Rhythm: patterns of events in time
1. Rhythmic pattern induction & expectation
chunking of repeating patterns

2. Meter --
the inferred metrical grid

3. The Time Sense

Image of Salvador Dali's painting "The Persistence of Memory" removed due to copyright restrictions.
Rhythm: patterns of events in time

What is rhythm? Perceived patterns of events in time
What constitutes an event? What makes events salient (accented)?

How many individual events can we distinguish (< 12/sec)?
Auditory sense and the time sense (supramodal)
 – Perception of duration, weber fractions for time

Rhythmic pattern induction & expectation
 – Rhythmic pattern invariance w. respect to tempo

Meter (regular underlying grid of accented/nonaccented events)

Rhythmic hierarchies, rhythmic complexity
Small integer-ratios again: models (clock, oscillator, timing net)

Polyrhythms; analogy to polyphony
Interactions between melody & rhythm: accents

Rhythms: musical, body, and brain; kinesis

Thursday, May 14, 2009
Music notation: time durations

Tempo (absolute timescale, in beats/minute)

- **Adagio** ($j = 60$)
- **Moderato** ($j = 90$)
- **Allegro** ($j = 120$)

Slow
- $< 40 - 76$

Moderate
- $80 - 116$

Fast
- $120 - 206+$

Beats Per Minute

Figure by MIT OpenCourseWare.
Tempo

Ranges of events; intervals from 50 ms to 2 sec
Too short: events fuse
Too long: successive events don't cohere, interact
Pitch (> 30 Hz); infra-pitch (10-30 Hz); rhythm (< 10 Hz)

For a brisk tempo of 120 bpm, 2 Hz,
 a quarter note is 500 msec (2 Hz)
 an eighth note is 250 msec (4 Hz)
 a sixteenth note is 125 ms (8 Hz)
 a 32nd note is 62 ms (16 Hz)
Rhythm: general observations I

• Different levels of temporal organization
 – Handel’s basketball game analogy:

• Patterning
 – Rhythm: perception of grouping & ordering of events

• Perceptual groupings of events in time create perceived rhythmic patterns

• Temporal pattern expectancies create groupings
 – pattern repetition and
 – similar patterns of salient auditory contrasts (accents)

• Underlying temporal framework
 – (metrical grid, meter, tempo)
Rhythm: recurring patterns of events in time

Every repeating pattern creates an expectancy of its continuation

Figure by MIT OpenCourseWare.
Every repeating pattern creates an expectancy of its continuation.

Further, there is a “chunking” of the repeating pattern (the invariant pattern becomes an object).

Figure by MIT OpenCourseWare.
Rhythm generation demonstration

- Repeating patterns of events
- Drum score representation
- Synthesizer
Acoustical grouping

Figure 3.5
Acoustical grouping.

Source: Snyder, Bob. *Music and Memory.*
Used with permission.
Melodic & rhythmic grouping

Figure 3.3
Melodic and rhythmic grouping.

Source: Snyder, Bob. *Music and Memory.*
Used with permission.
Temporal grouping

(Snyder, Music & Memory)

Chapter 3. Grouping

PROXIMITY

Proximity effect: a boundary is formed by a different distance between or length of event. (Arrows indicate point of realization of change.)

SIMILARITY

Similarity effect: a boundary is formed by a change in the consistency of events. (Arrows indicate point of realization of change.)

Figure 3.4 Temporal grouping.

Repetition of a rhythmic pattern establishes the pattern.

- a) Two measure rhythmic pattern.
- b) Complete 2-bar pattern, followed by a repetition of the complete pattern.
- c) Complete 2-bar pattern, followed by two repetitions of the 2nd measure.
- d) Complete 2-bar pattern, followed by two repetitions of the 2nd measure in reverse.
- e) Complete 2-bar pattern; unique 3rd measure, and then a repetition of the 2nd measure.

