Transplantation:
Friendly organs in a hostile environment

Robert B. Colvin, M.D.
Department of Pathology
Massachusetts General Hospital
Harvard Medical School

MIT Feb. 20, 2003

How is foreign tissue recognized?
How is the tissue rejected?
What limits transplantation?
What can be done about it?
Transplants

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acellular tissue</td>
<td>Heart valve</td>
</tr>
<tr>
<td>Cells</td>
<td>Blood</td>
</tr>
<tr>
<td></td>
<td>Bone Marrow</td>
</tr>
<tr>
<td>Living tissue</td>
<td>Cornea</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
</tr>
<tr>
<td></td>
<td>Islets</td>
</tr>
<tr>
<td>Organs</td>
<td>Kidney, Heart, Liver, Lung, Pancreas, Intestine</td>
</tr>
</tbody>
</table>
Transplants in USA

Organs (total 23,985) \(^1\)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Recipients</th>
<th>5 yr graft survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>14,095</td>
<td>66-78%</td>
</tr>
<tr>
<td>Liver</td>
<td>5,157</td>
<td>64%</td>
</tr>
<tr>
<td>Heart</td>
<td>2,194</td>
<td>70%</td>
</tr>
<tr>
<td>Lung</td>
<td>1,053</td>
<td>43%</td>
</tr>
</tbody>
</table>

Tissues/Cells

<table>
<thead>
<tr>
<th>Tissue/Cell</th>
<th>Quantity</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornea</td>
<td>~40,000</td>
<td>70%</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>23,500</td>
<td>80%</td>
</tr>
</tbody>
</table>

80,617 patients waiting as of 2/15/03 unos.org

17 die each day waiting for transplant
Why are grafts lost?

- Acute rejection
- Chronic rejection
- Infection
- Drug toxicity
- Recurrent disease
- Complications of original disease
<table>
<thead>
<tr>
<th>Graft Source</th>
<th>Graft Source</th>
<th>Graft Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-</td>
<td>Auto-</td>
<td>Auto-</td>
</tr>
<tr>
<td>Source</td>
<td>Self</td>
<td>Identical twin</td>
</tr>
<tr>
<td>Rejection</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xeno-</td>
<td>Xeno-</td>
<td>Xeno-</td>
</tr>
<tr>
<td>Other species</td>
<td>Other species</td>
<td>Other species</td>
</tr>
<tr>
<td>Rejection</td>
<td>Yes +++</td>
<td>Yes +++</td>
</tr>
</tbody>
</table>
Skin graft to syngeneic recipient

MHCa

Graft is tolerated

Skin graft to allogeneic recipient

MHCb

Graft is rejected rapidly
(first-set rejection)

Second skin graft from same donor to same recipient

MHCb

Graft shows accelerated (second-set) rejection

% grafts surviving

Days post transplant

0 10 20

0 50 100

Memory
Major Histocompatibility Complex determines graft outcome

- **Parents**
 - Homozygous MHC

- **3rd Party**
 - Grafts rejected

- **F1 Heterozygous MHC**
 - W W
 - B B
 - Graft accepted
 - Graft rejected

- **3rd Party**
 - Y Y

F1 accepts graft from either parent

Parent rejects graft from F1

3rd party grafts rejected by all
Major Histocompatibility Complex

Chromosome 6 human (HLA), 17 mouse (H-2)
HLA loci highly polymorphic
Antigen Presenting Cell

T cell receptor

MHC
Class I or II
antigen

Peptide antigen

T Cell

Antigen Presenting Cell
Class II has 2 polymorphic chains
more open peptide groove
Thymic education for T cells

Eliminated:

- T cells that fail to bind to self MHC
 Nonreactivity
- T cells that bind too avidly to self +self peptides
 Self reactivity

Retained:

- T cells that recognize self-MHC + foreign peptide
 Foreign peptide reactivity
A Normal

Self-MHC molecule presents foreign peptide to T cell selected to recognize self-MHC-foreign peptide complexes

B Allorecognition

The self-MHC-restricted T cell recognizes the allogeneic MHC molecule whose structure resembles the self-MHC-foreign peptide complex
How do the host T cells recognize foreign tissue?

