HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Spatial Normalization of Images

HST.583 Fall 2008
Mert R. Sabuncu
MIT CSAIL
Image Registration

- Image alignment, matching
- Establishing dense spatial correspondence
- Multi-modal (e.g. MRI to Ultrasound, structural MRI to fMRI)
- Multi-subject
Roadmap

- Image Registration: Theory
- Three types:
 - Function to anatomy
 - Inter-subject
 - Subject to atlas
- Conclusion
Formulation

\[I_1(\bar{x}) \xrightarrow{\text{Match}} I_2(\Phi_{21}(\bar{x})), \quad \bar{x} \in \mathbb{R}^3, \quad \Phi_{21} : \mathbb{R}^3 \to \mathbb{R}^3 \]

\[I_1(\Phi_{12}(\bar{x})) \xleftarrow{\text{Match}} I_2(\bar{x}), \quad \bar{x} \in \mathbb{R}^3, \quad \Phi_{12} : \mathbb{R}^3 \to \mathbb{R}^3 \]

- **Inverse Consistency:**

\[\Phi_{12}^{-1} = \Phi_{21} \]
Interpolation

- Assume we know Φ_{12}
- Note: images live on a discrete grid.

\[I_1(\bar{x}), \quad \bar{x} \in \Omega_d \]

- In general, mapped points don’t lie on the grid.

\[I_1(\Phi_{12}(\bar{x})), \quad \bar{y} = \Phi_{12}(\bar{x}) \notin \Omega_d \]

- Need to “interpolate.”
 - Nearest Neighbor, (Bi-, Tri-) Linear, Polynomial, Spline-based, …
Re-sampling

- Sampling grid:
 - One of the two images (fixed image)
 - Another grid, e.g. atlas frame.

\[\tilde{y} = \Phi_{12}(\tilde{x}) \]

\[\tilde{z} = \Phi_{2A}(\tilde{y}) = \Phi_{2A}(\Phi_{12}(\tilde{x})) \]

for any one-to-one mapping \(\Phi_{2A} \)

- The sampling grid is somewhat arbitrary.
- Be very careful when reporting results on the geometry (e.g. area, volume, shape).
Pairwise Image Registration

\[
\underset{\Phi}{\text{arg max}} \left(\text{Sim}(I_1(\tilde{x}); I_2(\Phi(\tilde{x}))) - \text{Reg}(\Phi) \right)
\]

Similarity between images

Regularization of warp
Typical Registration Algorithm

- Warp space: e.g. rotate around image center
- Alignment measure: e.g. mean absolute difference
- Optimization: e.g. exhaustive search

Fixed Image Floating Image Absolute Difference
Geometric Warps

- **Rigid-body (Euclidean):**
 - 6 parameters in 3D (rotation and translation).
 - Preserve angle, length and area.
 - Models orientation variation.

- **Affine:**
 - 12 parameters in 3D (rotation, translation, scaling, shearing)
 - Preserve co-linearity and relative size.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/figs/affhei.gif

Courtesy of Bob Fisher. Used with permission.
Geometric Warps (2)

- **Piecewise Affine:**
 - Chop grid into blocks – each block is warped using an affine transformation model.
 - For invertibility, we can use boundary conditions.

- **Parametric Non-linear Models:**
 - Polynomial, Radial-basis functions

- **Non-parametric Models:**
 - Dense deformations, Diffeomorphisms
Geometric Warps (3)

- Understand what we are modeling:
 - Inter-image geometric variation

- Sources of variation:
 - Scanner orientation
 - Image resolution
 - Physics of image acquisition, e.g. EPI distortion
 - Physical deformation, e.g. post-op MRI, tumor
 - *Inter-subject variability of anatomy*
Geometric Warps (4)

- Common modeling strategies:
 - Warp should be invertible
 - Warp should be spatially smooth
 - Use physical deformation models
 - Regularization

- Inter-subject variability:
 - No ground truth!
 - Evaluate quality of warp by measuring landmark alignment
Alignment Measure

- Objective measure: quality of alignment.
- Two strategies:
 - Landmark-based
 - Landmark-free (image-based)
 - E.g. sum-of-squared differences, mutual information
 Alignment Measure (2)

- Design depends on the context
- If we have robust landmarks, then landmark-based
- If we care about alignment everywhere, then image-based
- If single modality: e.g. sum-of-squared differences
- If multi-modal: e.g. mutual information (entropy) of pixel intensity values
Optimization

- Searching for the best warp.
- Usually iterative, numerical optimization.
- More parameters leads to slower algorithm.
- Gradient-based approaches yield faster methods.
- Smoother alignment measures are better.
- Multi-resolution pyramid to speed up.
Registration Instances

- Functional-to-anatomical
- Inter-Subject
- Subject-to-Atlas
Functional-to-Anatomical

- Before: PET to CT/MRI
- Today: fMRI to anatomy (T1, T2*, PD)
- Multi-modal, intra-subject registration
- Fact: There is one-to-one correspondence
- Sources of geometric variation:
 - Scanner orientation
 - Motion
 - Imaging physics, e.g. EPI distortion
 - Resolution
Functional-to-Anatomical (2)

Similarity Measure:

- Extrinsic: based on fiducials, e.g. stereotaxic frame screwed on the skull.

