Problem 1

Decision Boundaries: Two-dimensional Gaussian Case

The optimal Bayesian decision rule can be written:

\[
\phi (x) = \begin{cases}
1 & ; \frac{p_1(x)}{p_0(x)} > \frac{P_0}{P_1} \\
0 & ; \text{otherwise}
\end{cases}
\]

It is sometimes useful to express the decision in the log domain, or equivalently

\[
\phi (x) = \begin{cases}
1 & ; \ln \left(p_1 (x) \right) - \ln \left(p_0 (x) \right) > \ln \left(\frac{P_0}{P_1} \right) \\
0 & ; \text{otherwise}
\end{cases}
\]

The decision boundary is defined as the locus of points, \(x \), where the ratios are equal, that is

\[
\ln \left(p_1 (x) \right) - \ln \left(p_0 (x) \right) = \ln \left(\frac{P_0}{P_1} \right)
\]

If \(x = [x_1, x_2] \) is a two-dimensional Gaussian variable, its PDF is written:

\[
p_i (x) = \frac{1}{2\pi |\Sigma_i|^{1/2}} \exp \left(- \frac{1}{2} (x - m_i)^T \Sigma_i^{-1} (x - m_i) \right)
\]

where \(m_i, \Sigma_i \) are the class-conditional means and covariances, respectively. Plugging this into the log form of the decision boundary above yields:

\[
-\frac{1}{2} (x - m_1)^T \Sigma_1^{-1} (x - m_1) + \frac{1}{2} (x - m_0)^T \Sigma_0^{-1} (x - m_0) + \frac{1}{2} \ln \left(\frac{|\Sigma_0|}{|\Sigma_1|} \right) = \ln \left(\frac{P_0}{P_1} \right)
\]

Suggestion: You may want to do part (d) of this problem first as a way of checking your answers to the first three parts although it is not necessary to do so.

a) Suppose

\[
P_1 = P_0 = \frac{1}{2} \quad x = \begin{bmatrix} x_1 \\ x_0 \end{bmatrix} \quad m_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad m_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

\[
\Sigma_1 = \Sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} \quad \Sigma_1^{-1} = \Sigma_0^{-1} = \begin{bmatrix} 100 & -90 \\ -90 & 100 \end{bmatrix} \quad |\Sigma_1| = |\Sigma_0| = \frac{19}{100}
\]

express the decision boundary in the form \(x_2 = f (x_1) \).
b) If we keep all values from part (a), but set

\[
P_0 \over P_1 = \exp \left(-\frac{1}{2} \right)
\]

how does the decision boundary change in terms of its relationship to \(m_1 \) and \(m_0 \)? Express the decision boundary in the form \(x_2 = f(x_1) \) using the new value of the ratio of \(P_0 \) to \(P_1 \) and the means and covariances from part (a).

c) Suppose now that

\[
\Sigma_1 = \Sigma_0 = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}
\]

where \(|r| < 1\) (which is simply a constraint to ensure \(\Sigma_i \) is a valid covariance matrix) keeping all other relevant terms from part (a). How does this change the decision boundary as compared to the result of part (a)?

d) Now let

\[
\Sigma_0 = \begin{bmatrix} 1 & -9 \\ -9 & 10 \end{bmatrix} \quad \Sigma_0^{-1} = \begin{bmatrix} 100 & -90 \\ -90 & 190 \end{bmatrix} \quad |\Sigma_0| = \frac{19}{100}
\]

setting all other parameters, except \(P_1 \) and \(P_0 \), the same as in part (a). Use matlab `contour` function to plot the decision boundary as a function of the ratio of prior probabilities of each class for the values \(P_0/P_1 = [1/4, 1/2, 1, 2, 4] \). Here is some of the code you will need (where “function” is the left side of the decision boundary equation, \(\ln(p_1(x)) - \ln(p_0(x)) \)):

```matlab
[x1,x2] = meshgrid(-4:0.1:4,-4:0.1:4);
d = function(x1,x2);
[c,h] = contour(x1,x2,d,log([1/4,1/2,1,2,4]));
clabel(c,h);
```
Problem 2

Suggestion: read the entire question, the answer can be stated in one sentence with no calculations.

Suppose you have a 3-dimensional measurement vector $x = [x_1, x_2, x_3]$ for a binary classification problem where $0 < P_1 < 1$ (i.e. it is strictly greater than 0 and less than 1). Recall that the class-conditional marginal distribution of x_1, x_2 is

$$p_i(x_1, x_2) = \int p_i(x_1, x_2, x_3) \, dx_3 = \int p_i(x_1, x_2|x_3) \, p_i(x_3) \, dx_3$$

and that the unconditioned marginal density of any single measurement is

$$p(x_k) = \sum_{i=0}^{1} P_i p_i(x_k)$$

where $k = 1, 2, \text{ or } 3$.

Now consider 2 different decision functions. The first $\phi(x_1, x_2, x_3)$ is the optimal classifier using the full measurement vector $[x_1, x_2, x_3]$, while the second $\varphi(x_1, x_2)$ is the optimal classifier using only $[x_1, x_2]$. In general the probability of error using $\phi(x_1, x_2, x_3)$ will be lower than when using $\varphi(x_1, x_2)$ (i.e. when we ignore the third measurement). State a condition under which both classifiers will achieve the same probability of error.