Music Theory,

Thursday, May 14, 2009
Necklace notation: cyclical repeating patterns

Fig. 2.6 in Sethares, W. A. *Rhythm and Transforms*. Springer, 2007. ISBN: 9781846286391.
Preview in [Google Books](https://books.google.com).
Necklace notation: cyclical repeating patterns

Necklace notation: cyclical repeating patterns

Memory processes generate musical context

Tonality induction -- repetition of particular notes & sets of harmonics that establishes a tonal expectation through which all subsequent incoming tonal patterns are processed -- establishment of the tonic

Rhythmic induction -- repetition of patterns of accented and unaccented events that establishes a temporal pattern of expectation for subsequent events

Both kinds of induction operate on similarities and contrasts between previous and subsequent sounds & events

OLD + NEW heuristic:

1) OLD incoming patterns similar to previous ones build up the images of previous ones, confirm + strengthen expectations, create relaxation

2) NEW different patterns create contrasts that violate expectations established from previous inputs, create tension

3) degree of contrast (distance in perceptual space) determines the degree of tension created/resolved
Hierarchy & time order (Snyder, Music & Memory, MIT Press, 2000)

Figure 13.2
Hierarchy and time order. These diagrams represent a highly simplified representation of two ways of structuring time-ordered sequences of musical events. Both sequences have the same number of events. Complete chunks at various levels are represented by horizontal brackets; higher-level chunking boundaries, by dashed vertical lines; and cues, by asterisks.

Courtesy of MIT Press. Used with permission.
Detection of arbitrary periodic patterns

Periodic patterns invariably build up in delay loops whose recurrence times equals the period of the pattern and its multiples.

\[\tau_1 = 11 \text{ ms} = \text{recurrence time of input pattern} 10101100101 \]

Input pattern

101011001011010101100101101011001010110101010101...
Temporal coding of rhythm

Stimulus-driven temporal patterns of spikes encode event structures

- Exist at the cortical level for periodicities < 15 Hz
- Can directly encode rhythmic patterns
- Amenable to processing via recurrent timing nets (RTNs)
- Chunk recurrent patterns of events to create rhythmic expectancies

\[\Delta \text{quality} \]

\[\text{no } \Delta \]

\[\Delta \text{pitch} \]

\[\Delta \text{timbre} \]

\[\Delta \text{duration} \]

Figure by MIT OpenCourseWare.
In addition to rhythmic patterning, we seem to infer an underlying metrical grid to the stream of events (e.g. inferences that allow us to tap our fingers or toes to a beat or to keep time with the music)

This perception of an underlying metrical order is important for coordination of musicians playing in groups.

Meter serves as a temporal context that is somewhat independent of individual events (somewhat like the tonic vis-a-vis melody)
The recurrent groups of pulsations are called *meters*: for example, duple meter, triple meter, and quadruple meter. The beats within the measures are counted and accented:

2: one, two | one, two |
3: one, two, three | one, two, three |
4: one, two, three, four | one, two, three, four |
6: one, two, three, four, five, six |
Definition: The number of pulses between the more or less regularly recurring accents (Cooper and Meyer, 1960).

Most authors define meter similarly, as somehow dependent upon (and perhaps contributing to) patterns of accent.

Zuckerkandl (1956), however, views meter as a series of "waves" that carry the listener continuously from one beat to the next. For him, they result not from accentual patterns but simply and naturally from the constant demarcation of equal time intervals.

http://www.music.indiana.edu/som/courses/rhythm/illustrations
Pulse & the metrical grid (meter)

Figure 12.5
Pulse and meter.

Source: Snyder, Bob. *Music and Memory.*
Used with permission.
Pulse

- **Definition**: A series of regularly recurring, precisely equivalent stimuli (Cooper and Meyer, 1960).

- According to Parncutt (1987), a chain of events, roughly equally spaced in time.

http://www.music.indiana.edu/som/courses/rhythm/illustrations
Visual grouping

Dember & Bagwell, 1985, A history of perception, Topics in the History of Psychology, Kimble & Schlesinger, eds.

Figure by MIT OpenCourseWare.

Thursday, May 14, 2009
Accent causes grouping which determines perceived rhythmic pattern

Rhythm is a perceptual attribute

 Courtesy of MIT Press. Used with permission.
Factors that cause events to be accented:
auditory contrast, salience

- note duration
- note intensity
- sharpness of attack
- duration of silence preceding it
- contrast: melodic contour/pitch change
- regularity of timing (accented beats are "on time")
- position within a metrical organization

According to Cooper & Meyer (1960), an accented tone must be set off from the rest of the series in some way (i.e. a salient contrast)
expressive timing Definition:

Music psychologists' term for the deviations from a strictly uniform pulse that occur in live performance. These deviations most commonly occur near the ends of phrases and other grouping units. See Todd (1985).

