FUNCTIONS OF BILE

- Promotes “exocrine” lipid secretion, especially cholesterol elimination
- Facilitates dietary lipid absorption, obligatory for fat-soluble vitamin absorption
- Conduit for endobiotic and xenobiotic excretion
- Distributes immunoglobins and antioxidants throughout the gut
BILE WATER PRODUCTION

Figure removed due to copyright reasons. Please see:

Figure removed due to copyright reasons. Please see:

THE "SECRETORY" MIXED MICELLE

Phospholipid Bile salt Cholesterol
Water NaCl

Courtesy of Dr. Siewert-Jan Marrink. Used with permission.
THE "SECRETORY" MIXED MICELLE

- Phospholipid
- Bile salt
- Cholesterol
- Water
- NaCl

Courtesy of Dr. Siewert-Jan Marrink. Used with permission.
Figure removed due to copyright reasons. Please see:

LIPID PARTICLES IN HUMAN BILES

Image removed due to copyright reasons. Please see:

Coordinate Regulation of Cholesterol Homeostasis (Nuclear Receptors)

Cholesterol \rightarrow \text{Cholesterol 7α-Hydroxylase (CYP 7a)} \rightarrow \text{Bile Acids}

\rightarrow \text{Oxysterols} \leftrightarrow \text{LXRα} \leftrightarrow \text{FXR (BAR)}

Wang et al., 1999
Membrane Transporter Defects in Hereditary Cholestatic Disorders

Content removed due to copyright reasons.
Content removed due to copyright reasons.
Pathophysiology of Bile Secretory Failure (Cholestasis)

Biliary Lipids in the Systemic Circulation:

- Bilirubin Conjugates (MRP1) \rightarrow Icterus (Jaundice), Bilirubininuria
- Biliary Phospholipids (MDR3) \rightarrow Lipoprotein X (LpX) – a vesicular LDL
- Biliary Cholesterol \rightarrow LpX – Hypercholesteroleemia
- Bile Salts (MRP3) \rightarrow Cholemia, Choluria, Pruritus, Bradycardia
Pathophysiology of Bile Secretory Failure (Cholestasis)

Deficit of Biliary Lipids in the Alimentary Tract

- Fat Malabsorption, principally Lipovitamins, Cholesterol, Monoglycerides but not Fatty Acids

- Delayed Chylomicron Formation and Large Particles

- Acholic Stools – Delayed Peristalsis – Constipation

- Changed Ecology of Gut Flora
Image removed due to copyright reasons.
AUTOPSY PREVALENCE RATES OF GALLSTONES IN WOMEN (1951-1981)
PREVALENCE OF GALLSTONES

Germany

PERCENT WITH GALLSTONES

AGE (years)

Berndt et al. (1989)
FORMATION OF CHOLESTEROL GALLSTONES: KEY ELEMENTS

Mucin Gel

Cholesterol Supersaturation

Gallbladder Hypomotility

Crystals

Nucleation and Phase Transitions
Image removed due to copyright reasons. Please see:

Principles of Cholesterol Solubilization and Supersaturation in Bile

Stability

\[\text{CH} \]

\[\text{[BS + PL]} \]

Lithogenicity

\[\text{CH} \]

\[\text{[BS + PL]} \]
Image removed due to copyright reasons. Please see:

Etiology of Cholesterol Cholelithiasis

• Genetic predisposition
 - Monogenic
 - Polygenic

• “Cholelithogenic” environment
 - Diet/Drugs
 - Adiposity/Weight Loss
 - Gestation/Estrogens/Progestogens
The Genetic Factor in Human Cholesterol Gallstone Disease

• Apparently due to “thrifty” genes (like obesity, Type 2 diabetes)
• Possible genetic drift during last glaciation: “The Stone That Came in from the Cold”
• American Indian and Viking migrations
• Strong family clustering: Pedigrees, twin studies, etc.
• Essentially absent in sub-Saharan populations
GALLSTONES IN FIRST-DEGREE RELATIVES OF GALLSTONE PATIENTS

van der Linden & Simonson (1973)

Gilat et al (1983)

PERCENT WITH STONES

Sex

F

M

F

M

F

M

F + M

Family

Controls

25

20

15

10

5

0

van der Linden & Simonson

Gilat et al

Sarin et al
Genetic and Environmental Influences on Symptomatic Gallstone Disease

- Genetic: 25%
- Environmental (unique): 13%
- Environmental (shared): 62%

Emergence of *Helicobacter* Taxa Causing Disease (to 2001*)

- Gastric *Helicobacter* species ≈ 10 (Humans and other animals)
- Enterohepatic *Helicobacter* species ≈ 18 (Humans, rodents, other mammals, and birds)

Content removed due to copyright reasons.
C57L Murine Cholesterol Gallstone Model: Lithogenic Diet Feeding

- **With Helicobacter spp. infection**
 - Supersaturated Bile
 - Liquid Crystals
 - Solid Crystals
 - Sandy Stones
 - Cholesterol Gallstones

- **Without Helicobacter spp. infection**
 - Supersaturated Bile
 - Liquid Crystals
 - Solid Crystals (crossed out)
Proposed New Paradigm for Cholesterol Gallstone Formation and Perhaps Biliary Cancer

Complex Genetics (LithGenes)

Helicobacter spp. Infection

Environment: Diet, Medication, Hormones, etc.

Cholesterol Gallstones

Chronic Cholecystitis

Gallbladder Cancer
Frequency Distribution of Cholesterol in Gallstones

N = 53

- Pigment Stones (26%)
- Cholesterol Stones (74%)

% of Patients

% Cholesterol in Stones
Image removed due to copyright reasons. Please see:

Image removed due to copyright reasons. Please see:

FORMA\n\nFORMATION OF BILIRUBIN

Image removed due to copyright reasons. Please see:

Image removed due to copyright reasons. Please see:

BROWN PIGMENT STONE FORMATION

Image removed due to copyright reasons. Please see:

Evolution of Cholesterol Gallstones
(As Currently Conceived)

I
Metabolic stage
Defective metabolism of biliary lipids

II
Chemical stage
Bile contains EXCESS cholesterol

III
Physical stage
Cholesterol crystals form

IV
Growth stage
Macrosopic stones GROW

V
Obstructive stage
Blockage of cystic or common duct

(Courtesy of Professor Donald M. Small. Used with permission.)
Image removed due to copyright reasons. Please see:

Image removed due to copyright reasons. Please see:

GALLSTONES

Asymptomatic

Symptomatic

Complicated

1-2%/yr

<1%/yr

3-5%/yr
BILE ACID THERAPY

% Primary Effectiveness

% Symptomatic Gallstone Patients

Superoptimal
Optimal
Acceptable

Strasberg and Clavien (1992)

(Courtesy of Dr. Steven M Strasberg. Used with permission.)
TO AVOID GALLSTONES, A WOMAN SHOULD

Image removed due to copyright reasons. please see:

PREVENTION

(Courtesy of Dr. Steven M Strasberg. Used with permission.)