(\mathbb{P})</td>
<td>(\mathbb{NP})</td>
<td>(\mathbb{PSPACE})</td>
<td>(\text{NEXPTIME})</td>
</tr>
<tr>
<td>Unbounded</td>
<td>(\mathbb{PSPACE})</td>
<td>(\mathbb{PSPACE})</td>
<td>(\text{EXPTIME})</td>
<td>Undecidable bridge?</td>
</tr>
</tbody>
</table>

- **\(\mathbb{P}\)**: Polynomial time
- **\(\mathbb{NP}\)**: Nondeterministic Polynomial time
- **\(\mathbb{PSPACE}\)**: Polynomial space
- **\(\text{EXPTIME}\)**: Exponential time
- **Undecidable**

Images courtesy of various contributors.
Constraint Logic
[Hearn & Demaine 2009]
Constraint Graphs

Machine = graph, red & blue edges
Constraint Graphs

Machine state = orientation

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Constraint Logic

Rule: at least 2 units incoming at a vertex

Move: reverse an edge, preserving Rule

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
AND vertex

Rule: at least 2 units incoming at a vertex

not your usual AND gate!
SPLIT vertex

Rule: at least 2 units incoming at a vertex
OR vertex

Rule: at least 2 units incoming at a vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Decision Problem

can you reverse this edge?
Constraint Logic

[Hearn & Demaine 2009]

<table>
<thead>
<tr>
<th>0 players (simulation)</th>
<th>1 player (puzzle)</th>
<th>2 players (game)</th>
<th>team, imperfect info</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>NP</td>
<td>PSPACE</td>
<td>NEXPTIME</td>
</tr>
<tr>
<td>EXPTIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undecidable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Decision Problem

can you reverse this edge?

Theorem:
PSPACE-complete

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Sliding-Block Puzzles

Courtesy of Dr. Jim Storer. Used with permission.
Sliding-Block Puzzles
[Hearn & Demaine 2002]

Corollary:
PSPACE-complete
Sliding-Block Puzzles
[Hearn & Demaine 2002]

Corollary: PSPACE-complete
Wiring Vertices Together

AND wants red
OR wants blue

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Red-Blue Conversion

assume an even number of conversions
Red-Blue Conversion

assume an even number of conversions
Boolean Formulas

\[(w \lor x \lor y) \land (w \lor \overline{x} \lor z) \land (w \lor \overline{y} \lor z)\]
Quantified Boolean Formulas (QBF)

\[\forall x \exists y \forall w \cdots \exists z [(x \lor y) \land \cdots \land (\neg z \lor x \lor \neg w)] \]

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Existential Quantifier
Universal Quantifier

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Latch

unlocked

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Universal Quantifier
Crossover Gadget
OR from Protector OR

(b) Protected OR
Rush Hour
[Hearn & Demaine 2002]

PSPACE-completeness known [Flake & Baum 2002]
Triangular Rush Hour

[a] AND vertex
[b] Connector
[c] OR vertex

Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Open: 1×1 Rush Hour
[Tromp & Cilibrasi 2008]

- P or PSPACE-complete or ...?
Plank Puzzles [Hearn 2004]

(a) AND

(b) OR

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Sokoban
[Hearn & Demaine 2002]

PSPACE-completeness known [Culberson 1998]
Push-2F
[Demaine, Hearn, Hoffmann 2002]
Constraint Logic
[Hearn & Demaine 2009]

0 players
(simulation)
1 player
(puzzle)
2 players
(game)

team,
imperfect info

bounded

unbounded

PSPACE
PSPACE
EXPTIME
Undecidable

P
NP
PSPACE
NEXPTIME

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Constraint Logic
[Hearn & Demaine 2009]

bounded

PSPACE
bounded

PSPACE

EXPTIME

Undecidable

0 players
(simulation)

P

1 player
(puzzle)

NP

2 players
(game)

PSPACE

team, imperfect info

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
Amazons
[Hearn 2005]

Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.