http://www.music.indiana.edu/som/courses/rhythm/illustrations
Meter and beat induction

rhythmic, metrical dissonance

• metrical dissonance Definition: According to Krebs (1987), a situation in which the pulses in two metrical levels are not well aligned, either because the duration of the pulses in one level is not an integral multiple or division of the duration of the pulses in the other level, or because the pulses in one level are displaced by some constant interval from those in the other level. See also Yeston's rhythmic dissonance.

http://www.music.indiana.edu/som/courses/rhythm/illustrations

Thursday, May 14, 2009
Event-related potentials & violations of temporal expectation
(notes, chords, beats, words (phonetic, semantic), many other levels of expectation)

Photo and graph of EEG/ERP removed due to copyright restrictions.
See: http://www.musicianbrain.com/methods.php#methods
Research report

Gamma-band activity reflects the metric structure of rhythmic tone sequences

Joel S. Snydera,T, Edward W. Largeb

aDepartment of Psychology, Cornell University, Ithaca, NY 14853, USA
bCenter for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33432, USA

Accepted 28 December 2004
Available online 17 February 2005

Abstract

Relatively little is known about the dynamics of auditory cortical rhythm processing using non-invasive methods, partly because resolving responses to events in patterns is difficult using long-latency auditory neuroelectric responses. We studied the relationship between short-latency gamma-band (20–60 Hz) activity (GBA) and the structure of rhythmic tone sequences. We show that induced (non-phase-locked) GBA predicts tone onsets and persists when expected tones are omitted. Evoked (phase-locked) GBA occurs in response to tone onsets with \~50 ms latency, and is strongly diminished during tone omissions. These properties of auditory GBA correspond with perception of meter in acoustic sequences and provide evidence for the dynamic allocation of attention to temporally structured auditory sequences.

Theme: Neural basis of behavior
Topic: Cognition

Keywords: Electroencephalography; Gamma-band activity; Rhythm perception; Music; Speech
Snyder & Large experiments on beat induction

Fig. 1. Pure-tone (262 Hz, 50 ms duration) stimulus patterns are shown with inter-onset intervals of 390 ms (above) and schematized metrical accent representations (below). The periodic control condition consisted of isochronous tones designed to elicit a simple pulse perception (A). The binary control condition consisted of alternating loud and soft tones, designed to elicit a duple meter perception (B). The omit-loud condition consisted of the binary control pattern with missing loud tones on 30% of two-tone cycles (C). The omit-soft condition consisted of the binary control pattern with missing soft tones on 30% of two-tone cycles (D).

Figure 2. Process to calculate evoked and gamma-band activity (GBA).
Figure 4. Courtesy of University of Finance and Management, Warsaw. Used with permission.

(a) Time-frequency representation of the evoked and induced GBA results, averaged over all subjects. Tone onset occurs at zero and 390 ms. (b) Comparison of induced/evoked peak activity in the presence and absence of loud and soft tones.

Figure 7. Tone omissions: induced and evoked GBA.
Figure 5.

Perturbed stimuli; ‘x’ represents tone onset.
Figure 6. Courtesy of University of Finance and Management, Warsaw. Used with permission.

Time-frequency representation of the evoked and induced GBA in response to early, late, or on-time tones averaged over all subjects. The white dashed line represents where a tone was expected. (a) Evoked activity is predicted by the presence of tones. The white box highlights an exception, activity where the tone was expected in the case of an early tone. (b) The white box indicates a peak in the induced activity where the tone was expected for the case of late tones.
Figure 6.

Time-frequency representation of the evoked and induced GBA in response to early, late, or on-time tones averaged over all subjects. The white dashed line represents where a tone was expected. (a) Evoked activity is predicted by the presence of tones. The white box highlights an exception, activity where the tone was expected in the case of an early tone. (b) The white box indicates a peak in the induced activity where the tone was expected for the case of late tones.

Courtesy of University of Finance and Management, Warsaw. Used with permission.
SUMMARY

Evoked GBA appears to represent sensory processing as predicted by the presence of tones, much like the MLR. Induced GBA may reflect temporally precise expectancies for strongly and weakly accented events in sound patterns. Moreover, induced GBA behaves in a manner consistent with perception-action coordination studies using perturbed temporal sequences. Taken together, the characteristics of induced GBA provide evidence for an active, dynamic system capable of making predictions (i.e., anticipation), encoding metrical patterns and recovering from unexpected stimuli.