Direct (on graft cells)
- Foreign MHC + peptide
- Mimics self MHC + foreign peptide

Indirect (on host antigen presenting cells)
- Self MHC + Foreign peptides (e.g. HLA)

The graft looks like a pathogen to the T cell.
Host Antigen Presenting Cell or Graft Cell

T Cell

- TCR α,β
- CD4
- CD3
- CD40L
- CD40
- IL2R
- IL2
- IFNγ
- + other cytokines

Activation...

- ICAM-1
- LFA-1

HLA Class II

- Peptide antigen
Graft Cell

TCR α,β

HLA Class I

Peptide antigen

CD40

CD40L

CD8

CD3

T Cell

Activation...

LFA-1

ICAM-1

ICAM-1

HLA Class I

Cytolysis

Graft Cell
Chances for a sibling being HLA-Identical 25%

Donor Sibling Possibilities
1:4 match

MHC region of each copy of chromosome 6
Chances of a Match from unrelated donor

Recipient

\[
\begin{array}{cc}
A & A \\
B & B \\
DR & DR
\end{array}
\]

Depends on frequency of each allele in population and fineness of distinction

Donors

\[
\begin{array}{cccccc}
B & B & B & B & B & B \\
DR & DR & DR & DR & DR & DR
\end{array}
\]

<table>
<thead>
<tr>
<th>Match</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
</table>

for 6 antigen match of 10, 20, 20 alleles per locus

\(~1/16,000,000\)
HLA Mismatch Reduces Graft Survival

% Grafts Surviving 5 years

Kidneys transplanted in 1994-5

UNOS.org
Acute Rejection

Cause: Reactivity to donor alloantigens

- HLA Class I, II
- Non-HLA antigens

Specific Agents:
- T Cells
- Antibody

Secondary Mediators:
- Macrophages, granulocytes, NK cells
- Complement, clotting system, chemokines
How to diagnose rejection

Clinical: Loss of function of organ
 - **Lab tests:** serum creatinine (kidney), bilirubin (liver)

Imaging: blood flow, arterial diameter (heart)

Pathology: Biopsy
 - Light microscopy, immunofluorescence, markers of function

Molecular: PCR/proteomics markers of function
Acute Cellular Rejection (ACR)
<table>
<thead>
<tr>
<th>PAS</th>
<th>Tubulitis</th>
<th>CD3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tubulitis

Lymphocytes inside the renal tubules

Chemokines (IL-8, RANTES, MCP-1, fractalkines)
Produced by tubular epithelium in response to IL-1, TNFα

Cytotoxic T cells mostly CD8
Express receptors for E-cadherin
Cytotoxic T Cell

Fas ligand gene

Granule exocytosis, perforin, granzymes

TCR

MHC

FasL

Fas

Target cell

Death
Cytotoxic T cells in tubules with apoptosis

Please see Meehan SM et al. Cytotoxicity and apoptosis in human renal allografts: identification, distribution, and quantitation of cells with a cytotoxic granule protein GMP-17 (TIA-1) and cells with fragmented nuclear DNA. Lab Invest. 1997 May;76(5):639-49.
<table>
<thead>
<tr>
<th></th>
<th>Acute Rejection</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforin</td>
<td>1.4±0.3*</td>
<td>-0.6±0.2</td>
</tr>
<tr>
<td>Granzyme</td>
<td>1.2±0.3</td>
<td>-0.9±0.2</td>
</tr>
<tr>
<td>Cyclophilin</td>
<td>2.3±0.3</td>
<td>2.5±0.1</td>
</tr>
</tbody>
</table>

*fg mRNA/µg RNA ln transform

Li...Suthanthrian NEJM 344:947, 2002
Endarteritis (Type 2 ACR)