22.561 Final Project

19F Magnetic resonance imaging of perfluorooctanoic acid encapsulated in liposome for biodistribution measurement

Magnetic Resonance Imaging

Jin Zhou

May 17, 2006
Motivation and Challenges

Visualization of the tissue distribution of perfluorooctanoic acid (PFOA, C$_7$F$_{15}$COOH) by 19F-MRI for pharmacological studies of similar compounds (many applications; toxicity)

Wide-range distribution of chemical shifts of 19F-containing metabolites \rightarrow molecular imaging and tissue function evaluations

19F-MRI for image contrast enhancement

- No background \rightarrow 19F signal is the contrast for 1H-MR image (anatomy)
- 19F has the next highest MR sensitivity (83% of 1H)

Challenges intrinsic to 19F-MRI

- 19F has Long T1 \rightarrow long acquisition time; Short T2 \rightarrow signal attenuation
- Chemical shifts of 19F NMR \rightarrow chemical shift image artifacts (although preferred to trace the metabolism)
- Signal can only be obtained from the agents retained in tissue \rightarrow SNR is the major concern for 19F-MRI
Solution – Chemical Shift Selected Fast Spin-Echo

Chemical shift artifacts

\rightarrow chemical shift selected RF pulse

Short T2

\rightarrow Spin Echo (SE) to preserve the signal

Long T1 \rightarrow Fast Spin Echo (FSE) to shorten acquisition time

Multiple phase-encoding steps with a single excitation (90° RF) and multiple echoes (180° RF), # of echoes per TR = echo train length (ETL)

Acquisition time reduced proportional to ETL

Effective echo time (TE) = maximum TE / ETL

Courtesy of www.MR-TIP.com. Used with permission
Chemical Shift Selection

9.4T (376.2 MHz)
TR = 0.2 s, 128 scans

The 19F NMR spectra in the female mouse stomach and liver were measured 0.4 and 2.7 h after the administration of the PFOA-liposome solution, respectively.

Figure removed for copyright reasons.

- Chemical shift between -CF$_3$ group and other -CF$_2$ groups > 35 ppm (10 times that of fat and water 1H) \rightarrow frequency difference \sim14 kHz
- Chemical shift selection was able to eliminate chemical shift artifacts.
- Only -CF$_3$ signal was excited \rightarrow no the signal intensity modulation by J-coupling caused by adjacent 19F atoms
\textbf{19F Relaxation Times}

In vivo and in vitro relaxation times of the CF\textsubscript{3} signal of PFOA

<table>
<thead>
<tr>
<th>Standard deviations in parentheses</th>
<th>PFOA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T_1) (ms)</td>
</tr>
<tr>
<td>In vivo</td>
<td>140 (20)</td>
</tr>
<tr>
<td>In excised liver</td>
<td>300 (30)</td>
</tr>
<tr>
<td>In PFOA-liposome</td>
<td>400 (40)</td>
</tr>
<tr>
<td>In ethanol</td>
<td>1900 (100)</td>
</tr>
</tbody>
</table>

- \(T_1\) by Inversion Recovery \(\rightarrow\) double dynamic range
- \(T_2\) by Carr-Purcell-Meiboom-Gill (CPMG) \(\rightarrow\) refocusing pulse error corrected at even echoes
- \(T_2\) of water \(^1\text{H}\) \(\sim\) several tens to hundreds of ms; \(T_2\) of -CF\textsubscript{3} group of PFOA \(<\) 10 ms \textit{in vivo}

 Short \(T_2\) in liposome probably due to high solution viscosity

- Both \(T_1\) and \(T_2\) of -CF\textsubscript{3} of PFOA were shortened \textit{in vivo}

 Molecular motion of PFOA restricted, especially the -CF\textsubscript{3} group
In Vitro 19F-MRI of PFOA-Liposome Solution – Parameter Optimization for In Vivo 19F-MRI

ETL = 2 in (b) more effective than ETL = 4 in (c)

- [PFOA] = 5.4 mM; Effective TE = 1 ms
- For ETL = 4, last two echoes at 3, 4 ms
- T2 of $-\text{CF}_3$ of PFOA in solution = 2.3 ms

Maximum TE value constrained by T2, increase ETL to reduce effective TE

- More 180° RF pulses per TR
- Requires strong and rapidly switching gradients
- Under instrumental constraints, ETL = 2 was used as the optimal value for in vivo 19F-MRI.

Images removed for copyright reasons.

In Vivo 19F-MRI

Images removed for copyright reasons.

1 mL PFOA-liposome solution orally administered to mice with fasting for 4 hr

9.4T (376.2 MHz); Chemical shift selection: Gaussian pulse, 9kHz band width; TR = 0.15 s; Effective TE = 1 ms; ETL = 2; 64 x 16 data points; FOV = 8cm x 4cm; No slice selection; Acquisition time = 12min

PFOA initially in the mouse stomach → at 1 hr, began to distribute into the liver → at 2.7 hr, PFOA mostly transferred to the liver
PFOA Tissue Distribution Quantification by 19F-NMR

Mice were sacrificed after 19F-MRI and the organs were excised and cut into pieces for 19F-NMR.

19F-NMR signal intensity of -CF$_3$ of PFOA from different organs was measured and calibrated by signal from benzene solution of trifluoroacetamide (CF$_3$CONH$_2$) for quantification.

The lowest concentration of PFOA that 19F-MRI was able to visualize was estimated from the images $\rightarrow \sim 1$ µmol PFOA / g tissue

Assume tissue density = 1g/mL $\rightarrow \sim 1$ mM of PFOA $\ll \sim 100$M of water 1H

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Concentration (µmol/g tissue)</th>
<th>Percent dose (%/g tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>1.74 (± 0.41)</td>
<td>32.0 (± 8.6)</td>
</tr>
<tr>
<td>Plasma</td>
<td>0.74 (± 0.01)</td>
<td>13.6 (± 0.2)</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.30 (± 0.05)</td>
<td>5.5 (± 0.9)</td>
</tr>
<tr>
<td>Lung</td>
<td>0.27 (± 0.02)</td>
<td>5.0 (± 0.4)</td>
</tr>
<tr>
<td>Intestine</td>
<td>0.25 (± 0.08)</td>
<td>4.6 (± 1.5)</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.15 (± 0.03)</td>
<td>2.8 (± 0.6)</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.14 (± 0.01)</td>
<td>2.5 (± 0.2)</td>
</tr>
</tbody>
</table>
Conclusions

• Tissue distribution of PFOA was successfully traced by 1H and 19F-MRI, the latter of which used chemical shift selected fast spin-echo method.

• It was necessary to administer PFOA at high concentration of 100 mg (0.19 mmol)/kg body weight, corresponding to 20 times the dose using radiolabel method. \rightarrow major challenge for 19F-MRI is SNR

• Contrast agents that elongate T2 and shorten T1 are desirable.
Questions?

• Would you use ETL = 3 or 4 for \textit{in vivo} 19F-MRI since T2 = 6.3ms instead of 2.3ms?

• If the acquisition time is 12 min (0.2 hr) and PFOA is moving, what actual states do the images at 0.4, 0.6, 1.0 hr ... represent?

• Is FSE is the optimal sequence for 19F-MRI?

• How to make use of all the 19F nuclei in PFOA instead of -CF$_3$ only since the concentration of PFOA is the limiting factor?