GBA appears to be a useful neuroelectric correlate of rhythmic expectation and may therefore reflect pulse perception. Due to the anticipatory nature of GBA, it may be supposed there is an attentional dependence. Future research should aim to manipulate attentional state, localize neural sources and further probe the role of induced GBA in meter perception.
Syncopation - violation of metrical expectations

Image removed due to copyright restrictions.
Definition of syncopation with some musical examples.
Rhythmic streaming (segregation/fusion of rhythmic

• African xylophone music

• Timbre effects

• Pitch difference

• Competition of frequency separations
Rhythmic elaboration - subdividing time intervals

Smulevitch & Povel (2000) in Rhythm: Perception & Production, Desain & Windsor eds
Rhythmic Hierarchy

Courtesy of MIT Press. Used with permission.

Handel

Thursday, May 14, 2009
Rhythmic Hierarchy

Courtesy of MIT Press. Used with permission.
Polyrhythms

Courtesy of MIT Press. Used with permission.
<table>
<thead>
<tr>
<th>PATTERN (LENGTH)</th>
<th>ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17</td>
</tr>
<tr>
<td>ISOCHRONOUS PATTERNS</td>
<td></td>
</tr>
<tr>
<td>2(2)</td>
<td>X</td>
</tr>
<tr>
<td>3(3)</td>
<td>X</td>
</tr>
<tr>
<td>4(4)</td>
<td>X</td>
</tr>
<tr>
<td>NON-ISOCHRONOUS</td>
<td></td>
</tr>
<tr>
<td>332(8)</td>
<td>X</td>
</tr>
<tr>
<td>2223(9)</td>
<td>X</td>
</tr>
<tr>
<td>22233(12)</td>
<td>X</td>
</tr>
<tr>
<td>22323(12)</td>
<td>X</td>
</tr>
<tr>
<td>23223(12)</td>
<td>X</td>
</tr>
<tr>
<td>2223223(16)</td>
<td>X</td>
</tr>
<tr>
<td>33424(16)</td>
<td>X</td>
</tr>
</tbody>
</table>

Polyrhythms (polyrhythms:rhythm::polyphony:melody)

Conlon Nancarrow
Rhythm & Grouping

• Three examples from
• Bregman & Ahad
• Auditory Scene Analysis CD
• African xylophone music

interference between rhythmic patterns
separation of patterns via pitch differences
separation of patterns via timbral diffs

Conflicting rhythms interfere unless the events can be separated out in separate streams
Metrical vs. rhythmic phrases (rel. independence)

(Snyder, Music & Memory)

Source: Snyder, Bob. Music and Memory.
Used with permission.
Major points -- rhythm

Rhythm involves perception of temporal patterns of events.

Recurring patterns group into chunks that create expectations of future temporal occurrences of events (rhythmic pattern induction).

Rhythmic grouping occurs on the same timescale as melodic grouping.

We also infer a metrical grid that involves a regular set of timepoints (pulse, tatum) and a regular pattern of accented/unaccented events (meter). (Metrical induction)

Expectations generated from rhythmic grouping and metrical induction processes can be manipulated for tension-relaxation effect.

Thursday, May 14, 2009
Time, memory, and anticipation

Image of Salvador Dali's painting "The Persistence of Memory" removed due to copyright restrictions.
Temporal integration windows

(Snyder, Music & Memory)

Figure 2.2
Brain processes and musical time.

Source: Snyder, Bob. Music and Memory.
Courtesy of MIT Press. Used with permission.