- Intrinsic:
 - Landmark-based: e.g., surfaces, points, …
 - Image-based: e.g. mutual information, local correlation-ratio, joint entropy

Warp space:
- EPI Distortion -> Non-linear geometric variation due to interaction between motion and field inhomogeneity. Particularly severe along the phase-encoding direction and around air-pockets e.g. sinuses.

Two Strategies:
- Explicitly model the physics of EPI distortion
- Use generic multi-modal non-linear registration
Inter-subject Registration

- Population Analysis, Multi-subject studies
- Objectives:
 - Pool data from subjects
 - Compare individual results
 - Report results in a standard coordinate system
- Main source of geometric variation:
 - Anatomical Variability
Inter-subject Registration (2)

- Different levels of anatomy:
 - Macro-anatomy: structural MRI
 - Micro-anatomy: Histology
 - Functional anatomy: fMRI, EEG, MEG
 - Connectivity: Diffusion MRI

- What is spatial correspondence across subjects?

- Historically in MRI it is based on macro-anatomy encoded in hi-res structural MRI.
Inter-subject Registration (3)

- Alignment measure:
 - Based on landmarks (Talairach and Tournox)
 - Based on image features (e.g. intensities, attribute vectors)

- Intensity-based measures are usually naive:
 - E.g. sum of squared differences between image intensity values.

- We know they are optimized at good alignment – but the solution is non-unique.

- Regularization is typically achieved via warps!
Inter-subject Registration (4)

- The anatomy is enormously variable

- Dense correspondence is hard!

- We don’t even know if it’s one-to-one: Probably not!

Data from: http://www.oasis-brains.org
Inter-subject Registration (5)

- **Warp models:**
 - Piece-wise affine (Tailarach [25], ANIMAL [198])
 - Polynomial warps (Woods et al. [193])
 - Harmonic basis functions (SPM [196])
 - Dense/Non-parametric (Demons [197], LDDMM [200], HAMMER [207])
 - Spline-based (RPM [208], Rueckert et al.**)
 - Cortical surface based (FreeSurfer***)

***http://surfer.nmr.mgh.harvard.edu/*
Inter-subject Registration (6)

- **Surface based methods**

Cortical Surfaces (Courtesy of Bruce Fischl. Used with permission.)

- **Establish a 2-D coordinate system on cortical surface**
 - One-to-one mapping between cortical hemisphere and a unit sphere.
 - The mapping tries to preserve distances.
Inter-subject Registration (7)

Courtesy of Bruce Fischl. Used with permission.
Inter-subject Registration (8)

 Courtesy of Bruce Fischl. Used with permission.
Inter-subject Registration (9)

- No ground truth: so how to validate?

- To assess the optimizer:
 - Compute average across population and quantify sharpness
 - Compare the value of an objective alignment measure, e.g., mutual information

- To assess the algorithm:
 - Measure overlap/alignment of ROI’s (e.g. sulci regions, tissue maps, etc.)
Subject-to-Atlas Registration

- A universal atlas-coordinate frame represented by a template image.
- Each subject is mapped to atlas space via pairwise registration with the template.

Objectives:
- Common coordinates to pool data
- Perform atlas-based segmentation
Subject-to-Atlas Registration (2)

- Templates: Average images that summarize a population

Pair of brain images removed due to copyright restrictions. "MNI 152 average brain section from the SPM distribution, next to the equivalent section of the Talairach atlas.”

Average of several hundred brains used in SPM

http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach

- Typically templates are “blurry” – this limits alignment accuracy and localization quality
Subject-to-Atlas Registration (3)

Average of 40

Single

Slide from Bruce Fischl

Courtesy of Bruce Fischl. Used with permission.
Subject-to-Atlas Registration (4)

- Sharp template is good, because:
 - It’s an indication of how well we’ve modeled anatomical variability
 - Improves the alignment of the new subject
- Thus: template (atlas) sharpness + inter-subject alignment quality -> confidence in coordinates
Conclusion

- Two important points:
 - Worry about confidence in your correspondence
 - Don’t forget that registration warps your data, so results based on geometric properties (e.g. size, shape) should be interpreted delicately
Final Remark

- Acknowledge the variability across the different levels of anatomy.
- Inter-subject correspondence doesn’t have to be based on macro-anatomy.
 - DTI-based registration, fMRI based registration ...
- Even if we had a perfect method for structural alignment, our fMRI data would not be in perfect alignment due to the variability between structure and function.