A Practical Example

Staal A. Vinterbo

Harvard-MIT Division of Health Science and Technology
Decision Systems Group, BWH
Harvard Medical School

Dec 2005: HST 951/MIT 6.873 Class

Overview

- Obtain data, prepare it
- Create, validate and compare classifiers
- Determine predictors if possible: hypotheses
- Write report

Data

The data we plan on using:

Google: "golub all aml data"

Data format

The data comes as:

- Two files: training set and test set
- Each gene on a row
- Class in separate file

Need to transform.
Transform

- Use Excel to strip away first column.
- Load into R using read.delim
- Filter columns, transpose and attach class labels

Repeat Original Experiment

- Repeat Classification task of paper
- 4 errors on test

Validate Method

- 8 fold CV

CV comparison with NN

- Compare to ANN using
 - 8 fold CV – T-Test
 - 5×2 CV (Alpaydin, E. Combined 5x2CV F Test for Comparing Supervised Classification Learning Algorithms Neural Computation, 1999, 11, 1885-1982)
The 5×2 CV F-test can be used to quantitatively compare the performance of two classifiers. As its name implies, the test is based on performing five replications of 2-fold CV.

Let Δ_{ij} denote the difference between the performance measures of the two classifiers on fold $j \in \{1, 2\}$ of replication $i \in \{1, \ldots, 5\}$. The average difference in performance on replication i is $\bar{\Delta}_i$ and the estimated variance is s_i^2.

$$\bar{\Delta}_i = \frac{(\Delta_{i1} + \Delta_{i2})}{2}$$
$$s_i^2 = (\Delta_{i1} - \bar{\Delta}_i)^2 + (\Delta_{i2} - \bar{\Delta}_i)^2$$

Let H_0 denote the null hypothesis that the two classifiers perform equally well. Under H_0, Δ_{ij} can be treated as being $N(0, \sigma^2)$ distributed, and we have:

$$A = \sum_{i=1}^{5} \sum_{j=1}^{2} \frac{\Delta_{ij}^2}{\sigma^2} \sim \chi^2_{10}$$
$$B = \sum_{i=1}^{5} \frac{s_i^2}{\sigma^2} \sim \chi^2_{5}$$

$$f = \frac{A/10}{B/5} = \frac{\sum_{i=1}^{5} \sum_{j=1}^{2} \Delta_{ij}^2}{2 \sum_{i=1}^{5} s_i^2} \sim F_{10, 5}$$

We then reject H_0 if the statistic f is sufficiently large. For 95% confidence, $f = 4.74$.

Markers?

Bioinformatics: Can we suggest markers that discerns between ALL and AML?
The paper parts:

► Introduction:
 ► background – why is this question important
 ► what we did – results and significance
► Methods
 ► Mathematical preliminaries and definitions
 ► Fuzzy Classification Trees
 ► Validation methods
► Experiments
 ► Data description, and preparation
 ► Experimental protocol: hypotheses and what results are needed to confirm
► Results: state the results
► Discussion:
 ► Link hypotheses and results and draw conclusion
 ► Discuss weaknesses/strengths and items needed to reproduce
 ► Hint at further research