Thursday, May 14, 2009
Three Levels of Musical Experience

<table>
<thead>
<tr>
<th></th>
<th>Events per second</th>
<th>Seconds per event</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENT FUSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(early processing)</td>
<td>16,384</td>
<td>1/16,384</td>
</tr>
<tr>
<td></td>
<td>8,192</td>
<td>1/8,192</td>
</tr>
<tr>
<td></td>
<td>4,096</td>
<td>1/4,096</td>
</tr>
<tr>
<td></td>
<td>2,048</td>
<td>1/2,048</td>
</tr>
<tr>
<td></td>
<td>1,024</td>
<td>1/1,024</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>1/512</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>1/256</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>1/128</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1/32</td>
</tr>
<tr>
<td>MELODIC and RHYTHMIC GROUPING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(short-term memory)</td>
<td>16</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>32</td>
</tr>
<tr>
<td>FORM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(long-term memory)</td>
<td>1/64</td>
<td>1 min 4 sec</td>
</tr>
<tr>
<td></td>
<td>1/128</td>
<td>2 min 8 sec</td>
</tr>
<tr>
<td></td>
<td>1/256</td>
<td>4 min 16 sec</td>
</tr>
<tr>
<td></td>
<td>1/512</td>
<td>8 min 32 sec</td>
</tr>
<tr>
<td></td>
<td>1/1,024</td>
<td>17 min 4 sec</td>
</tr>
<tr>
<td></td>
<td>1/2,048</td>
<td>34 min 8 sec</td>
</tr>
<tr>
<td></td>
<td>1/4,096</td>
<td>1 hr 8 min 16 sec</td>
</tr>
</tbody>
</table>

Timescales & memory

(Snyder, Music & Memory)

Courtesy of MIT Press. Used with permission.

The three types of processing define three basic time scales on which musical events and patterns take place.
Memory & grouping

(Snyder, Music & Memory)

Figure 3.1
Levels of sequential grouping: Event fusion, melodic and rhythmic grouping, and formal sectioning. Note that pattern formation at each level requires comparison of events over increasing time spans. Event fusion requires comparison within 250 msec, melodic and rhythmic patterns require comparison across a time span of from 250 msec to 8 sec, and formal sections require comparisons across a time span of from 8 sec to as much as 1 hour. Also note that each individual unit at one level becomes a part of a unit at the next level up.
Memory processes generate musical context

Tonality induction -- repetition of particular notes & sets of harmonics that establishes a tonal expectation through which all subsequent incoming tonal patterns are processed -- establishment of the tonic

Rhythmic induction -- repetition of patterns of accented and unaccented events that establishes a temporal pattern of expectation for subsequent events

Both kinds of induction operate on similarities and contrasts between previous and subsequent sounds & events

OLD + NEW heuristic:

1) OLD incoming patterns similar to previous ones build up the images of previous ones, confirm + strengthen expectations, create relaxation

2) NEW different patterns create contrasts that violate expectations established from previous inputs, create tension

3) degree of contrast (distance in perceptual space) determines
Time, memory, and anticipation
Time

What is time? Newtonian & Bergsonian time
The perception of time
 Duration, succession, and perspective
 Relativity of time
 Constant Weber fraction for time estimation
Aging & time perception (internal clocks slow down)
 Duration and event-density
Learning & temporal prediction (anticipation)
Brains as temporal prediction machines
Models of time (interval) perception & production
 Clock models -- accumulators (hourglass)
 Oscillator models (pendulum)
 Delay-detectors and static representations of time
Rhythmic hierarchies, simple ratios, and groupings
 Temporal memory traces (delay loops, cyclochronism)
"time…does not exist without changes." Aristotle, Physics, IV

Time as an absolute world-coordinate (Newtonian time) vs. time as epistemic change (psychological, Bergsonian time)

"A man in sound sleep, or strongly occup'y'd with one thought, is insensible of time… Whenever we have no successive peceptions, we have no notion of time, even tho' there be a real succession in the objects…time cannot make its appearance to the mind, either alone, or attended with a steady unchangeable object, but is always discovered by some perceivable succession of changeable objects." Hume as quoted in Fraisse, pp. 3-4

Measurement of time

How is time measured, psychologically, by the neural mechanisms and informational organizations that constitute our minds?
Duration

Our sense of the length of time (Fraisse, 1962, The Psychology of Time)

Constant Weber fractions for interval estimation

 Errors are proportional to the interval estimated

 Weber's law for timing; jnd's on the order of 8-12%
 depending on modality (hearing, touch, vision)

Temporal prediction of reward in conditioning

 (Scalar timing intimately related to the response latency in conditioning when interval
 between stimulus and reward are varied, see R. Church, A Concise Introduction to Scalar
 Timing Theory, 2003. See also Fraisse's (1963) discussion of Pavlov and Popov
 cyclochronism model)

Some general observations (Fraisse via Snyder, Music & Memory):

Filled time durations appear shorter than empty ones

Rate of novel events makes durations appear shorter

 (monotonous durations are experienced as longer, but remembered as shorter)

Aging: young children overestimate durations; older adults underestimate durations

 (A systematic change in internal timing mechanisms with age? cf \(\Delta\)absolute pitch)

Implications for music: pieces with high event densities go faster; those
 with low ones seem to take forever; duration is in the mind of the
 beholder and his/her expectations
Beat induction and duration discrimination

Weber's Law

Image removed due to copyright restrictions.

Graph illustrating Weber's Law. See Fig. 4.13 in Jones and Yee, "Attending to auditory events: the role of temporal organization."

Succession

Time order:
before and after (Fraisse, Snyder)

Our recollection of time order depends on memory mechanisms, how distant in the past were the events

Representation of order in long-term memory is poor
LTM is massively parallel, not serial
Time order within chunks is better preserved than between them
Primacy and recency: first and last elements in a chunk best remembered, most salient
Perspective: Past, present, future

Mediated by different psych/brain mechanisms
Past: long term memory
Present: working memory
Future: anticipation, planning

Music (like sports) focuses our minds on the present, on events that have occurred in the last few seconds to minutes.
Mechanisms of timing and temporal processing

• Temporal contiguity models of learning

• Clock models
 – Switched accumulator, e.g. hourglass
 – Explicit measurement of time durations
 – Ordering of durations by magnitude

• Time delay detectors/generators
 – Array of tuned delay elements, detectors, oscillators
 – Explicit measurement of time durations; storage of patterns
 – Generators of time delays (timers)

• Rhythmic hierarchies (Jones)
 – well-formed patterns create strong expectations

• Temporal memory trace
 – Timeline of events stored in reverberating memory
 – Readout of events & (timing of) their consequences
Temporal expectations on different timescales

- Pitch: repetitions on microtemporal timescales (200 usec to 30 ms)
- Infra-pitch: not well defined, repetitions with periods 30-100 ms
- Rhythms: patterns of individuated events with periods 100 ms to several secs
- Longer temporal expectations (> few secs)
Metrical and nonmetrical patterns (cf. tonal & atonal melodies)

Image removed due to copyright restrictions.
Temporal reproductions are better for well-formed temporal patterns

Image removed due to copyright restrictions.
Higher-order (longer-range) metrical patterns

Image removed due to copyright restrictions.
Hierarchical & nonhierarchical ratios of event timings

Image removed due to copyright restrictions.
Image removed due to copyright restrictions.
Mechanisms of timing and temporal processing

• Temporal contiguity models of learning
• Clock models
 – Switched accumulator, e.g. hourglass
 – Explicit measurement of time durations
 – Ordering of durations by magnitude
• Time delay detectors/generators
 – Array of tuned delay elements, detectors, oscillators
 – Explicit measurement of time durations; storage of patterns
 – Generators of time delays (timers)
• Rhythmic hierarchies (Jones)
 – well-formed patterns create strong expectations
• Temporal memory trace
 – Timeline of events stored in reverberating memory
 – Cyclochronism (Popov, see Fraisse, memory store is itself temporal)
 – Readout of events & (timing of) their consequences
Warren: Holistic & analytic sequence recognition

holistic: temporal compounds (cohere into unified patterns)

analytic: explicit ID of elements and orders

Image removed due to copyright restrictions.
Timescale similarities & differences of temporal processing

• On all timescales:
 – mechanisms for internalizing timecourses of events, for building up temporal patterns

• Differences between timescales
 – Pitch: support of multiple patterns (pitch mechanism low harmonics) => temporal "transparency", non-interference
 – Rhythm: interference between patterns unless separated into different streams
 – another way of thinking about this is that for rhythm stream formation mechanism is not based on periodicity alone
Licklider’s (1951) duplex model of pitch perception

Licklider’s (1951) duplex model of pitch perception

Licklider’s binaural triplex model

Frequency

Periodicity

Neural timing nets

FEED-FORWARD TIMING NETS
- Temporal sieves
- Extract (embedded) similarities
- Multiply autocorrelations

RECURRENT TIMING NETS
- Build up pattern invariances
- Detect periodic patterns
- Separate auditory objects
Is a time-domain strategy possible?
Effect of different F0s in the time domain

Vowel [ae]
F0 = 100 Hz

Vowel [er]
F0 = 125 Hz

Double vowel [ae]+[er]
Auditory "pop-out" phenomena suggest a period-by-period transient disparity.

Last 2 periods - first 2 ongoing disparity
All time delay present

Time patterns reverberate through delay loops

Recurrent, indirect inputs

Coincidence units

Direct inputs

Input waveform

Figure by MIT OpenCourseWare.
Detection of arbitrary periodic patterns

Periodic patterns invariably build up in delay loops whose recurrence times equals the period of the pattern and its multiples.

\[\tau_1 = 11 \text{ ms} = \text{recurrence time of input pattern} 10101100101 \]

Input pattern

10101100101101010110010110101100101011010...
Time patterns reverberate through delays loops.

Recurrent, indirect inputs

Coincidence units

Direct inputs

Input waveform

Figure by MIT OpenCourseWare.

C: Vowel /ae/ F0=100 Hz

D: Vowel /er/ F0=112 Hz

E. Input to network (A + B)
Recurrent timing net with single

Revised buildup rule: \(\text{Min}(\text{direct, circulating}) \) plus a fraction of their absolute difference

Error-adjustment rule:

\[H(t) = H(t-\tau) + B_{\tau}[X(t)-H(t-\tau)] \]

Loop-dependent scaling of adj rate:

\[B_{\tau} = \tau/33 \text{ ms} \]
F. RESPONSE OF RECURRENT TIMING NET

![Graph showing response of recurrent timing net over time with a color scale indicating loop delay in milliseconds.](image-url)

- X-axis: Time (ms)
- Y-axis: Loop delay (ms)

Note: The graph illustrates the response of a recurrent timing network over time, with time in milliseconds on the x-axis and loop delay on the y-axis.
RESPONSE OF RECURRENT TIMING NET

Output of 10 ms loop

Output of 8.9 ms loop
Output of 10 ms loop

Original individual vowels
Vowel /ae/ F0=100 Hz

Output of 8.9 ms loop

Vowel /er/ F0=112 Hz
Correlations of loop outputs to individual vowels

Correlations between autocorrelations

Thick: 10 ms loop waveform vs. /ae/
Thin: 8.9 ms loop waveform vs. /er/

![Graph showing correlation coefficients over time](image-url)
Tonal & rhythmic contexts

Tonality induction:
- establishment of a tonic
- establishment of tonal system: key, mode, set of pitches
- establishment of harmonic relations

Western tonal music:
Relations of notes to the tonic
Relations of notes to the triad that defines the key (I)
- harmonic center
Relations of chords to I triad & tonic -- chord progressions
 - Distance in perceptual similarity
 - Tension-resolution + movement between the two
Relations of different keys and key modulations
 - Movements between keys, tension-resolution, larger structures & rhythms of harmonic movement
Build-up and separation of two auditory objects

Two vowels with different fundamental frequencies (F0s) are added together and passed through the simple recurrent timing net. The two patterns build up in the delay loops that have recurrence times that correspond to their periods.

Vowel [ae]
F0 = 100 Hz
Period = 10 ms

Vowel [er]
F0 = 125 Hz
Period = 8 ms
This journal is available online at http://www.ingentaconnect.com/content/routledg/jnmr/

This journal is available online at http://www.ingentaconnect.com/content/routledg/jnmr/

This journal is available online at http://www.ingentaconnect.com/content/routledg/jnmr/
Response of a recurrent timing network to the Ligeti fragment. $H(j,i+j) = \max(X(1,i), X(1,i) \cdot H(j,i) \cdot (1+j/100))$ where X is the envelope of the Ligeti fragment, and H is the value of the signal in delay loop j (first index) at time t (second index). The buildup factor $(1+j/100)$ depends on the duration of the delay loop (i.e., equal to j samples). The mean signal value H in the delay channels over the last 200 samples (thicker line) and over the whole fragment (thinner line) are shown in the top right line plot. The waveforms that are built up in the three most activated delay loops are shown above. The results, not surprisingly resemble those obtained with the running autocorrelation. The sampling rate of the signal was approximately 10 Hz.

This image is from the article Cariani, P. "Temporal Codes, Timing Nets, and Music Perception." *Journal of New Music Research* 30, no. 2 (2001): 107-135. DOI: 10.1076/jnmr.30.2.107.7115. This journal is available online at http://www.ingentaconnect.com/content/routledg/jnmr/

Thursday, May 14, 2009
HST.725 Music Perception and Cognition
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.